Министерство экологии и природных ресурсов Республики Казахстан Филиал РГП «Казгидромет» по Атырауской области

ИНФОРМАЦИОННЫЙ БЮЛЛЕТЕНЬ О СОСТОЯНИИ ОКРУЖАЮЩЕЙ СРЕДЫ ПО АТЫРАУСКОЙ ОБЛАСТИ

3 квартал 2025 год

	СОДЕРЖАНИЕ	Стр.
	Предисловие	3
1	Основные источники загрязнения атмосферного воздуха	4
2	Состояние качества атмосферного воздуха в г. Атырау	4
2.1	Состояние качества атмосферного воздуха в г. Кульсары	8
2.2	Состояние качества атмосферного воздуха в п. Макат	9
2.3	Состояние качества атмосферного воздуха в п. Индерборский	10
2.4	Состояние качества атмосферного воздуха в с. Жанбай	11
2.5	Состояние качества атмосферного воздуха в с. Ганюшкино	12
3	Состояние качества поверхностных вод	13
4	Химический состав атмосферных осадков	16
5	Радиационная обстановка	16
	Приложение 1	18
	Приложение 2	24
	Приложение 3	26
	Приложение 4	27
	Приложение 5	30

Предисловие

Информационный бюллетень подготовлен по результатам работ, выполняемых специализированными подразделениями РГП «Казгидромет» по ведению мониторинга за состоянием окружающей среды на наблюдательной сети национальной гидрометеорологической службы.

Бюллетень предназначен для информирования государственных органов, общественности и населения о состоянии окружающей среды на территории Атырауской области и необходим для дальнейшей оценки эффективности мероприятий в области охраны окружающей среды РК с учетом тенденции происходящих изменений уровня загрязнения.

Оценка качества атмосферного воздуха в Атырауской области

1. Основные источники загрязнения атмосферного воздуха

По сообщениям Департамента экологии Атырауской области основными источниками загрязнения в г. Атырау являются объекты нефтепереработки, транспортировки:

«Атырауский нефтеперерабатывающий завод», ТОО «Тенгизшевройл», компания «НОРТ КАСПИАН ОПЕРЕЙТИНГ КОМПАНИ Н.В.», АО «АТЫРАУСКИЙ ТЕПЛОЭЛЕКТРОЦЕНТРАЛЬ, АО «Эмбамунайгаз», ТОО «WEST DALA» «ВЕСТ ДАЛА». Кроме того, в городе имеется два пруда-накопителя производственных сбросов, расположенных с обеих подветриваемых сторон города (северо-западная сторона - пруд-накопитель «Квадрат» и восточная сторона - «Тухлая балка»). Все городские сбросы в накопитель осуществляются практически без очистки, в итоге формируется основной источник сероводорода — накопитель в 1000 гектаров, в котором идут процессы гниения органических веществ — канализационных стоков, в том числе нефтепродуктов.

В Атырауской области имеется 74 предприятий первой категории.

Город Атырау, город Кульсары и Макатский район полностью снабжены природным газом.

Согласно данным АПФ АО «КазТрансгазАймак» автономных котельных по городу Атырау – 80~030~ ед., по Макатскому району – 1783~ ед.

2. Мониторинг качества атмосферного воздуха

Наблюдения за состоянием атмосферного воздуха на территории г. Атырау проводятся на 6 постах наблюдения, в том числе на 2 постах ручного отбора проб и на 4 автоматических станциях (Приложение 1).

В целом по городу определяется по 16 показателям: 1) взвешенные частицы (пыль); 2) взвешенные частицы РМ-2,5; 3) взвешенные частицы РМ-10; 4) диоксид серы; 5) оксид углерода; 6) диоксид азота; 7) оксид азота; 8) аммиак; 9) сероводород; 10) озон; 11) фенол; 12) формальдегид; 13) бензол; 14) толуол; 15) этилбензол; 16) ортоксилол (С2Н6).

В таблице 1 представлена информация о местах расположения постов наблюдений и перечне определяемых показателей на каждом посту.

Таблица 1 **Место расположения постов наблюдений и определяемые примеси**

№ Сроки Проведение Адрес поста Определяемые примеси отбора наблюдений взвешенные частицы (пыль), диоксид ручной отбор мкр Самал, ул. А. серы, оксид углерода, диоксид и оксид 3 раза в Кекильбаева 15 1 проб азота, сероводород, фенол, аммиак, сутки (дискретные формальдегид, бензол, толуол, методы) этилбензол, ортоксилол (С2Н6)

			Mich Vymanii vii	Papaulaulu la Haatillu I (HI III) Haatallu
			мкр Курсай, ул.	взвешенные частицы (пыль), диоксид
5			Карабау строение12	серы, оксид углерода, диоксид и оксид
				азота сероводород, фенол, аммиак,
				формальдегид
6			мкр Жулдыз, 6-я	озон (приземный)
			улица,29	
			район Сырдарья3	взвешенные частицы РМ-2,5,
8	D HATINANI ID			взвешенные частицы РМ-10, оксид
	в непрерыв ном режиме	в непрерывном		углерода, диоксид и оксид азота,
	-каждые 20	режиме		аммиак
	-каждыс 20 минут		мкр.Береке, район	взвешенные частицы РМ-2,5,
9	Milliyi		промзоны	взвешенные частицы РМ-10
			Береке	
			с.Дамба, на	
			территории рыбной	
11			инспекции	
			,	
			мкр. Акшагала,	
12			улица 2, дом 1а	
			ул. Ауэзова, 28А, на	диоксид серы, оксид углерода,
15				днокенд изоти, сероводород.
13			территории стадиона	
			"Мунайшы"	
17			мкр. Самал улица 7,	
1,			на территории д. 42	

Результаты мониторинга качества атмосферного воздуха в г. Атырау за 3 квартал 2025 года.

По данным стационарной сети наблюдений, уровень загрязнения атмосферного воздуха оценивался как «высокое» он определялся значением $\mathbf{C}\mathbf{И}=5,7$ (высокий уровень) по оксиду углерода в районе поста №15 и $\mathbf{H}\mathbf{\Pi}$ равным 10% (повышенный уровень) по диоксиду азота в районе поста №15.

Максимально-разовые концентрации составили: оксида углерода-5,7 ПДК_{м.р.}, диоксида азота-5,12 ПДК_{м.р.}, диоксида серы-3,6 ПДК_{м.р.}, сероводорода-2,8 ПДК_{м.р.}, озон-1,8 ПДК_{м.р.}, взвешенные частицы (пыль)-1,0 ПДК_{м.р.}, по другим показателям превышений ПДК не наблюдалось.

Случаи экстремально высокого и высокого загрязнения (ВЗ и ЭВЗ): ВЗ (более 10 ПДК) и ЭВЗ (более 50 ПДК) не были отмечены.

Фактические значения, а также кратность превышений нормативов качества иколичество случаев превышения указаны в Таблице 2.

Таблица 2 **Характеристика загрязнения атмосферного воздуха**

Примесь		Средняя концентрация		Максимально- разовая концентрация		НП	с л прен	Число лучаев вышения ПДК _{м.р.}	
		мг/м ³	Кратнос ть ПДК _{с.с.}	мг/м ³	Кратнос ть ПДК _{м.р.}	%	>ПД К	>5 ПД К	>10 ПД К
г. Атырау									

Взвешенные частицы (пыль)	0,02	0,15	0,5	1,0	1,3	6		
Взвешенные частицы РМ-2,5	0,0179	0,51	0,1129	0,7				
Взвешенные частицы РМ-10	0,0152	0,25	0,1102	0,4				
Диоксид серы	0,012	0,23	1,8142	3,6	0,0	3		
Оксид углерода	0,12	0,04	28,62	5,7	0,5	37	3	
Диоксид азота	0,02	0,53	1,02	5,12	9,8	1012	1	
Оксид азота	0,0135	0,22	0,20	0,5				
Озон	0,0168	0,56	0,2912	1,8	5,5	366		
Сероводород	0,0010		0,0220	2,8	5,6	675		
Фенол	0,002	0,72	0,004	0,4				
Аммиак	0,010	0,25	0,1000	0,5				
Формальдегид	0,002	0,22	0,004	0,1				
Бензол	0,000	0,00	0,000	0,0				
Толуол	0,000		0,000	0,0			_	
Этилбензол	0,000	0,00	0,000	0,0				
Ортоксилол (С2Н6)	0,000		0,000	0,0				

Выводы:

За последние пять лет уровень загрязнения атмосферного воздуха изменялся следующим образом:

Как видно из графика, уровень загрязнения атмосферного воздуха в 3 квартале города Атырау за последние пять лет, в 2021,2023 годах уровень загрязнения воздуха оценивался как «повышенный». В 2022, 2024 и 2025 годах загрязнение атмосферного воздуха оценивался как «высокий».

Количество превышений максимально-разовых ПДК было по взвешенным частицам (пыль) (6 случаев), диоксиду азота (1013 случая), оксиду углерода (40 случаев), озон (366 случаев), сероводороду (675 случаев), диоксиду серы (3 случая).

Метеорологические условия

Погодные условия г.Атырау в течении 3 квартала 2025 года формировались под чередующимся влиянием полей повышенного атмосферного давления и циклонических воздействий, с прохождением фронтальных разделов прошли кратковременные дожди с грозами, усиливался ветер до 15-20 м/с, в начале и конце

периода отмечались пыльные бури. В июле середине месяца и августе в начале месяца, в сентябре часто ожидался слабый ветер 0-5 м/с в связи с этим, *ожидались* неблагоприятные метеорологические условия загрязнения воздуха по г. Атырау.

Состояние атмосферного воздуха по данным экспедиционных наблюдений

Помимо стационарных постов наблюдений в городе Атырау действует передвижная экологическая лаборатория, с помощью которой измерение качества воздуха проводятся 3 раза в сутки по неполной программе (07,13,19 час. местного времени) на 3 точках. Точка №1-п.Жумыскер, улица Жастар; точка №2-вокзал Атырау; точка №3- Черная речка, городской пруд-испаритель по 11 показателям: *1) взвешенные частицы (РМ-10); 2) диоксид серы; 3) оксид углерода; 4) диоксид азота; 5) взвешенные частицы (РМ-2,5); 6) Летучие органические соединения (ЛОС); 7) сероводород; 8) углеводороды (C_{12}-C_{19}); 9) формальдегид; 10) фенол; 11) метан.*

Максимально-разовая концентрации сероводорода точки №1-п.Жумыскер, улица Жастар находилось в пределах-5,0 ПДК_{м.р.}, точка №2-вокзал Атырау-3,75 ПДК_{м.р.}, точка №3- Черная речка городской пруд-испаритель-5,00ПДК_{м.р.}, формальдегида точки №1-п.Жумыскер, улица Жастар находилось в пределах 6,4 ПДК_{м.р.}, точка №2-вокзал Атырау-3,4 ПДК_{м.р.}, №3- Черная речка городской пруд-испаритель-3,2 ПДК_{м.р.}, оксида углерода точки №1-п.Жумыскер, улица Жастар находилось в пределах-1,1 ПДК_{м.р.}, диоксида азота точки №1-п.Жумыскер, улица Жастар находилось в пределах-2,85 ПДК_{м.р.}, точка №2-вокзал Атырау-1,01 ПДК_{м.р.}, диоксида серы точки №1-п.Жумыскер, улица Жастар находилось в пределах-1,28 ПДК_{м.р.}

Концентрации остальных загрязняющих веществ, по данным наблюдений, находились в пределах допустимой нормы.

Фактические значения, а также кратность превышений нормативов качества и количество случаев превышения указаны в Таблице 3.

Таблица 3 Максимальные концентрации загрязняющих веществ по данным наблюдений г.Атырау

		с.ливир		ки отбора	a	
Определяемые примеси	Ŋ	6 1	J	№2		№3
определиемые примеси	q _m мг/м ³	q _m /ПДК	q _m мг/м ³	q _т /ПДК	q _m мг/м ³	q _т /ПДК
Взвешенные частицы (РМ-2,5)	0,016	0,100	0,008	0,050	0,020	0,125
Взвешенные частицы (РМ-10)	0,022	0,073	0,051	0,170	0,017	0,085
Оксид углерода	5,7	1,1	4,44	0,88	4,15	0,83
Диоксид азота	0,570	2,850	0,202	1,01	0,083	0,415
Метан	7,00	-	6,000	-	8,000	-
Сероводород	0,040	5,000	0,030	3,750	0,040	5,000
Фенол	0,009	0,900	0,009	0,900	0,009	0,900
Углеводороды (С12-С19)	0,300	-	0,300	-	0,3	-
Диоксид серы	0,640	1,280	0,020	0,040	0,120	0,240
Формальдегид	0,320	6,400	0,170	3,400	0,160	3,200
Летучие органические соединения (ЛОС)	0,300	-	0,4	-	0,600	-

2.1 Мониторинг качества атмосферного воздуха в г. Кульсары.

Наблюдения за состоянием атмосферного воздуха на территории г. Кульсары проводятся на стационарном посту наблюдения (Приложение 1).

В целом по городу определяется до 8 показателей: 1) взвешенные частицы (пыль); 2) диоксид серы; 3) оксид углерода; 4) диоксид азота; 5) оксид азота; 6) озон; 7) сероводорода.

В таблице 3 представлена информация о местах расположения постов наблюдений и перечне определяемых показателей на каждом посту.

Место расположения постов наблюдений и определяемые примеси

Таблица 4

Номер поста	Сроки отбора	Проведение наблюдений	Адрес поста	Определяемые примеси
7	каждые 20	в непрерывном	ул. Махамбет Утемисова,37 А	взвешенные частицы (пыль), диоксид серы, оксид углерода, диоксид и оксид азота, озон (приземный), сероводород.
19	минут	режиме	г. Кульсары район Промзоны НГДУ	диоксид серы, оксид углерода, диоксид азота, сероводород.

Результаты мониторинга качества атмосферного воздуха в г. Кульсары за 3 квартал 2025 года.

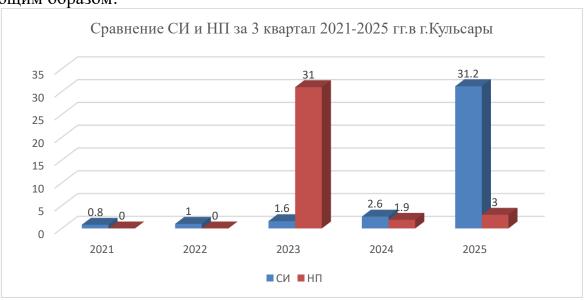
По данным стационарной сети наблюдений, уровень загрязнения атмосферного воздуха оценивался как **«очень высокое»**, он определялся значением **СИ**=31,2 (очень высокий уровень) по диоксиду серы; и **НП**=3% (повышенный уровень) по диоксиду серы в районе поста №19.

Максимально-разовые концентрации составили: диоксида серы- $31,2\Pi$ Д $K_{\text{м.р.}}$, диоксида азота- $6,92\Pi$ Д $K_{\text{м.р.}}$, сероводород- $1,38\Pi$ Д $K_{\text{м.р.}}$, по другим показателям превышений Π ДK не наблюдалось.

С 21 июля по 22 июля 2025 года по данным компактной станции ПНЗ №19 «Кульсары», расположенного в городе Кульсары, по диоксиду серы было зафиксировано 16 случаев высокого загрязнения (ВЗ) в пределах 10,7–31,2 ПДКм.р.

Фактические значения, а также кратность превышений нормативов качества и количество случаев превышения указаны в Таблице 5.

Таблица 5


Характеристика загрязнения атмосферного воздуха

Пътого	Средняя концентрация		Максимальная разовая концентрация		НП	Число случаев превышения ПДК _{м.р.}		ия		
Примесь	мг/м ³	Кратн ость ПДК _{с.с.}	мг/м³	Кратнос ть ПДК _{м.р.}	%	>пдк	>5 ПДК	>10 ПДК		
г. Кульсары										
Взвешенные частицы (пыль)	0,0001	0,00	0,1059	0,212						

Диоксид серы	0,0410	0,82	15,6184	31,237	2,6	168	63	16
Оксид углерода	0,1271	0,04	2,6491	0,530				
Диоксид азота	0,0055	0,14	1,3848	6,924	1,1	71	2	
Оксид азота	0,0027	0,05	0,0281	0,070				
Озон	0,0008	0,03	0,0010	0,01				
Сероводород	0,0003		0,0110	1,38	0,0	3		

Выводы:

За последние пять лет уровень загрязнения атмосферного воздуха изменялся следующим образом:

Как видно из графика, уровень загрязнения атмосферного воздуха в 3 квартале, города Кульсары за последние пять лет, в 2021, 2022 годах уровень загрязнения воздуха оценивался как «низкий». В 2023, 2024 годах оценивался как «повышенный», а в 2025 году загрязнения воздуха достигло «очень высокого» уровня.

2.2 Мониторинг качества атмосферного воздуха в районе Макат.

Наблюдения за состоянием атмосферного воздуха на территории Макатского района проводится на 1 компактной станции наблюдения (Приложение 1).

В целом по району Макат определяется до 3 показателей: 1) диоксид серы; 2) диоксид азота; 3) оксид углерода.

В таблице 6 представлена информация о местах расположения постов наблюдений и перечне определяемых показателей на каждом посту.

Таблица 6 Место расположения постов наблюдений и определяемые примеси

Номер поста	Сроки отбора	Проведение наблюдений	Адрес поста	Определяемые примеси
1	каждые 20 минут	в непрерывном режиме	Макатский район, п. Макат ул. Алаш 23, дом культуры.	диоксид серы, диоксид азота, оксид углерода.

Результаты мониторинга качества атмосферного воздуха в п. Макат за ввартал 2025 года.

По данным стационарной сети наблюдений, уровень загрязнения атмосферного воздуха оценивался как **низкое**, он определялся значением **СИ** равным 0,7 (низкий уровень) по диоксиду азота и **НП**=0% (низкий уровень).

Средние концентрации диоксида азота составила -2,32 ПДК_{с.с.}, концентрации остальных загрязняющих веществ не превышали ПДК.

Случаи экстремально высокого и высокого загрязнения (ВЗ и ЭВЗ): ВЗ (более 10 ПДК) и ЭВЗ (более 50 ПДК) не были отмечены.

Фактические значения, а также кратность превышений нормативов качества и количество случаев превышения указаны в Таблице 7.

Таблица 7

Характеристика загрязнения атмосферного воздуха

Примом	Среді концент		p	симально- азовая ентрация	НП	прев	о случаев ышения ДК _{м.р.}		
Примесь	мг/м ³	Кратно сть ПДКс.с.	$M\Gamma/M^3$	Кратность ПДК _{м.р.}	%	>пдк	>5 ПДК	>10 ПДК	
		pa	йон Мак	ат					
Диоксид серы	0,0010	0,02	0,0282	0,1					
Оксид углерода	0,2063	0,07	1,7260	0,3					
Диоксид азота	0,0929	2,32	0,1336	0,7					

2.3 Мониторинг качества атмосферного воздуха в Индерском районе.

Наблюдения за состоянием атмосферного воздуха на территории Индерского района проводится на 1 компактной станции наблюдения (Приложение 1).

В целом по району Индер определяется до 4 показателей: 1) диоксид серы; 2) диоксид азота; 3) сероводород; 4) оксид углерода.

В таблице 8 представлена информация о местах расположения постов наблюдений и перечне определяемых показателей на каждом посту.

Таблица 8

Место расположения постов наблюдений и определяемые примеси

Номер поста	Сроки отбора	Проведение наблюдений	Адрес поста	Определяемые примеси
1	каждые 20 минут	в непрерывном режиме	пос. Индерборский, ул. Н.Мендигалиев а д. 47.	диоксид серы, диоксид азота, сероводород, оксид углерода.

Результаты мониторинга качества атмосферного воздуха в п. Индерборский за 3 квартал 2025 года.

По данным стационарной сети наблюдений, уровень загрязнения атмосферного

воздуха оценивался как **повышенное**, он определялся значением $\mathbf{C}\mathbf{H} = 1,9$ (низкий уровень) и $\mathbf{H}\mathbf{\Pi} = 1\%$ (повышенный уровень) по диоксиду азота.

Максимально-разовые концентрации составили: диоксида азота-1,9 ПДК $_{\text{м.р.}}$, по другим показателям превышений ПДК не наблюдалось.

Средние концентрации составили: диоксида азота – 1,74 ПДК $_{\rm c.c.}$, концентрации остальных загрязняющих веществ не превышали ПДК.

Случаи экстремально высокого и высокого загрязнения (ВЗ и ЭВЗ): ВЗ (более 10 ПДК) и ЭВЗ (более 50 ПДК) не были отмечены.

Фактические значения, а также кратность превышений нормативов качества и количество случаев превышения указаны в Таблице 9.

Таблица 9

Характеристика загрязнения атмосферного воздуха

Примесь	Средняя концентрация		Максимально- разовая концентрация		НП	Число случаев превышения ПДК _{м.р.}		з ния
	мг/м ³	Кратно сть ПДК _{с.с.}	мг/м ³	Кратно сть ПДК _{м.р.}	%	>ПД К	>5 ПД К	>10 ПД К
		район Ин	ідер					
Диоксид серы	0,0063	0,13	0,2142	0,4				
Оксид углерода	0,0065	0,00	0,8509	0,2				
Диоксид азота	0,0698	1,74	0,3720	1,9	1,3	86		
Сероводород	0,0010		0,0026	0,3				

2.4 Мониторинг качества атмосферного воздуха в селе Жанбай.

Наблюдения за состоянием атмосферного воздуха на территории с. Жанбай проводится на 1 компактной станции наблюдения (Приложение 1).

В целом в селе Жанбай определяется до 4 показателей: 1) диоксид серы; 2) диоксид азота; 3) сероводород; 4) оксид углерода.

В таблице 10 представлена информация о местах расположения постов наблюдений и перечне определяемых показателей на каждом посту.

Таблица 10

Номер поста	Сроки отбора	Проведение наблюдений	Адрес поста	Определяемые примеси
1	каждые 20 минут	в непрерывном режиме	с.Жанбай, ул.Т. Нысанов уч 96	диоксид серы, диоксид азота, сероводород, оксид углерода.

Место расположения постов наблюдений и определяемые примеси

Результаты мониторинга качества атмосферного воздуха в с. Жанбай за 3 квартал 2025 года.

По данным стационарной сети наблюдений, уровень загрязнения атмосферного воздуха оценивался как **высокое**, он определялся значением **СИ** равным 6,6 (высокий уровень) по сероводороду и **НП**=24% (высокий уровень) по диоксиду азота.

Максимально-разовые концентрации составили: сероводорода-6,6 ПДК $_{\text{м.р.}}$, диоксида азота -1,7 ПДК $_{\text{м.р.}}$ По другим показателям превышений ПДК не наблюдалось.

Средние концентрации составили: диоксида азота $-4,41~\Pi Д K_{c.c.}$, концентрации остальных загрязняющих веществ не превышали $\Pi Д K$.

Случаи экстремально высокого и высокого загрязнения (ВЗ и ЭВЗ): ВЗ (более 10 ПДК) и ЭВЗ (более 50 ПДК) не были отмечены.

Фактические значения, а также кратность превышений нормативов качества и количество случаев превышения указаны в Таблице 11.

Таблица 11

Характеристика загрязнения атмосферного воздуха

Примесь	Средняя концентрация		Максимально- разовая концентрация		концентрация разовая концентрация		НП	пре	іо случа вышени ІДК _{м.р.}	
	мг/м ³	Кратност ь ПДК _{с.с.}	мг/м ³	Кратность ПДК _{м.р.}	%	>пдк	>5 ПДК	>10 ПДК		
			село Жанб	бай						
Диоксид серы	0,0012	0,02	0,0855	0,2						
Оксид углерода	0,3343	0,11	1,9948	0,4						
Диоксид азота	0,1765	4,41	0,3302	1,7	24,0	1588				
Сероводород	0,0012		0,0529	6,6	0,9	62				

2.5 Мониторинг качества атмосферного воздуха в с. Ганюшкино.

Наблюдения за состоянием атмосферного воздуха на территории п. Ганюшкино проводится на 1 компактной станции наблюдения (Приложение 1).

В целом в поселке Ганюшкино определяется до 4 показателей: 1) диоксид серы; 2) диоксид азота; 3) сероводород; 4) оксид углерода.

В таблице 12 представлена информация о местах расположения постов наблюдений и перечне определяемых показателей на каждом посту.

Таблица 12

Место расположения постов наблюдений и определяемые примеси

Номер поста	Сроки отбора	Проведение наблюдений	Адрес поста	Определяемые примеси
1	каждые 20 минут	в непрерывном режиме	с.Курмангазы, «ДК им.С.Кушекбаев а».	диоксид серы, диоксид азота, сероводород, оксид углерода.

Результаты мониторинга качества атмосферного воздуха в с. Ганюшкино за 3 квартал 2025 года.

По данным стационарной сети наблюдений, уровень загрязнения атмосферного воздуха оценивался как **повышенное**, он определялся значением **СИ** равным 4,9 (повышенный уровень) по сероводороду и **НП**=15% (повышенный уровень) по диоксиду азота.

Максимально-разовые концентрации составили: сероводорода-4,9 ПДК $_{\text{м.р.}}$, диоксида азота-2,1 ПДК $_{\text{м.р.}}$, по другим показателям превышений ПДК не наблюдалось.

Средние концентрации составила: диоксида азота $-3,03~\Pi Д K_{c.c.}$, концентрации остальных загрязняющих веществ не превышали $\Pi Д K$.

Фактические значения, а также кратность превышений нормативов качества и количество случаев превышения указаны в Таблице 13

Таблина 13

Характеристика загрязнения атмосферного воздуха

Пишков	_	оедняя ентрация	Максим разо концен	вая	НП		сло случ шения І	
Примесь	ΜΓ/M ³	Кратность ПДКс.с.	мг/м ³ Кратн сть ПДК _{м.}		%	>пдк	>5 ПДК	>10ПДК
		по	с. Ганюшк	сино				
Диоксид серы	0,0018	0,04	0,3551	0,7				
Оксид углерода	0,0121	0,00	2,6755	0,5				
Диоксид азота	0,1213	3,03	0,4200	2,1	15,4	1016		
Сероводород	0,0014		0,0392	4,9	1,1	75		

3.Мониторинг качества поверхностных вод на территории Атырауской области

Наблюдения за качеством поверхностных вод по Атырауской области проводились на 21 створах на 6 водных объектах (реки Жайык, Кигаш, Эмба, протоки Шаронова, Перетаска и Яик).

Мониторинг качества морской воды проводится на следующих 22 прибрежных точках Северного Каспийского моря: морской судоходный канал (2), взморье р. Жайык (5), взморье р. Волга (5), станции острова залива Шалыги (5), п.Жанбай (5).

При изучении поверхностных вод в отбираемых пробах воды определяются 43 гидрохимических показателей качества: визуальные наблюдения, температура, взвешенные вещества, прозрачность, цветность, водородный показатель (pH), растворенный кислород, БПК $_5$, ХПК, сухой остаток, главные ионы солевого состава, биогенные элементы, органические вещества (нефтепродукты, фенолы), тяжелые металлы, пестициды.

Мониторинг за состоянием качества поверхностных и морских вод **по гидробиологическим показателям** на территории Атырауской области за отчетный

период проводился на 5 водных объектах (рек Жайык, Кигаш, Эмба и в протоке Шаронова и Каспийском море) на 28 створах. Было проанализировано 84 проб на определение острой токсичности исследуемой воды на тестируемый объект.

Мониторинг качества **донных отложений** по тяжелым металлам (медь, марганец, нефтепродукты, свинец, цинк, кадмий, никель, хром) на территории Атырауской области проводится на 10 створах р. Жайык, пр. Яик и Перетаска и на 22 точках Каспийского моря. Анализировалось содержание нефтепродуктов и тяжелых металлов (медь, хром, кадмий, никель, марганец, свинец и цинк).

3.1 Результаты мониторинга качества поверхностных по гидрохимическим показателям вод на территории Атырауской области

Основным нормативным документом для оценки качества воды водных объектов Республики Казахстан является «Единая система классификации качества воды в водных объектах».

По Единой классификации качество воды оценивается следующим образом:

Потоморонно	Класс ка	чества воды			
Наименование водного объекта	3 квартал 2024 г.			ед. изм.	концентр ация
		2	БПК5	$M\Gamma/дM^3$	2,461
· Worry		3 класс	ХПК	$M\Gamma/дM^3$	26,192
р. Жайык	-	(умеренно загрязненные)	Магний	$M\Gamma/дM^3$	23,717
		зигрязненные)	Нефтепродукты	$M\Gamma/дM^3$	0,077
		2	БПК5	$M\Gamma/дM^3$	2,546
П		3 класс	ХПК	$M\Gamma/дM^3$	24,389
пр.Перетаска	-	(умеренно	Магний	$M\Gamma/дM^3$	26,344
		загрязненные)	Нефтепродукты	$M\Gamma/ДM^3$	0,07
		3 класс	БПК5	$M\Gamma/дM^3$	2,62
Л	-	(умеренно	ХПК	$M\Gamma/ДM^3$	24,811
пр.Яик		загрязненные)	Магний	$M\Gamma/дM^3$	24,833
			Нефтепродукты	$M\Gamma/дM^3$	0,073
		3 класс	БПК5	$M\Gamma/дM^3$	2,5
р.Кигаш	-	(умеренно загрязненные)	ХПК	мг/дм³	24,8
		3 класс	БПК5	$M\Gamma/дM^3$	2,49
TTM III.		(умеренно	ХПК	$M\Gamma/дM^3$	26,37
пр.Шаронова	-	загрязненные)	Магний	$M\Gamma/дM^3$	25,17
		sucprisite in site)	Нефтепродукты	$M\Gamma/дM^3$	0,063
		3 класс	БПК5	$M\Gamma/ДM^3$	2,54
р.Эмба	-	(умеренно	ХПК	$M\Gamma/ДM^3$	24,7
		загрязненные)	Магний	$M\Gamma/дM^3$	47,4

^{*} Единая система классификации качества воды в водных объектах (Приказ КВР МСХ №70 от 20.03.2024).

За 3 квартал 2025 года реки Жайык, Эмба, Кигаш, протоки Перетаска, Яик и Шаронова относятся к 3 классу.

Основными загрязняющими веществами в водных объектах по Атырауской области является БПК5, ХПК,магний и нефтепродукты.

Случаи высокого и экстремально высокого загрязнения

За 3 квартал 2025 года на территории Атырауской области ВЗ и ЭВЗ не обнаружены.

Информация по качеству водных объектов по гидрохимическим показателям в разрезе створов указана в Приложении 1.

Информация по качеству водных объектов по токсикологическим показателям в разрезе створов указана в Приложении 2.

Состояние качества поверхностных и морских вод по гидробиологическим показателям

По Единой классификации качество воды по гидробиологическим показателям оценивается следующим образом:

			ксу сапробности кации Сладчека)	Класс качества воды по зообентосу		
Наименование водного объекта	по фитопланк тону по зоопланктону		по перифитону	отношение общей численности олигохет к общей численности донных организмов, %	биотический индекс по Вудивиссу	
р.Жайык			3 класс (1,83)		3 класс (5,0)	
пр. Шаронова			3 класс (1,77)		3 класс (5,0)	
р.Кигаш			3 класс (1,70)		3 класс (5,0)	
р.Эмба			3 класс (1,62)		3 класс (5,0)	
Каспийское море			3 класс (1,79)		3 класс (5,0)	

Река Жайык. *Перифитон*. В обрастаниях перифитона доминировали диатомовые водоросли. Диатомовые водоросли встречались во всех створах. Средний индекс сапробности равен 1,83. Умеренно загрязненная вода.

Зообентос. Зообентос был предоставлен брюхоногими моллюсками. Биотический индекс по Вудивиссу составил-5. Класс воды- третий.

Биотестирование. По данным биотестирования тест-параметр по реке Жайык был предоставлен в последовательном расположения точек наблюдения: поселок Дамба - 0%, г. Атырау 0,5 км ниже сброса КГП «Атырау су арнасы» - 0%, п. Индер «в створе водопоста» - 0%. Полученные данные показывает отсутствие токсического влияния исследуемой воды на тест-объект.

Проток Шаронова. *Перифитон*. Видовой состав перифитона был представлен диатомовыми водорослями. Индекс сапробности составил 1,77. Качество воды-умеренно загрязненные воды.

Зообентос. По бентосу биотический индекс составил-5. Качество воды соответствовало к 3 классу умеренно загрязненных вод.

Биотестирование. В процессе определения острой токсичности воды на тестобъект процент погибших дафний по отношению к контролю (тест- параметр) в протоке - 0%. Токсического влияния на тест-объект не обнаружено.

Река Кигаш. *Перифитон*. Видовой состав перифитона был представлен диатомовыми водорослями. Индекс сапробности составил 1,70. Качество водыумеренно загрязненные воды.

Зообентос. По бентосу биотический индекс составил-5. Качество воды соответствовало к 3 классу умеренно загрязненных вод.

Биотестирование. Данные полученные в ходе биотестирования по реке Кигаш показали отсутствие токсического влияние на тест-объект. Число выживших дафний в исследуемой воде составило 100%. Тест- параметр составил - 0%.

Река Эмба. *Перифитон* был не богат и представлен диатомовыми и эвгленовыми водорослями. Индекс сапробности равен 1,62. Класс воды третий, то есть умеренно загрязненные воды.

Зообентос. Биотический индекс был равен-5. По результатам исследования зообентоса реки Эмба, дно водоема оценивалось как умеренно загрязненное.

Биотестирование. В процессе определения острой токсичности воды на тестобъект процент погибших дафний по отношению к контролю (тест-параметр) в реке Эмба 0%. Токсического влияния на тест-объект не обнаружено.

Каспийское море. *Перифитон*. Альгоценоз обрастаний был богат диатомовыми водорослями. Индексы сапробности варьировали от 1,53 до 2,0. Средний индекс сапробности по 22 точкам Каспийского моря составил 1,79 умеренно загрязненной воды и остался в пределах 3 класса.

Зообентос. По бентосу биотический индекс составил - 5. Качество воды соответствовало к 3 классу - умеренно загрязненных вод.

Качество воды по перифитону и бентосу относится к третьему классу, умеренно загрязненные воды.

Биотестирование. Качество морских вод по токсикологическим показателям Каспийского моря не оказывали острого токсического действия на живые организмы. Тест-параметр в створах Каспийского моря составил 0%.

Состояние качества донных отложений поверхностных и морских вод по тяжелым металлам.

По результатам исследования в донных отложениях реки Жайык, пр.Перетаска и Яик содержание тяжелых металлов колеблется в следующих пределах: медь от 0,33 до 0,55 мг/кг, марганец от 0,07 до 0,12 мг/кг, хром от 0,07 до 0,11 мг/кг, свинец от 0,24 до 0,31 мг/кг, цинк от 1,93 до 2,18 мг/кг, никель от 0,25 до 0,60 мг/кг, кадмий от 0,19 до 0,21 мг/кг. Содержание нефтепродуктов отмечена в пределах от 0,33% до 1,76%.

По результатам мониторинга донных отложений Каспийского моря содержание тяжелых металлов колеблется в широких пределах: медь от 0.28 до 0.52 мг/кг, марганец от 0.07 до 0.14 мг/кг, хром от 0.06 до 0.14 мг/кг, свинец от 0.21 до 0.37 мг/кг, цинк от 1.89 до 2.5 мг/кг, никель от 0.30 до 0.57 мг/кг, кадмий от 0.17 до 0.31 мг/кг. Содержание нефтепродуктов отмечена в пределах 0.31% до 2.0%.

4. Химический состав атмосферных осадков на территории Атырауской области

Наблюдения за химическим составом атмосферных осадков заключались в отборе проб дождевой воды на 4 метеостанции (Атырау, Ганюшкино, Пешной, Кульсары) (приложение 1).

Концентрации всех определяемых загрязняющих веществ в осадках не превышают предельно допустимые концентрации (ПДК).

В пробах осадков преобладало содержание сульфатов 2,4%, хлоридов 11,32%, гидрокарбонатов 66,33%, ионов магния 3,44%, ионов кальция 16,51%.

Наибольшая общая минерализация отмечена на MC Кульсары -191,9 мг/л, наименьшая на MC Ганюшкино -36,56 мг/л.

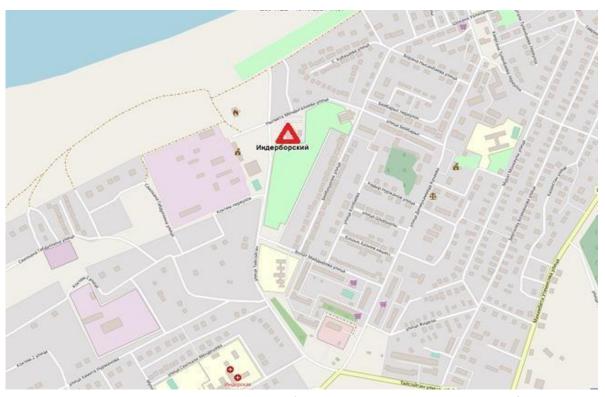
Кислотность выпавших осадков находится в пределах от 6,9 (МС Кульсары) до 7,2 (МС Ганюшкино).

5. Радиационная обстановка

Наблюдения за уровнем гамма излучения на местности осуществлялись ежедневно на 3-х метеорологических станциях (Атырау, Пешной, Кульсары).

Средние значения радиационного гамма - фона приземного слоя атмосферы в области находились в пределах 0,08-0,14 мкЗв/ч. В среднем по области радиационный гамма-фон составил 0,11 мкЗв/ч и находился в допустимых пределах. Мониторинг за радиоактивным загрязнением приземного слоя атмосферы на территории Атырауской области осуществлялся на метеорологической станции Атырау, путем отбора проб воздуха горизонтальными планшетами. На станциипроводился пятисуточный отбор проб. Среднесуточная плотность радиоактивных выпадений в приземном слое атмосферы г. Атырау колебалась в пределах 1,0-1,9 Бк/м2. Средняя величина плотности выпадений составила 1,6 Бк/м2, что не превышает предельно-допустимый уровень.

Приложение 1


Карта расположения стационарной и передвижной сети наблюдений за загрязнением

атмосферного воздуха города Атырау


Карта расположения стационарной сети наблюдений за загрязнениематмосферного воздуха города Кульсары

Карта расположения стационарной сети наблюдений за загрязнением атмосферного воздуха Макатского района

Карта расположения стационарной сети наблюдений за загрязнением атмосферного воздуха Индерского района

Карта расположения стационарной сети наблюдений за загрязнением атмосферного воздуха село Жанбай

Карта расположения стационарной сети наблюдений за загрязнением атмосферного воздуха пос. Ганюшкино

Расположения метеостанций за наблюдением атмосферных осадков и снежного покрована

Расположения метеостанций за наблюдением уровня радиационного гамма-фона и плотности радиоактивных выпадений на территории Атырауской области

Сведения о случаях высокого загрязнения и экстремально высокого загрязнения атмосферного воздуха г. Атырау за 3 квартал 2025 год.

Было зафиксировано в городе Атырау 43 случаев ВЗ (по данным постов Филила и компаний NCOC)

				Выс	окое загряз	знение - г	. Атырау			
				Конце	нтрация	В	етер			
При месь	День. Меся ц, Год	Время	Номер поста	мг/м ³	Кратнос ть превыш ения ПДК	Направ ление, град	Скорость, м/с	Темпе ратура, ⁰ С	Атмо сферное давление	Причины от КЭРК
Сероводород	12.07. 2025	23:20	№ 114 Загородная (трасса Атырау-Уральск)	0.08425	10.5	173	0,98	29,58	760,3	
		06:40	Nr. 114 D	0,12825	16,0	229	0,49	23,98	752,9	
		07:00	№ 114 Загородная (трасса Атырау-Уральск)	0.21945	27.4	201	0,46	24,60	752,8	
	16.07.	07:20	(Трасса Атырау- у ральск)	0.12907	16,1	171	0,60	26,42	752,8	
Сероводород	2025	07:20	№ 110 Привокзальный	0.10284	12,9	272	1,37	25,70	753,9	
	2023	07:40	(ул. Еркинова)	0.10845	13,6	276	1,40	26,65	753,9	
		08:20	№ 103 Шагала (ул. Смагулова)	0.09975	12,5	274	1,29	26,50	752,9	
	17.07. 2025	21:40	№ 113 Авангард (парк Победы)	0.09730	12,2	146	0.71	26.26	756,0	
		04:00	№ 111 Жилгородок (ул.	0.08932	11,2	155	0.49	23.12	754,8	
Сероводород	18.07. 2025	04:20	Заполярная, дом Нефтяников)	0.11170	14,0	173	0.51	23.00	754,9	
	2023	04:40	№ 114 Загородная (трасса Атырау-Уральск)	0.08636	10,8	211	1.14	22.00	755,7	
		05:20	№ 103 Шагала (ул. Смагулова)	0.08430	10.5	282.72	0.71	24.05	757,6	
19.07	19.07.	05:00	№ 110 Привокзальный (ул. Еркинова)	0.15589	19.5	279.56	0.91	25.44	759,0	
Сероводород	2025	07:00	№ 111 Жилгородок (ул.	0.09011	11.3	134.55	0.33	24.57	758,0	
		07:20	Заполярная, дом Нефтяников)	0.08480	10.6	127.55	0.39	24.59	758,2	
		04:40		0.24577	30.7	210.35	0.78	24.85	758,2	

						1			
		05:00	№ 114 Загородная	0.15168	19,0	248.78	1.09	24.20	758,2
		05:20	(трасса Атырау-Уральск)	0.09446	11.8	125.49	0.85	23.65	758,0
	21.07.	21:20	ПНЗ №19	6,3297	12,7	195	1,11		761,3
Диоксид серы	2025	21:40	г.Кульсары,район Промзона НГДУ	5,3622	10,7	192	1,11		761,3
Сероводород	22.07. 2025	07:20	№ 110 Привокзальный (ул. Еркинова)	0.09351	11,7	112	0,78	26,81	756,3
		18:20	-	15,6184	31,2	4,7	1,09	38,2	758,3
		18:40		11,0506	22,1	4,7	1,09	37,4	758,3
		19:00		9,2996	18,6	2,3	1,09	35,3	758,3
		19:20		9,2996	18,6	2,3	1,1	34,4	758,3
		19:40		9,2996	18,6	2,3	1,04	33,1	758,3
		20:00	THD M:10	9,2996	18,6	2,3	1,04	32,7	758,5
Диоксид серы	22.07.	20:20	ПНЗ №19	11,0585	22,1	5,7	1	31,9	758,5
_	2025	20:40	г.Кульсары,район Промзона НГДУ	13,6926	27,4	5,7	1	31,1	758,3
		21:00	промзона пі ду	13,6926	27,4	295,3	1	29,9	757,5
		21:20		14,4121	28,8	276,2	1	29	758,6
		21:40		11,4566	22,9	1,2	1,1	28,7	758,6
		22:00		10,8117	21,6	1,2	1,07	28	758,6
		22:20		10,8117	21,6	1,2	1,07	26,5	758,6
		22:40		10,8117	21,6	1,2	1,07	26,4	758,6
Сероводород	18.09. 2025	03:00	№ 110 Привокзальный (ул. Еркинова)	0.09002	11,3	185	0,26	12,67	766,7
Сеповоловол	22.09.	04:20	№ 114 Загородная	0.10152	12,7	150	0,04	11,81	765,3
Сероводород	2025	04:40	(трасса Атырау-Уральск)	0.09727	12,2	145	0,34	11,54	765,4
		02:20	№ 110 Привокзальный	0.11694	14,6	193,9	0,01	14,47	763,7
Сероводород	25.09.	03:00		0.09859	11,3	172,7	0,01	14,24	764,0
Сероводород	2025	03:20	(ул. Еркинова)	0.08373	10,5	166,9	0,01	14,20	763,9
		03:40		0.09486	11,9	194,3	0,01	13,98	763,9

Информация о качестве поверхностных вод Атырауской области по створам за 3 квартал 2025г.

Водный объект и створ	Характеристика физиг	ко-химических параметров					
река Жайык	температура воды отмечена в пределах 20-24,8°C, водородный						
		щентрация растворенного в воде кислорода					
	-8,1-9,7 мг/дм ³ , БПК5 $-2,01-2,95$ мг/дм ³ , прозрачность $-19-20$ с						
	жесткость – 3,06-4,28 мі						
п.Индер, в створе водпоста	4 класс	Нефтепродукты – $0,118$ мг/дм ³					
		Фактическая концентрация					
		нефтепродуктов превышает фоновый					
		класс.					
АО «Казтрансойл» НПС Индер	4 класс	Нефтепродукты -0.118 мг/дм^3					
0,5 км выше реки Жайык							
АО «Казтрансойл» НПС Индер	4 класс	Нефтепродукты -0.118 мг/дм^3					
0,5 км ниже реки Жайык							
с.Береке 0,5 км выше р.Жайык	3 класс	БПК5 $-2,267 \text{ мг/дм}^3$					
		$X\Pi K - 24,333 \text{ мг/дм}^3$					
		Магний $-22,2$ мг/дм 3					
		СПАВ $-0,113 \text{ мг/дм}^3$					
с.Береке 0,5 км ниже р.Жайык	3 класс	БПК5 $-2,39$ мг/дм 3					
		$X\Pi K - 26,2 \text{ мг/дм}^3$					
		Магний – 21,1 мг/дм ³					
		СПАВ $-0,109 \text{ мг/дм}^3$					
1 км выше г. Атырау	4 класс	Нефтепродукты $-0,116 \text{ мг/дм}^3$					
г.Атырау, 0,5 км выше сброса	3 класс	БПК5 $-2,767 \text{ мг/дм}^3$					
КГП «Атырау су арнасы»		$X\Pi K - 24,267 \text{ мг/дм}^3$					
		Магний $-21,367$ мг/дм ³					
		$C\Pi AB - 0.107 \text{ мг/дм}^3$					
		Нефтепродукты -0.053 мг/дм^3					
г.Атырау, 0,5 км ниже сброса	3 класс	БПК5 $-2,257$ мг/дм ³					
КГП «Атырау су арнасы»		$X\Pi K - 26,867 \text{ мг/дм}^3$					
		Магний $-28,9$ мг/дм 3					
		СПАВ $-0,112 \text{ мг/дм}^3$					
		Нефтепродукты -0.052 мг/дм^3					
1 км ниже г.Атырау	3 класс	БПК5 $-2,507$ мг/дм ³					
		$X\Pi K - 26,533 \text{ мг/дм}^3$					
		Магний $-20,7$ мг/дм 3					
		Нефтепродукты -0.098 мг/дм^3					
3 км ниже сброса РГКП «Урало-	3 класс	БПК5 $-2,56$ мг/дм 3					
Атырауский осетровый завод»		$X\Pi K - 28,433 \text{ мг/дм}^3$					
район Курилкино		Магний – 23,433 мг/дм ³					
		Нефтепродукты -0.065 мг/дм^3					
0,5 км выше сброса РГКП	3 класс	БПК5 $-2,533 \text{ мг/дм}^3$					
«Урало-Атырауский осетровый		$X\Pi K - 28,167 \text{ мг/дм}^3$					
завод» район Курилкино		Магний $-26,933 \text{ мг/дм}^3$					
		Нефтепродукты -0.066 мг/дм ³					
		Фенолы — $0,0011 \text{ мг/дм}^3$					
пос.Дамба	3 класс	БПК5 $-2,423 \text{ мг/дм}^3$					
		$X\Pi K - 28 \text{ мг/дм}^3$					
		Магний – 25,333 мг/дм ³					
		Нефтепродукты -0.065 мг/дм^3					

		± DITIE				
		Фактическая концентрация БПК5,				
		магний не превышает фоновый класс,				
		ХПК и нефтепродуктов превышает				
П	фоновый класс.					
проток Перетаска	температура воды отмечена в пределах 20,2-24,6°С, водородный					
	показатель 7,58-7,9, концентрация растворенного в воде кислор $-8,7-9,7$ мг/дм ³ , БПК5 $-2,23-2,9$ мг/дм ³ , прозрачность $-19-20$					
DATEMENT 0.5 MA WANTE	жесткость — 3,06-4,28 мг/д 3 класс	м БПК5 – 2,703 мг/дм ³				
г. Атырау 0,5 км ниже	5 класс	XПК – 2,703 мг/дм ХПК – 23,4 мг/дм ³				
ответвления протока Перетаска		Магний – 26,5 мг/дм				
TATIVITATE OF THE DAY OF THE ORDER OF THE OR	3 класс	БПК5 – 2,333 мг/дм				
г.Атырау 2 км выше сброса АО	3 KJIACC	XПК – 23,5 мг/дм ³				
«Атырауский ТЭЦ»		Магний – 27,667 мг/дм				
		Магнии — 27,007 мг/дм СПАВ — 0,114 мг/дм ³				
E ATTAINING 2 FOR THURSE SERVER AO	3 класс	Нефтепродукты -0.083 мг/дм^3 БПК5 -2.6 мг/дм^3				
г. Атырау 2 км ниже сброса АО «Атырауский ТЭЦ»	3 KJIACC	ХПК – 26,267 мг/дм				
«Атырауский 19Ц»		Магний — 24,867 мг/дм				
		СПАВ – 0,11 мг/дм ³				
		Hефтепродукты – 0,086 мг/дм ³				
проток Яик	TOMHODOTUDO DOULL OTMOUG	ена в пределах 20-24,2°С, водородный				
проток лик		ентрация растворенного в воде кислорода				
		-2-2,94 мг/дм ³ , прозрачность –19-20 см,				
	жесткость — 3,24-4,28 мг/д	* * *				
с.Ракуша, 0,5 км ниже	3 класс	м БПК5 – 2,667 мг/дм ³				
ответвления протока Яик	3 KHacc	$X\Pi K - 26,467 \text{ MF/gm}^3$				
ответвления протока лик		Магний – 26,967 мг/дм ³				
		$1000 \text{M} \cdot \text{M} \cdot$				
п.Еркинкала, 0,5 км выше сброса	3 класс	БПК5 – 2,463 мг/дм ³				
РГКП «Атырауский осетровый	3 KHACC	$X\Pi K - 24,367 \text{ MF/gm}^3$				
рыбоводный завод»		Магний – 24,967 мг/дм ³				
рыооводный завод//		$Heфтепродукты - 0,072 мг/дм^3$				
п.Еркинкала, 0,5 км ниже сброса	3 класс	БПК5 – 2,73 мг/дм ³				
РГКП «Атырауский осетровый	3 KHACC	XПК – 23,6 мг/дм ³				
рыбоводный завод»		Магний – 22,567 мг/дм ³				
рыооводный завод//		$\frac{1}{1}$ Нефтепродукты -0.072 мг/дм ³				
проток Шаронова	температура волы отмече	ена в пределах 20-22,5°C, водородный				
проток шаропова		творенного в воде кислорода – 9-9,72				
		10^{-1} до 10				
	-3,84-4,28 мг/дм ³	in Am, in pospul mostly to zoom, most mostly				
с.Ганюшкино, в створе водпоста	3 класс	БПК5 – 2,497 мг/дм ³				
		XПК – 26,367 мг/дм ³				
		Магний – 25,167 мг/дм ³				
		Нефтепродукты -0.063 мг/дм^3				
		Фактическая концентрация БПК5,				
		магния не превышает фоновый класс,				
		ХПК и нефтепродуктов превышает				
		фоновый класс.				
река Кигаш	температура воды отмече	ена в пределах 20-22,6°C, водородный				
^		ентрация растворенного в воде кислорода				
		$41-2,63 \text{ мг/дм}^3$, прозрачность — $18-20,6 \text{ см}$,				
		жесткость $-3,06-4,28$ мг/дм ³				
с.Котяевка, в створе водпоста	3 класс	БПК5 $-2,5 \text{ мг/дм}^3$				
		$X\Pi K - 24,8 \text{ мг/дм}^3$				
1						

	1	T					
		Фактическая концентрация БПК5 не					
		превышает фоновый класс.					
		Фактическая концентрация ХПК					
		превышает фоновый класс.					
река Эмба	температура воды отмеч	нена на уровне 22,4°С, водородный					
	показатель 7,75, концентра	щия растворенного в воде кислорода – 9					
	$M\Gamma/дM^3$, БПК5 $-2,54$ $M\Gamma/дM^3$	3 , прозрачность – 20 см, жесткость – 7,2					
	$M\Gamma/ДM^3$						
п.Аккизтогай, гидропост	3 класс	ысс $БПК5 - 2,54 \text{ мг/дм}^3$					
-		$X\Pi K - 24,7 \text{ мг/дм}^3$					
		Магний $-47,4$ мг/дм 3					
		Фактическая концентрация БПК5 не					
		превышает фоновый класс, ХПК и					
		магний превышает фоновый класс.					
Каспийское море	температура воды отмече	ена в пределах 18,6-24°C, водородный					
_	показатель морской воды -7,75-8,2, растворенный кислород -8,4-						
	10,1мг/дм ³ , БПК5 –2-3,09 мг/дм ³ , прозрачность – 15-20,4см, ХПК-						
		е вещества- 30-77мг/дм ³ , минерализация					
	409,8-7452,4мг/дм ³ .	•					

Приложение 3

Результаты качества морских вод Каспийского моря на территории Атырауской области

	Панманаранна инградиантар	Единицы	3 квартал 2025
	Наименование ингредиентов	измерения	Северный Каспий
1	Визуальные наблюдения		
2	Температура	°C	21,3
3	Водородный показатель		7,9
4	Растворенный кислород	$M\Gamma/дM^3$	9,2
5	Прозрачность	СМ	18,4
6	Взвешенные вещества	$M\Gamma/дM^3$	54,6
7	БПК5	$M\Gamma/дM^3$	2,5
8	ХПК	$M\Gamma/дM^3$	25,4
9	Гидрокарбонаты	$M\Gamma/дM^3$	47,1
10	Жесткость	мг/дм ³	11,0
11	Минерализация	$M\Gamma/дM^3$	1998,6
12	Натрий	$M\Gamma/дM^3$	34,1
13	Калий	$M\Gamma/дM^3$	29,4
14	Сухой остаток	мг/дм ³	2019,9
15	Кальций	$M\Gamma/ДM^3$	63,8
16	Магний	мг/дм ³	95,5
17	Сульфаты	$M\Gamma/дM^3$	309,7
18	Хлориды	мг/дм ³	1418,6
19	Фосфат	$M\Gamma/дM^3$	0,023
20	Фосфор общий	мг/дм ³	0,031
21	Азот нитритный	мг/дм ³	0,155
22	Азот нитратный	$M\Gamma/дM^3$	0,117
23	Железо общее	мг/дм ³	0,061
24	Аммоний солевой	$M\Gamma/ДM^3$	0,128

25	Свинец	$M\Gamma/дM^3$	0,002
26	Медь	$M\Gamma/ДM^3$	0,001
27	Цинк	$M\Gamma/дM^3$	0,002
28	Хром общий	$M\Gamma/дM^3$	0,002
29	Хром (6+)	$M\Gamma/дM^3$	0,002
30	АПАВ /СПАВ	$M\Gamma/дM^3$	0,089
31	Фенолы	$M\Gamma/дM^3$	0,0007
32	Нефтепродукты	$M\Gamma/дM^3$	0,195
33	Бор	$M\Gamma/дM^3$	0,453
34	Пестициды альфа -ГХЦГ	$MK\Gamma/дM^3$	0,0
35	Пестициды гамма-ГХЦГ	$MK\Gamma/дM^3$	0,0
36	Пестициды 4,4-ДДЕ	$MK\Gamma/дM^3$	0,0
37	Пестициды 4,4-ДДТ	$MK\Gamma/ДM^3$	0,0

Приложение 4

Информация о качестве поверхностных и морских вод по гидробиологическим (токсикологическим) показателям

№	Водный	Пункт	Пункт	Индекс		Класс		естирование
	объект	контроля	привязки	сопробности		качест	Тест	Оценка воды
					L	ва	пара	
				Пери	Бентос	воды	метр%	
1		пос.Дамба		фитон 1,83	5	3	0%	
1		- ' '	0,5 км ниже	1,90	5	3	0%	
		г.Атырау	сброса КГП	1,90	3	3	U%	
2	р.Жайык		«Атырау Су					
	1		арнасы»					Не
3	1	п.Индер	в створе	1,77	5	3	0%.	оказывает
3		-	водпоста					токсическог
4	пр.	с.Ганюшкино	в створе	1,77	5	3	0%	о действия
	Шаронова		водпоста					
5	р.Кигаш	с.Котяевка	в створе	1,70	5	3	0%.	
			водпоста					
6	р.Эмба	п.Аккизтогай	гидропост	1,62	5	3	0%	
	Каспийско	Морской	1 км ниже нач.	1,81	5	3	0%	Не
7	е море	судоходный	судоходного					оказывает
		канал	канала ст.1					токсическог
			46°55′11.85"C					о действия
0		M	51°40′22.69"B	1.06	5	3	00/	
8		Морской судоходный	6 км ниже нач.	1,86	5	3	0%	
		канал	судоходного канала ст.2					
		капал	46°50′49.59"C					
			51°33′38.63"B					
9	1	Взморье	46°48'6.71"C	1,69	5	3	0%	
		р. Жайык	51°29'38.55"B					
10			46°52'34.05"C	1,82	5	3	0%	
			51°27'39.87"B					
11			46°56'8.07"C	1,75	5	3	0%	
			51°23'30.54"B					
12			46°54'20.02"C	1,82	5	3	0%	
10			51°17'18.97"B	1.776		2	00/	
13			46°53'5.79"C	1,76	5	3	0%	

		51°8'23.56"B				
14	Взморье	46°22'24.57"C	1,82	5	3	0%
	р.Волга	49°12'47.38"B	-,			
15	1	46°15'52.46"C	1,83	5	3	0%
		49°21'16.40"B	,			
16		46°13'7.94"C	1,79	5	3	0%
		49°26'54.14"B	•			
17		46°10'30.78"C	1,82	5	3	0%
		49°33'14.54"B				
18		46°11'30.98"C	1,88	5	3	0%
		49°36'2.32"B				
19	п.Жанбай	46°55′46.69"C	1,78	5	3	0%
		50°47′7.10"B	,			
20		46°55′24.34"C	1,94	5	3	0%
		50°46′49.64"B				
21		46°55′2.11"C	1,84	5	3	0%
		50°46′43.50"B				
22		46°54'32.22"C	1,92	5	3	0%
		50°46'36.09"B				
23		46°53'58.51"C	1,78	5	3	0%
		50° 46'14.87"B				
24	Остров	46°48′25.94"C	1,57	5	3	0%
	залива	51°34′54.08"B				
25	Шалыги	46°49′26.90"C	1,70	5	3	0%
		51°37′4.85"B				
26		46°48′52.15"C	1,53	5	3	0%
		51°39′41.97"B				2
27		46°47′1.30"C	1,67	5	3	0%
•		51°42′11.94"B	• •	_		0.51
28		46°44′2.87"C	2,0	5	3	0%
		51°43′0,92"B				

Информация по донным отложениям по Атырауской области по створам

Водный объект и створ	Анализируемые компоненты	Концентрация
река Жайык	Медь	0,33 мг/кг
1 км выше г.Атырау	Марганец	0,08 мг/кг
	Хром	0,07 мг/кг
	Нефтепродукты	0,36 %
	Свинец	0,29 мг/кг
	Цинк	1,94 мг/кг
	Никель	0,27 мг/кг
	Кадмий	0,20 мг/кг
0,5 км выше сброса КГП «Атырау су	Медь	0,41 мг/кг
арнасы»	Марганец	0,07 мг/кг
	Хром	0,10 мг/кг
	Нефтепродукты	1,26 %
	Свинец	0,26 мг/кг
	Цинк	2,03 мг/кг
	Никель	0,55 мг/кг
	Кадмий	0,21 мг/кг
0,5 км ниже сброса КГП «Атырау су	Медь	0,53 мг/кг
арнасы»	Марганец	0,12 мг/кг
	Хром	0,11 мг/кг
	Нефтепродукты	1,71 %
	Свинец	0,24 мг/кг
	Цинк	2,18 мг/кг

	Никель	0,57 мг/кг
	Кадмий	0,19 мг/кг
пос Помбо	Медь	0,36 мг/кг
пос.Дамба	Марганец	0,08 мг/кг
	•	
	Хром	0,08 мг/кг
	Нефтепродукты	0,58 %
	Свинец	0,26 мг/кг
	Цинк	1,93 мг/кг
	Никель	0,33 мг/кг
	Кадмий	0,19 мг/кг
3 км ниже сброса РГКП «Урало –	Медь	0,34 мг/кг
Атырауский осетровый завод» р-н	Марганец	0,07 мг/кг
Курилкино	Хром	0,07 мг/кг
	Нефтепродукты	0,33 %
	Свинец	0,31 мг/кг
	Цинк	2,0 мг/кг
	Никель	0,25 мг/кг
	Кадмий	0,21 мг/кг
0,5 км выше сброса РГКП «Урало –	Медь	0,34 мг/кг
Атырауский осетровый завод» р-н	Марганец	0,07 мг/кг
Курилкино	Хром	0,10 мг/кг
	Нефтепродукты	1,27 %
	Свинец	0,26 мг/кг
	Цинк	1,96 мг/кг
	Никель	0,46 мг/кг
	Кадмий	0,21 мг/кг
2 км выше сброса АО «Атырауский	Медь	0,55 мг/кг
ТЭЦ»	Марганец	0,12 мг/кг
134"	Хром	0,12 мг/кг
	Нефтепродукты	1,76 %
	Свинец	0,24 мг/кг
	Цинк	2,16 мг/кг
	Никель И	0,60 мг/кг
2	Кадмий	0,19 мг/кг
2 км ниже сброса АО «Атырауский	Медь	0,35 мг/кг
ТЭЦ»	Марганец	0,08 мг/кг
	Хром	0,08 мг/кг
	Нефтепродукты	0,43 %
	Свинец	0,29 мг/кг
	Цинк	1,95 мг/кг
	Никель	0,30 мг/кг
	Кадмий	0,21 мг/кг
п.Еркинкала, 0,5 км выше сброса	Медь	0,50 мг/кг
РГКП «Атырауский осетровый	Марганец	0,11 мг/кг
рыбоводный завод».	Хром	0,10 мг/кг
	Нефтепродукты	1,52 %
	Свинец	0,24 мг/кг
	Цинк	2,14 мг/кг
	Никель	0,53 мг/кг
	Кадмий	0,19 мг/кг
п.Еркинкала, 0,5 км ниже сброса	Медь	0,37 мг/кг
РГКП «Атырауский осетровый	Марганец	0,08 мг/кг
рыбоводный завод»	Хром	0,09 мг/кг
- · · · · · · · · · · · · · · · · · · ·	Нефтепродукты	0,80 %
	Свинец	0,27 мг/кг
	Цинк	1,99 мг/кг
	Никель	0,40 мг/кг
	Кадмий	0,20 мг/кг
Монакой аупокания и маке и 1 мм.	Медь	
Морской судоходный канал 1 км ниже	<u>гмедь</u>	0,48 мг/кг

	Марганец	0,12 мг/кг
	Хром	0,12 мг/кг
	Нефтепродукты	1,70 %
	Свинец	0,18 мг/кг
	Цинк	2,09 мг/кг
	Никель	0,57 мг/кг
	Кадмий	0,18 мг/кг
Морской судоходный канал 6 км ниже	Медь	0,39 мг/кг
морской судоходный канал о км ниже	Марганец	0,08 мг/кг
	Хром	0,10 мг/кг
	Нефтепродукты	0,31 %
	Свинец	0,29 мг/кг
	Цинк	2,04 мг/кг
	Никель	0,33 мг/кг
	Кадмий	0,20 мг/кг
Взморье р.Жайык 1 точка	Медь	0,37 мг/кг
озморы р.жанык 1 точка	Марганец	0,08 мг/кг
	Хром	0,12 мг/кг
	Нефтепродукты	1,48 %
	Свинец	0,26 мг/кг
	Цинк	2,05 мг/кг
	Никель	0,45 мг/кг
	Кадмий	0,20 мг/кг
Взморье р.Жайык 2 точка	Медь	0,48 мг/кг
Distropic p.Manbik 2 To Ika	Марганец	0,10 мг/кг
	Хром	0,11 мг/кг
	Нефтепродукты	1,69 %
	Свинец	0,23 мг/кг
	Цинк	2,06 мг/кг
	Никель	0,54 мг/кг
	Кадмий	0,19 мг/кг
Взморье р.Жайык 3 точка	Медь	0,39 мг/кг
1 1	Марганец	0,08 мг/кг
	Хром	0,11 мг/кг
	Нефтепродукты	0,40 %
	Свинец	0,28 мг/кг
	Цинк	1,89 мг/кг
	Никель	0,40 мг/кг
	Кадмий	0,19 мг/кг
Взморье р.Жайык 4 точка	Медь	0,37 мг/кг
	Марганец	0,09 мг/кг
	Хром	0,12 мг/кг
	Нефтепродукты	1,40 %
	Свинец	0,26 мг/кг
	Цинк	1,95 мг/кг
	Никель	0,43 мг/кг
	Кадмий	0,18 мг/кг
Взморье р.Жайык 5 точка	Медь	0,42 мг/кг
	Марганец	0,10 мг/кг
	Хром	0,10 мг/кг
	Нефтепродукты	1,61 %
	Свинец	0,22 мг/кг
	Цинк	1,97 мг/кг
	Никель	0,49 мг/кг
	Кадмий	0,18 мг/кг
Взморье р. Волга 1 точка	Медь	0,40 мг/кг
	Марганец	0,07 мг/кг
	Хром	0,09 мг/кг
	Нефтепродукты 30	0,46 %

	Свинец	0,28 мг/кг
	Цинк	2,20 мг/кг
	Никель	0,30 мг/кг
	Кадмий	0,22 мг/кг
Взморье р. Волга 2 точка	Медь	0,39 мг/кг
Б зморье р. Болга 2 104ка	Марганец	0,07 мг/кг
	•	
	Хром	
	Нефтепродукты	1,48 %
	Свинец	0,25 мг/кг
	Цинк	2,10 мг/кг
	Никель	0,45 мг/кг
	Кадмий	0,21 мг/кг
Взморье р. Волга 3 точка	Медь	0,51 мг/кг
	Марганец	0,10 мг/кг
	Хром	0,11 мг/кг
	Нефтепродукты	1,80 %
	Свинец	0,22 мг/кг
	Цинк	2,11 мг/кг
	Никель	0,57 мг/кг
	Кадмий	0,21 мг/кг
Взморье р. Волга 4 точка	Медь	0,39 мг/кг
	Марганец	0,08 мг/кг
	Хром	0,11 мг/кг
	Нефтепродукты	0,90 %
	Свинец	0,27 мг/кг
		· ·
	Цинк	2,04 мг/кг
	Никель	0,39 мг/кг
	Кадмий	0,20 мг/кг
Взморье р. Волга 5 точка	Медь	0,50 мг/кг
	Марганец	0,11 мг/кг
	Хром	0,07 мг/кг
	Нефтепродукты	1,54 %
	Свинец	0,23 мг/кг
	Цинк	2,02 мг/кг
	Никель	0,53 мг/кг
	Кадмий	0,19 мг/кг
Острова з.Шалыги 1 точка	Медь	0,46 мг/кг
•	Марганец	0,11 мг/кг
	Хром	0,10 мг/кг
	Нефтепродукты	1,40 %
	Свинец	0,23 мг/кг
	Цинк	1,94 мг/кг
	Никель	0,51 мг/кг
	Кадмий	0,17 мг/кг
Острова з.Шалыги 2 точка	Медь	0,47 мг/кг
Острова запальни 2 точка	Марганец	
	Хром	0,09 MГ/КГ
	Нефтепродукты	1,41 %
	Свинец	0,22 мг/кг
	Цинк	2,01 мг/кг
	Никель	0,50 мг/кг
	Кадмий	0,18 мг/кг
Острова з.Шалыги 3 точка	Медь	0,42 мг/кг
	Марганец	0,09 мг/кг
	Хром	0,10 мг/кг
	Нефтепродукты	1,09 %
	Свинец	0,26 мг/кг
	Цинк	2,03 мг/кг
	Никель	0,44 мг/кг
	31	- 7

	Кадмий	0,20 мг/кг
Острова з.Шалыги 4 точка	Медь	0,47 мг/кг
	Марганец	0,08 мг/кг
	Хром	0,14 мг/кг
	Нефтепродукты	1,0 %
	Свинец	0,23 мг/кг
	Цинк	2,0 мг/кг
	Никель	0,34 мг/кг
	Кадмий	0,22 мг/кг
Острова з.Шалыги 5 точка	Медь	0,35 мг/кг
	Марганец	0,12 мг/кг
	Хром	0,06 мг/кг
	Нефтепродукты	1,1 %
	Свинец	0,25 мг/кг
	Цинк	2,2 мг/кг
	Никель	0,30 мг/кг
	Кадмий	0,23 мг/кг
п.Жанбай 1 точка	Медь	0,39 мг/кг
	Марганец	0,12 мг/кг
	Хром	0,09 мг/кг
	Нефтепродукты	2,0 %
	Свинец	0,24 мг/кг
	Цинк	2,5 мг/кг
	Никель	0,44 мг/кг
	Кадмий	0,31 мг/кг
п.Жанбай 2 точка	Медь	0,28 мг/кг
	Марганец	0,08 мг/кг
	Хром	0,08 мг/кг
	Нефтепродукты	1,3 %
	Свинец	0,37 мг/кг
	Цинк	2,0 мг/кг
	Никель	0,41 мг/кг
272 7 11 2	Кадмий	0,22 мг/кг
п.Жанбай 3 точка	Медь	0,52 мг/кг
	Марганец	0,10 мг/кг
	Хром	0,07 мг/кг
	Нефтепродукты	1,2 %
	Свинец	0,31 мг/кг
	Цинк	2,0 мг/кг 0,48 мг/кг
	Никель Кадмий	0,48 мг/кг 0,29 мг/кг
п.Жанбай 4 точка	Медь	0,33 мг/кг
п.жаноаи 4 точка	Марганец	0,14 мг/кг
	Хром	0,14 мг/кг
	Нефтепродукты	1,7 %
	Свинец	0,21 мг/кг
	Цинк	2,3 MΓ/KΓ
	Никель	0,38 MT/KT
	Кадмий	0,29 мг/кг
п.Жанбай 5 точка	Медь	0,29 мг/кг
monanuan S IVIKa	Марганец	0,11 мг/кг
	Хром	0,11 мг/кг
	Нефтепродукты	1,3 %
	Свинец	0,23 мг/кг
	Цинк	1,9 MГ/КГ
	Никель	0,42 мг/кг
	Кадмий	0,42 MI/КI 0,17 мг/кг
	кадини	0,1/ WII/KI

Справочный раздел Предельно-допустимые концентрации (ПДК) загрязняющих веществ в воздухе населенных мест

Наименование	Значения П	Класс	
примесей	максимально разовая	средне- суточная	опасности
Азота диоксид	0,2	0,04	2
Азота оксид	0,4	0,06	3
Аммиак	0,2	0,04	4
Бенз/а/пирен	-	$0,1 \text{ мкг}/100 \text{ м}^3$	1
Бензол	0,3	0,1	2
Бериллий	0,09	0,00001	1
Взвешенные вещества (частицы)	0,5	0,15	3
Взвешенные частицы РМ 10	0,3	0,06	
Взвешенные частицы РМ 2,5	0,16	0,035	
Хлористый водород	0,2	0,1	2
Кадмий	-	0,0003	1
Кобальт	-	0,001	2
Марганец	0,01	0,001	2
Медь	-	0,002	2
Мышьяк	-	0,0003	2
Озон	0,16	0,03	1
Свинец	0,001	0,0003	1
Диоксид серы	0,5	0,05	3
Серная кислота	0,3	0,1	2
Сероводород	0,008	-	2
Оксид углерода	5,0	3	4
Фенол	0,01	0,003	2
Формальдегид	0,05	0,01	2
Фтористый водород	0,02	0,005	2
Хлор	0,1	0,03	2
Xpom (VI)	-	0,0015	1
Цинк	-	0,05	3

[«]Гигиенический норматив к атмосферному воздуху в городских и сельских населенных пунктах» (СанПин №КР ДСМ-70 от 2 августа 2022 года)

Оценка степени индекса загрязнения атмосферы

Градации	Загрязнение атмосферного воздуха	Показатели	Оценка за месяц
I	Низкое	СИ НП, %	0-1 0
II	Повышенное	СИ НП, %	2-4 1-19
III	Высокое	СИ НП, %	5-10 20-49
IV	Очень высокое	СИ НП, %	>10 >50

РД 52.04.667—2005, Документы состояния загрязнения атмосферы в городах для информирования государственных органов, общественности и населения. Общие требования к разработке построению, изложению и содержанию

ФИЛИАЛ РГП «КАЗГИДРОМЕТ» ПО АТЫРАУСКОЙ ОБЛАСТИ АДРЕС:

ГОРОД АТЫРАУ УЛ. ТАЛГАТА БИГЕЛЬДИНОВА 10А ТЕЛ. 8-(7122)-52-20-96

E MAIL: INFO ATR@METEO.KZ