МИНИСТЕРСТВО ОХРАНЫ ОКРУЖАЮЩЕЙ СРЕДЫ РЕСПУБЛИКАНСКОЕ ГОСУДАРСТВЕННОЕ ПРЕДПРИЯТИЕ "КАЗГИДРОМЕТ"

ГОСУДАРСТВЕННЫЙ ВОДНЫЙ КАДАСТР РЕСПУБЛИКИ КАЗАХСТАН

ЕЖЕГОДНЫЕ ДАННЫЕ О РЕЖИМЕ КАСПИЙСКОГО МОРЯ

Казахстанское побережье

2005 г.

Ежегодные данные содержат: сведения об уровне воды, температуре воды, солености, ледовых явлениях и сведения о волнении моря.

Ежегодные данные рассчитаны на специалистов-гидрологов, географов, работников учреждений и организаций, связанных с использованием сведений о режиме вод Каспийского моря по морским станциям на казахстанском побережье.

© Республиканское государственное предприятие "Казгидромет" ЕЖЕГОДНЫЕ ДАННЫЕ О РЕЖИМЕ КАСПИЙСКОГО МОРЯ Казахстанское побережье 2005 г.

Ответственный редактор Г.И. Завина

Поді	писано к печати Формат бумаги Печать .
	бъем п. л. Усл. изд. л Заказ Тираж

г. Алматы

Содержание

Предисловие
Принятые сокращения
Схема расположения морских станций и постов
Таблица 1.1. Список морских станций, сведения по которым помещены в
настоящем выпуске
Таблица 1.2. Средние и экстремальные уровни воды
Таблица 1.3. Средние и экстремальные значения температуры воды у берега
Таблица 1.4. Соленость воды
Таблица 1.5. Волнение моря
Таблица 1.6. Ледовые явления
Таблица 1.7. Водный баланс Каспийского моря
Обзор гидрометеорологического режима Северного и Среднего Каспия
Обзор синоптических процессов и условий погоды на море. Северная часть Кас-
пийского моря

Предисловие

Справочник «Ежегодные данные о режиме вод Каспийского моря, казахстанское побережье» является частью Государственного водного кадастра.

В настоящем издании сохранены формы таблиц из прежнего издания «Ежегодные данные о режиме и качестве вод морей и морских устьев рек», т.2, части 1 и 2, выпускавшегося ранее Азгидрометом, и добавлены новые.

Границы территории, соответствующие этому справочнику, указаны на схеме.

Справочник «Ежегодные данные о режиме вод Каспийского моря, казахстанское побережье» отражает основные результаты работы морских станций и постов на казахстанском побережье Каспийского моря. В нем публикуются данные стандартных гидрологических наблюдений на море за уровнем и температурой воды, соленостью, волнением и ледовыми явлениями и расчет водного баланса моря.

Материалы наблюдений морских гидрометеорологических станций помещены в порядке их географического расположения на казахстанской части Каспийского моря с севера на юг, по часовой стрелке. Нумерация таблиц и рисунков в издании может изменяться в зависимости от количества таблиц и рисунков, помещаемых в справочник.

Для одинакового представления действительных чисел их целые и дробные части везде (тексты, таблицы) разделены точкой.

Публикуемые в ежегоднике данные могут уточняться и дополняться в последующих изданиях в разделе «Исправления и дополнения к предыдущим изданиям».

Материалы для помещения в настоящий выпуск подготовлены следующими сотрудниками Атырауского и Мангистауского ЦГМ: Жанбай — Придановой Л.Г., Пешной - Шерикбаевым П.К., Кулалы - Лупенковым П.И., Форт Шевченко - Бисембаевой А.О., Актау - Ахмедовым Х.А., Фетисово — Мусаевой А.

Проверка материалов и подготовка их к печати произведены инженером ОГ ЦМОС - Таубалдиевой Н., инженером І категории ОГВК ИАЦ «РФГЗ» — Куджибаевой Г.Б., младшим научным сотрудником ОПК ГМЦ Соколовой Л.М.. Синоптический обзор составлен ведущим инженером ОДП ГМЦ Фатеевой З.И.

Редактирование выпуска выполнено начальником ОГВК ИАЦ «РФГЗ» Завиной Г.И. и заведующей ОПК ГМЦ Ивкиной Н.И..

Принятые сокращения

Сокращения

БС - Балтийская система высот

В - восток Высш. - высший г. - город, год

ГВК - Государственный водный кадастр

3 - запад л. - левый

 Наиб.
 наибольший

 Наим.
 наименьший

нб - отсутствие явления

Низш. - низший

ОГВК - отдел государственного водного кадастра ОПК ГМЦ - отдел проблем Каспия Гидрометцентра

ОДП ГМЦ - отдел долгосрочных прогнозов Гидрометцентра

п. - правый р. - река

РГП «Казгидромет» - Республиканское государственное предприятие

"Казгидромет"

рис. - рисунок

РФГЗ - Республиканский фонд данных по гидрометеорологии и за-

грязнению природной среды

С - север

СВ - северо-востокСЗ - северо-запад

см. - смотри

Ср. год. - средний годовой

 Средн.
 средний

 ст.
 станция

 табл.
 таблица

 т. е.
 то есть

 т. д.
 так далее

 т. п.
 тому подобное

усл. - условная система высот ЦГМ - центр по гидрометеорологии

ч. - часть Ю - юг

ЮВ - юго-востокЮЗ - юго-запад

Единицы измерения

км - километр

км² - квадратный километр

м - метр

мм - миллиметр

 ${\rm m}^3/{\rm c}$ - кубический метр в секунду

Схема

Список морских станций и постов, сведения по которым помещены в настоящем выпуске

Список морских гидрометеорологических станций и постов на казахстанском побережье Каспийского моря, сведения по которым помещены в настоящем выпуске, приведен в таблице 1.1. Станции в списке перечислены в порядке возрастания их номеров. В пределах казахстанского побережья нумерация морских станций и постов проведена по часовой стрелке, начиная от устья реки Волги.

После порядкового номера указан разряд станции или поста и название населенного пункта. Морские гидрометеорологические станции могут быть первого (МГ-I), второго (МГ-II) и (МГ-III) третьего разряда.

Отметка нуля поста, на котором производятся наблюдения за уровнем моря, представлена в Балтийской системе высот.

Для морских станций, водомерные устройства которых переносились в прошлые годы без сохранения непрерывности ряда уровенных наблюдений, указаны две даты открытия - первоначальная и вторая, соответствующая времени последнего переноса водомерного устройства.

Для облегчения пользования настоящим выпуском в предпоследней графе перечислены номера таблиц, содержащих подробные сведения об элементах гидрологического режима, наблюдаемых на морских гидрометеорологических станциях и постах. Материалы, которые частично или полностью были использованы при подготовке настоящего выпуска, хранятся в Республиканском фонде гидрометеорологических данных.

В таблице 1.8 приведен водный баланс Каспийского моря, рассчитанный Государственным океанографическим институтом (ГОИН) Росгидромета и предоставленный Казгидромету в соответствии с Соглашением об обмене гидрометеорологической информацией между Росгидрометом и Казгидрометом.

Таблица 1.1 Список морских станций и постов, сведения по которым помещены в настоящем выпуске

2005 г.

Код станции		ка нуля	Период действия станции,	Принадлеж- ность станции	Номера таблиц подробных све-					
	высота,	система	год открытия	·	дений					
	M	высот								
		1. МГП –	II Жанбай							
97047	-28.00	БС	2003	Казгидромет	1.2, 1.3					
		2. M - II	Пешной							
97048	-28.00	БС	1944-53, 1969	Казгидромет	1.2, 1.3, 1.6					
3. МГП – И Каламкас										
97057	-28.00	БС	2003	Казгидромет	1.2					
		4 . MΓ - II	П Кулалы, остро	В						
97059	-28.00	БС	1957	Казгидромет	1.2, 1.3, 1.5, 1.6					
		5. MΓ - I	Форт - Шевченк	0						
97060	-28.00	БС	1921	Казгидромет	1.2, 1.3, 1.4, 1.5, 1.6					
		6.MΓ-I	І Актау							
97061	-28.00	БС	1964	Казгидромет	1.2, 1.3, 1.4, 1.5, 1.6					
		7. М ГП -	- II Фетисово							
67063	-28.00	БС	2003	Казгидромет	1.2					

Уровень моря

Уровни моря, наблюдаемые на береговых станциях и постах, приведены в табл. 1.2. Средние суточные значения уровней получены из четырехсрочных наблюдений в 00, 06, 12, 18 часов и 06 и 18 по среднегринвичскому времени соответственно по станциям и постам. Средние месячные уровни вычислены по средним суточным значениям. Средний уровень за год определен из средних месячных значений.

Высшие и низшие уровни моря для каждой станции или поста выбраны из всех срочных наблюдений, проводившихся на данном посту. Суточные уровни, несовпадающие по времени с высшими и низшими срочными за месяц, в таблице подчеркнуты.

Высший и низший годовые уровни моря выбраны за календарный год.

Кроме значений высших и низших уровней воды, приведены также даты их наступления. Для тех случаев, когда эти уровни наблюдались в году неоднократно, в таблице помещены только первая и последняя даты, и указано общее количество суток, в течение которых они отмечались.

В таблице не приведены значения уровня за весь период с начала наблюдений для сравнительной оценки характерных уровней моря данного года из-за отсутствия данных.

Знак штриха ($^{\rm I}$) после номера пункта наблюдений указывает на наличие частных пояснений, приведенных в конце раздела. Знак тире (-) означает пропуски в наблюдениях или брак.

По М-ІІ Пешной с 27.01 по 10.02 данные забракованы, как сомнительные.

1. МГП - ІІ Жанбай

Отметка нуля поста -28.00 м БС

								Отмет	ка нул	я поста	-28.00	мьС
Число		T	T	T	T	,	сяц		T	T	T	
	1	2	3	4	5	6	7	8	9	10	11	12
1	108	<u>136</u>	<u>125</u>	109	127	130	146	124	123	140	131	136
2	108	119	<u>100</u>	<u>105</u>	124	131	<u>147</u>	131	132	129	125	131
3	108	106	117	<u>104</u>	117	125	144	131	141	123	119	124
4	103	119	125	117	<u>110</u>	<u>111</u>	129	127	<u>142</u>	135	129	131
5	108	123	121	123	122	111	<u>124</u>	127	142	131	132	138
6	103	<u>108</u>	113	139	133	119	139	135	135	123	125	138
7	108	121	119	145	123	<u>109</u>	136	135	142	131	121	135
8	105	115	125	155	114	121	131	125	137	134	128	139
9	108	130	120	161	126	126	125	121	132	125	123	135
10	108	124	129	171	117	120	134	120	139	132	127	135
11	111	125	124	178	115	129	138	128	136	129	130	129
12	120	114	113	189	126	139	128	128	123	133	119	136
13	108	126	118	172	129	139	122	136	125	124	<u>113</u>	131
14	108	124	124	182	138	126	132	136	121	129	121	123
15	111	118	124	195	131	125	141	126	128	135	129	134
16	117	128	123	<u>180</u>	123	135	134	131	123	<u>144</u>	134	141
17	117	121	128	119	130	136	138	125	129	142	134	<u>144</u>
18	<u>102</u>	124	119	121	141	128	144	124	135	130	140	131
19	118	131	121	126	<u>148</u>	134	146	121	140	130	138	131
20	131	120	116	120	136	131	142	116	140	119	131	135
21	113	118	108	121	122	137	136	<u>113</u>	144	101	127	129
22	123	118	119	131	113	134	128	117	136	<u>100</u>	129	123
23	<u>138</u>	130	131	143	112	137	136	122	126	121	129	133
24	124	125	128	154	126	139	144	124	<u>117</u>	128	121	138
25	133	<u>104</u>	111	134	121	129	140	134	124	126	131	134
26	124	107	108	116	116	123	143	135	123	128	135	123
27	124	120	120	116	118	125	134	136	129	133	<u>144</u>	<u>113</u>
28	109	131	131	116	111	<u>142</u>	124	125	141	131	138	119
29	124		128	115	113	142	124	132	143	137	132	128
30	<u>131</u>		116	110	124	136	134	<u>140</u>	139	127	138	129
31	130		126	121	132		132	129		123		129
Средн.	116	121	120	139	124	129	135	128	133	128	129	127
Высш.	140	140	136	210	150	146	150	142	146	148	146	150
Низш.	91	100	97	100	105	100	120	110	115	91	110	110

Характеристика	Уровень	Д	Число	
уровня моря	моря	первая	последняя	случаев
	107			
Среднегодовой	127			
Высший за год	210	16.04		1
Низший за год	91	18.01		1

Таблица 1.2 - Средние и экстремальные уровни моря, см

2005 г.

2.^I М - II Пешной

Отметка нуля поста -28.00 м БС

Число	Месяц								21Nu 11 y			J.II DC
	1	2	3	4	5	6	7	8	9	10	11	12
							L					
1	96	-	105	100	146	153	<u>146</u>	110	<u>133</u>	69	82	118
2	<u>97</u>	-	97	79	139	155	131	117	130	73	87	112
3	97	-	86	<u>57</u>	134	158	127	128	125	70	81	99
4	92	-	84	87	132	150	123	<u>134</u>	120	<u>66</u>	81	86
5	98	-	85	97	152	149	113	131	117	95	77	73
6	96	-	83	109	<u>165</u>	147	<u>106</u>	125	111	103	73	<u>59</u>
7	95	-	90	118	151	141	122	113	119	103	66	60
8	110	-	100	118	149	<u>143</u>	128	111	123	103	64	101
9	131	-	112	110	142	151	139	118	111	110	63	121
10	<u>139</u>	-	119	105	137	158	139	109	112	115	55	125
11	130	62	111	100	135	<u>160</u>	133	108	109	106	49	107
12	125	84	95	100	136	<u>160</u>	117	108	104	104	43	115
13	111	89	103	114	142	156	118	109	95	113	47	130
14	100	100	112	114	<u>139</u>	149	131	114	81	112	55	<u>136</u>
15	106	108	109	110	138	146	128	115	88	109	60	124
16	100	111	109	109	141	148	128	120	115	114	107	128
17	109	116	107	113	141	149	128	125	117	131	131	120
18	102	122	101	124	140	149	135	124	117	129	122	107
19	94	<u>127</u>	132	130	143	151	138	115	111	111	108	106
20	88	119	127	128	139	156	139	99	112	102	103	110
21	87	108	126	129	138	153	143	81	111	96	104	109
22	103	105	133	127	142	151	140	<u>89</u>	99	103	101	97
23	116	104	116	127	137	150	143	112	76	104	96	84
24	90	100	91	132	131	155	138	121	68	106	95	79
25	61	90	75	124	132	<u>160</u>	132	110	58	119	93	77
26	53	90	<u>100</u>	102	141	156	131	91	88	118	112	71
27	-	103	<u>136</u>	96	148	152	134	102	104	131	124	63
28	-	108	132	117	145	149	138	110	97	<u>133</u>	133	63
29	-		126	140	147	151	143	109	87	117	<u>131</u>	66
30	-		94	<u>149</u>	154	151	138	120	77	86	126	67
31	-		98		156		119	122		84		70
Средн.	-	-	106	112	142	152	131	113	104	104	89	96
Высш.	141	128	141	152	181	162	148	139	137	138	136	138
Низш.	-	-	70	53	125	138	104	73	56	64	40	54

Характеристика	Уровень	Да	Число	
уровня моря	моря	первая	последняя	случаев
Срелнеголовой	_			

 Среднегодовой

 Высший за год
 181
 06.05
 1

 Низший за год

3. МГП - II Каламкас

Отметка нуля поста -28.00 м БС

								Отмет	гка нул	я поста	-28.00	м БС
Число	Месяц											
	1	2	3	4	5	6	7	8	9	10	11	12
1	79 	79	89	89	105	<u>99</u>	109	<u>137</u>	120	105	94	94
2	79	81	89	99	95	103	135	109	<u>127</u>	<u>87</u>	94	94
3	87	84	89	79	110	99	129	119	99	97	96	96
4	84	86	89	104	104	117	127	109	104	92	94	87
5	89	<u>72</u>	94	90	<u>119</u>	99	127	119	109	92	96	86
6	87	85	82	98	104	94	109	109	89	102	94	84
7	92	72	<u>79</u>	89	95	104	129	<u>137</u>	119	102	93	74
8	87	79	89	95	98	98	<u>145</u>	114	99	<u>113</u>	89	<u>71</u>
9	99	85	96	98	99	119	129	132	84	99	91	89
10	96	84	98	94	99	119	114	114	99	92	93	96
11	93	84	94	89	94	134	104	109	106	92	<u>79</u>	89
12	<u>99</u>	84	91	98	104	128	109	<u>89</u>	102	97	93	80
13	96	84	87	102	94	124	114	94	99	88	94	94
14	83	89	87	94	91	114	114	104	99	82	89	89
15	87	89	87	88	104	109	109	114	101	89	84	85
16	86	89	89	102	100	114	<u>99</u>	114	104	104	94	84
17	89	89	94	103	94	129	<u>104</u>	114	104	93	90	94
18	84	89	89	94	103	127	124	104	98	117	88	90
19	89	92	94	105	88	124	119	112	104	89	<u>79</u>	84
20	84	94	92	<u>111</u>	89	130	127	117	109	104	94	99
21	77	94	94	94	94	129	129	104	104	119	<u>79</u>	<u>114</u>
22	82	94	94	94	109	125	134	95	104	117	93	90
23	<u>67</u>	94	92	96	104	145	114	94	106	99	134	85
24	72	92	98	106	98	<u>159</u>	114	99	109	89	124	94
25	77	90	92	102	99	<u>145</u>	114	102	99	112	109	94
26	79	84	95	104	99	<u>159</u>	119	99	89	104	104	92
27	74	89	89	79	109	127	124	89	94	101	103	86
28	79	89	98	111	99	129	129	92	99	104	94	84
29	84		93	<u>114</u>	88	145	119	109	84	104	96	84
30	78		<u>99</u>	104	109	124	119	99	<u>79</u>	96	96	94
31	84		98		104		132	119		96		86
Средн.	84	86	94	98	100	122	120	109	101	99	95	89
Высш.	104	94	114	119	119	159	145	139	139	119	134	124
Низш.	64	69	74	74	82	84	94	84	74	84	74	67

Характеристика	Уровень	Д	Число	
уровня моря	моря	первая	последняя	случаев
Среднегодовой	100			
Высший за год	159	24.07	26.07	3
Низший за год	64	23.01		1

Таблица 1.2 - Средние и экстремальные уровни моря, см

2005 г.

4. МГ- III Кулалы, остров Отметка нуля поста -28.00 м БС

Число	Месяц											
	1	2	3	4	5	6	7	8	9	10	11	12
		l					1	-1	•	•		
1	99	99	99	99	101	101	108	114	<u>107</u>	99	98	100
2	97	99	99	98	103	102	111	113	105	103	99	99
3	97	98	98	98	101	103	115	115	103	<u>104</u>	99	97
4	94	98	98	100	<u>105</u>	110	113	<u>117</u>	106	<u>99</u>	101	99
5	95	97	98	102	102	103	112	105	100	99	102	<u>95</u>
6	99	98	101	102	102	100	109	105	103	100	101	94
7	98	97	99	107	105	102	108	104	104	101	101	94
8	101	98	100	105	93	104	109	104	<u>95</u>	100	101	97
9	<u>101</u>	97	102	102	90	102	104	103	94	102	99	101
10	100	97	99	101	90	103	<u>103</u>	104	97	103	99	100
11	96	<u>96</u>	98	101	94	104	107	104	99	99	97	99
12	98	98	96	102	91	102	105	105	99	98	97	98
13	95	98	97	102	92	101	109	105	99	100	98	100
14	97	98	<u>96</u>	103	93	103	111	101	98	101	99	100
15	97	99	98	107	91	99	112	102	98	101	98	100
16	98	101	101	103	90	101	113	106	100	<u>100</u>	100	101
17	98	101	101	106	<u>87</u>	102	119	107	96	<u>103</u>	101	102
18	99	<u>101</u>	100	104	94	102	119	108	98	105	102	100
19	101	100	<u>102</u>	102	100	103	118	107	100	101	100	102
20	100	100	101	99	98	<u>111</u>	118	108	99	97	99	100
21	98	100	101	102	92	111	<u>119</u>	109	97	98	99	98
22	<u>101</u>	101	101	101	96	104	118	112	98	101	101	95
23	101	<u>101</u>	99	99	96	103	119	111	99	100	99	100
24	100	101	99	101	95	104	119	112	98	99	100	<u>102</u>
25	97	97	99	101	100	101	118	112	98	103	101	101
26	99	97	99	101	103	102	119	105	99	100	<u>103</u>	96
27	99	100	102	102	102	101	121	<u>96</u>	103	99	101	95
28	98	99	102	105	104	104	121	98	104	100	101	97
29	98		100	<u>107</u>	103	105	120	99	101	97	101	96
30	97		98	105	102	107	116	102	99	99	<u>97</u>	99
31	99		98		102		114	104		98		98
Средн.	96	99	99	102	97	103	114	106	100	100	100	99
Высш.	103	102	104	109	106	115	122	119	110	106	105	104
Низш.	93	96	93	96	84	97	101	95	90	94	94	93

Характеристика	Уровень	Д	Число	
уровня моря	моря	первая	последняя	случаев
Среднегодовой	101			
Высший за год	122	21.07		1
Низший за год	84	17.05		1

Таблица 1.2 - Средние и экстремальные уровни моря, см

2005 г.

5. МГ- І Форт Шевченко

Характеристика	Уровень Дата			Число
уровня моря	моря	первая	последняя	случаев
Среднегодовой	103			
Высший за год	139	17.06	04.07	2
Низший за год	71	26.12		1

Низш.

6. МГ- II Актау

Отметка нуля поста -28.00 м БС

Число						Ma	сяц	Отмет	ка нул	я поста	ı -28.00	мьс
число	1	2	3	4	5	6	7	8	9	10	11	12
	1		3	<u> </u> +	1 3			0	<u> </u>	10	11	12
1	<u>81</u>	86	95	92	97	111	119	116	107	104	100	94
2	84	88	85	88	100	114	119	118	108	100	98	94
3	86	88	87	90	98	116	121	113	105	102	92	93
4	<u>82</u>	92	93	91	102	<u>111</u>	122	118	98	104	96	94
5	84	89	88	92	104	116	123	115	96	103	99	92
6	88	86	86	98	103	114	123	114	98	99	93	93
7	91	88	93	100	101	111	121	114	96	100	91	92
8	88	88	92	97	103	114	118	113	95	96	93	94
9	<u>95</u>	88	<u>97</u>	95	107	113	115	112	96	96	89	97
10	89	86	96	96	109	114	117	112	98	97	<u>87</u>	95
11	85	90	94	99	105	116	114	111	102	102	91	94
12	91	90	91	99	107	115	114	113	103	104	95	93
13	85	89	94	97	105	114	115	113	107	102	95	93
14	84	<u>94</u>	92	95	104	115	<u>115</u>	112	<u>112</u>	99	96	93
15	83	92	91	95	106	121	114	112	110	97	94	97
16	83	89	91	99	105	121	114	113	102	98	100	95
17	86	90	94	99	110	123	121	113	103	103	99	97
18	85	94	95	98	109	<u>126</u>	121	112	108	102	94	94
19	86	95	94	97	108	123	120	113	103	101	94	93
20	88	94	94	98	109	118	123	114	100	<u>111</u>	97	<u>98</u>
21	01	0.4	Ω 4	06	100	116	122	115	100	101	00	00
21	91 89	94 86	<u>84</u> 88	96 103	108	116	122	115 111	100 103	101	99 99	90 89
22 23	89 90	<u>86</u> 88	88 91	103 106	112 110	115 117	116 118	111	103 104	95 91	99 99	89 90
23 24	90 90	88 91	91 87	106	110	117 119	118	107	104	91 93	99 94	90 94
24 25	90 89	91	88	99	114 116	119	113	106	101	93 98	94 91	94 93
2 <i>5</i> 26	93	92 94	94	104	116 116	114	118	105	102	98 94	91	93 88
27	91	93	94	107	115 115	112	116	105 105	96	96	92	<u>86</u>
28	93	96	92	107 109	115 116	116	110 112	103	99	96	92	91
29	93	<u> </u>	95	103	115	115	113	104	99	95	94	91
30	90		95	100	113	117	114	104	103	<u>89</u>	94	91
31	87		94		113	/	115	104	100	96	, ,	94
							•			. •		- ·
Средн.	88	90	92	98	108	116	118	111	102	100	95	93
Высш.	100	97	101	110	117	127	127	120	113	114	103	100
Низш.	80	83	75	87	95	108	110	102	91	85	85	84

Характеристика	Уровень	Да	Число	
уровня моря	моря	первая	последняя	случаев
Среднегодовой	101			
Высший за год	127	18.05	05.07	2
Низший за год	75	21.03		1

Таблица 1.2 - Средние и экстремальные уровни моря, см

2005 г.

7. МГП - II Фетисово

Характеристика	Уровень	Д	Число	
уровня моря	моря	первая	последняя	случаев
Среднегодовой	114			
Высший за год	148	29.05		1
Низший за год	87	03.01		1

Температура воды у берега

Наблюдения за температурой воды на береговых станциях производились при отсутствии ледостава. Температура воды измерялась вблизи берега в поверхностном слое воды толщиной 0.5-0.6 м. Сведения о температуре воды приведены в табл. 1.3а в виде средних суточных, средних месячных и экстремальных значений за год и 1.3б в виде средних декадных, средних месячных и высших значений за год, а также дат перехода ее через 0.2, 4.0 и 10.0 °C.

Средние суточные значения температуры определены как средние арифметические из данных измерений в четыре срока - 00, 06, 12, 18 часов по среднегринвичскому времени на морских станциях и в два срока - 06 и 18 часов на морских постах.

Высшая и низшая температура воды за год выбиралась из всех измерений - срочных и дополнительных. Суточные значения температуры воды, не совпадающие по времени с высшими и низшими срочными за месяц, в таблице подчеркнуты.

В таблице, кроме значения высшей и низшей температуры, приведены также первая и последняя даты их наступления и число суток, в течение которых они отмечались. Если это значение наблюдалось один раз в году, то помещена только одна дата.

При отсутствии наблюдений или их недостаточности для вывода среднего значения, вместо средней декадной температуры, поставлен знак тире (-).

Средняя температура воды за месяц вычислена из средних декадных значений при наличии данных за все три декады. Если за одну из декад среднее значение температуры воды не определено, средняя температура воды за месяц не вычисляется, и в соответствующей графе поставлен знак тире (-).

Даты перехода температуры воды через 4.0 и 10.0 °C весной и осенью установлены на основе анализа изменения во времени ее срочных (измеренных) значений. Переход температуры через указанные пределы считался состоявшимся (устойчивым), если она во все сроки измерений была весной выше (осенью ниже) этих пределов в течение периода не менее 20 суток. За дату перехода приняты сутки, соответствующие началу устойчивого периода. При отсутствии устойчивого перехода температуры через заданные пределы, соответствующие графы таблицы оставлены незаполненными, а при отсутствии или недостаточности наблюдений за температурой в этих графах поставлен знак тире (-).

Знак штриха ($^{\rm I}$) после номера пункта наблюдений означает наличие пояснений об отступлении от принятой методики наблюдений и обработки материалов, об искажении данных и т. д.

 Π о $M-\Pi$ Пешной данные о температуре воды с 01.01 по 31.03 забракованы как сомнительные.

По $M\Gamma\Pi$ - II Фетисово данные о температуре воды не приведены, так как сомнительны.

Таблица 1.3а - Средние и экстремальные значения температуры воды у берега, 0 С 1. МГП - II Жанбай 2005 г.

Число	Месяц											
	1	2	3	4	5	6	7	8	9	10	11	12
1	1.3	1.3	3.8	1.5	<u>8.1</u>	17.1	<u>20.1</u>	19.5	15.7	<u>13.5</u>	1.3	<u>1.3</u>
2	1.3	1.3	<u>1.3</u>	1.5	<u>8.1</u>	17.7	19.3	19.7	15.3	13.0	1.6	1.3
3	1.3	1.3	1.4	1.4	8.4	16.9	19.2	22.4	15.4	14.0	2.3	1.3
4	1.3	1.3	<u>1.3</u>	1.5	8.6	16.0	19.1	<u>24.8</u>	16.8	12.8	3.0	<u>1.3</u>
5	1.3	1.3	<u>1.3</u>	<u>1.3</u>	8.8	15.6	19.2	20.6	16.8	13.3	<u>2.6</u>	1.3
6	<u>1.4</u>	1.3	1.4	<u>1.4</u>	9.1	16.1	19.0	20.4	16.3	13.3	3.0	1.3
7	1.3	<u>1.3</u>	1.5	1.5	9.8	<u>15.4</u>	19.5	19.1	13.0	13.5	2.0	1.4
8	1.3	1.3	1.4	1.5	11.3	16.4	18.9	18.1	14.3	10.8	1.8	1.4
9	1.3	1.3	1.5	1.4	11.8	17.4	18.7	17.5	15.5	9.3	2.0	<u>1.4</u>
10	1.3	1.3	1.4	1.3	12.7	18.9	18.8	18.0	13.6	9.1	1.9	1.5
11	1.3	1.3	1.5	1.5	13.9	18.5	18.5	18.0	15.5	9.0	1.3	1.3
12	1.3	1.3	1.4	1.4	14.2	20.0	18.5	18.0	13.5	9.4	1.2	1.3
13	<u>1.4</u>	1.3	1.4	1.5	15.8	19.5	18.4	15.1	13.8	9.1	1.3	1.3
14	1.2	1.3	1.5	1.4	16.1	19.0	19.6	<u>16.1</u>	<u>16.3</u>	9.6	1.0	1.4
15	1.3	1.3	1.5	1.5	16.3	19.8	18.8	20.0	15.4	10.5	0.7	1.3
16	<u>1.3</u>	<u>1.2</u>	1.4	3.0	17.5	18.4	<u>18.0</u>	20.5	16.0	10.0	<u>0.6</u>	1.3
17	1.3	<u>1.2</u>	1.5	5.0	17.0	18.5	18.3	20.0	16.3	9.4	0.3	1.3
18	1.3	1.3	1.4	4.1	17.4	18.0	18.8	22.1	16.0	9.8	1.2	1.3
19	1.3	1.3	1.7	4.4	18.2	18.4	19.0	21.5	16.5	8.3	1.3	1.6
20	1.4	1.3	1.6	5.0	17.5	19.0	19.3	17.0	17.0	7.4	1.3	1.2
21	1.3	1.3	1.3	4.5	<u>18.3</u>	18.1	19.5	14.3	17.3	5.7	1.2	1.2
22	1.3	1.3	1.6	4.9	18.2	16.6	19.5	15.3	16.5	4.8	1.3	1.3
23	1.3	1.4	1.4	4.8	18.5	14.8	20.5	16.3	14.0	7.8	1.3	1.2
24	1.3	1.3	1.5	4.9	17.8	15.7	20.1	16.8	12.0	7.0	1.2	1.3
25	1.3	1.3	1.5	4.5	18.2	16.8	19.7	16.4	10.8	8.8	1.2	1.3
26	1.3	1.3	1.5	3.6	16.7	18.0	20.9	16.8	14.9	7.4	1.2	1.2
27	1.3	1.3	1.6	3.7	17.2	16.8	21.0	15.8	14.3	10.3	1.5	1.3
28	1.3	1.3	1.5	7.9	17.7	18.9	20.0	15.6	15.0	7.0	1.8	1.3
29	1.3		1.6	6.6	17.6	19.6	20.3	16.5	13.3	6.3	1.4	<u>1.3</u>
30	1.3		1.4	<u>7.4</u>	18.1	<u>19.9</u>	19.9	16.6	<u>11.6</u>	4.9	1.3	<u>1.1</u>
31	1.2		1.3		16.8		20.8	16.6		<u>2.8</u>		1.1
Средн.	1.3	1.3	1.5	3.5	14.7	17.7	19.4	18.2	14.9	9.3	1.5	1.3
Высш.	1.5	1.8	5.1	8.7	22.3	26.5	26.4	29.3	20.3	17.3	4.4	1.8
Низш.	1.0	1.0	1.1	1.1	6.5	11.2	15.2	10.2	5.2	1.3	0.1	1.0

Характеристика	Температура	Да	Число	
температуры воды	воды	первая	последняя	случаев
Среднегодовая	8.7			
Высшая за год	20.3	04.08		1
Низшая за гол	0.1	16 11	17 11	2.

Таблица 1.3а - Средние и экстремальные значения температуры воды у берега, 0 С 2. М - II Пешной 2005 г.

Число	Месяц											
	1	2	3	4	5	6	7	8	9	10	11	12
1	-	-	-	3.0	12.1	21.5	26.0	21.8	21.5	<u>14.2</u>	5.8	1.3
2	-	-	-	2.6	13.3	22.7	26.2	23.4	17.3	14.2	6.2	1.2
3	-	-	-	2.6	14.9	23.6	24.6	23.6	18.1	12.9	<u>7.5</u>	0.8
4	-	-	-	3.0	15.0	20.2	23.2	25.2	18.0	11.8	6.8	0.9
5	-	-	-	2.9	13.2	20.3	24.1	27.1	19.0	12.8	6.0	0.8
6	-	-	-	3.0	14.7	20.5	23.4	26.0	18.7	13.1	3.4	0.9
7	-	-	-	<u>3.4</u>	14.7	21.0	22.6	22.7	18.6	12.8	3.0	0.9
8	-	-	-	3.9	16.0	22.1	22.8	22.6	17.6	11.0	<u>4.3</u>	0.9
9	-	-	-	4.9	17.3	22.5	23.4	23.8	17.3	11.9	2.8	1.0
10	-	-	-	5.4	18.0	22.7	24.3	23.8	18.8	12.6	1.8	1.6
11	-	-	-	6.6	18.3	<u>24.2</u>	23.5	23.9	20.4	12.4	2.9	1.1
12	-	-	-	7.9	18.1	23.6	20.7	21.7	20.8	12.6	1.8	0.9
13	-	-	-	8.1	20.1	24.9	<u>19.9</u>	21.2	22.0	13.1	2.3	1.1
14	-	-	-	8.3	21.4	22.7	22.0	21.5	21.8	10.9	2.0	1.6
15	-	-	-	9.0	20.3	22.2	22.4	22.7	19.6	10.0	2.3	1.4
16	-	-	-	9.1	20.2	23.3	25.3	23.4	19.6	12.3	2.6	1.9
17	-	-	-	8.6	20.5	22.9	27.1	<u>24.8</u>	20.5	13.8	4.2	1.8
18	-	-	-	9.3	20.9	22.7	24.2	23.9	19.8	14.8	4.2	1.8
19	-	-	-	10.0	21.4	22.7	25.0	25.3	20.5	11.8	2.8	<u>2.2</u>
20	-	-	-	10.3	20.0	24.2	25.5	26.0	20.9	8.8	1.9	1.9
21	-	-	-	10.4	20.3	21.1	26.2	15.7	19.3	2.2	4.5	1.3
22	-	-	-	11.6	21.1	20.9	25.8	16.0	19.0	4.0	4.2	1.1
23	-	-	-	12.2	23.0	<u>17.1</u>	25.2	19.0	18.6	3.8	2.2	1.1
24	-	-	-	13.0	20.9	18.0	26.4	19.0	17.8	7.5	<u>0.7</u>	0.7
25	-	-	-	12.4	20.9	20.0	26.5	14.9	16.9	9.6	0.6	<u>0.5</u>
26	-	-	-	11.4	22.3	21.4	<u>28.0</u>	13.5	19.2	3.3	1.7	0.6
27	-	-	-	<u>12.7</u>	<u>24.1</u>	22.5	26.0	16.0	17.4	7.8	2.7	0.2
28	-	-	-	12.2	21.6	22.0	25.4	17.8	14.3	8.1	1.6	0.4
29	-		-	10.0	22.2	22.6	25.7	17.2	14.0	5.8	1.1	0.4
30	-		-	10.6	22.6	24.1	23.7	19.5	13.0	2.9	0.9	0.6
31	-		-		23.8		22.2	19.5		<u>4.9</u>		0.5
Средн.	-	-	-	7.9	19.1	22.0	24.4	21.2	18.7	9.9	3.2	1.1
Высш.	-	-	-	15.6	27.0	27.6	32.1	30.7	26.0	21.3	14.6	3.0
Низш.	-	-	-	1.9	9.9	14.4	16.0	9.6	8.8	0.7	0.2	0.1

Характеристика	Температура	Да	Число	
температуры воды	воды	первая	последняя	случаев
Среднегодовая	-			
Высшая за год	32.1	26.07		1
Низшая за гол	0.1	25.12		1

Таблица 1.3а - Средние и экстремальные значения температуры воды у берега, 0 С 4. МГ- III Кулалы, остров 2005 г.

Число	Месяц											
	1	2	3	4	5	6	7	8	9	10	11	12
1	1.3	-0.1	1.3	5.9	17.4	<u>27.3</u>	26.2	27.1	22.2	18.3	9.8	5.6
2	1.9	-0.3	0.9	5.6	16.9	27.2	27.5	26.9	22.8	18.4	10.1	5.4
3	1.6	-0.3	0.7	<u>5.1</u>	16.4	25.9	27.1	26.6	23.6	<u>17.8</u>	10.2	4.9
4	1.3	-0.3	0.7	5.8	15.9	26.3	26.8	27.4	23.5	18.6	10.3	5.1
5	1.3	-0.3	0.6	6.1	15.6	25.7	27.2	28.1	21.8	18.1	10.5	4.5
6	1.0	-0.4	0.3	7.0	<u>15.9</u>	25.3	26.1	28.1	21.1	17.8	<u>10.7</u>	4.8
7	1.3	<u>-0.2</u>	0.7	8.9	16.4	24.5	25.7	<u>28.6</u>	21.8	16.9	10.3	5.1
8	1.6	-0.1	0.9	9.9	17.4	<u>22.5</u>	25.6	28.0	22.5	16.4	9.7	4.6
9	1.7	-0.1	1.5	11.1	17.4	24.2	26.1	27.1	22.5	15.6	9.6	4.4
10	2.1	0.2	2.3	11.2	18.3	24.8	26.5	26.9	22.8	15.6	8.0	4.7
11	1.5	0.5	2.8	11.4	20.3	25.4	26.5	27.6	23.1	16.2	7.0	4.5
12	1.4	0.4	1.5	11.5	20.1	25.3	26.2	28.0	23.0	16.1	7.0	4.1
13	1.7	0.4	3.6	12.0	19.7	24.6	26.0	27.7	22.8	16.4	8.2	3.8
14	1.5	0.7	4.8	12.7	19.9	24.3	26.2	27.5	22.3	16.5	8.2	4.5
15	1.7	0.6	5.1	13.0	19.0	24.7	26.8	27.3	22.3	15.9	8.4	4.8
16	1.9	0.5	4.4	13.4	19.6	25.1	26.9	26.7	22.7	15.5	7.9	5.7
17	1.9	0.5	4.4	13.1	20.8	24.6	25.9	26.6	23.7	15.9	7.5	6.2
18	2.1	0.8	4.3	13.4	20.8	24.0	24.8	26.7	24.1	15.7	7.3	5.8
19	1.4	1.0	<u>5.8</u>	14.0	20.9	24.2	24.6	26.5	23.7	15.6	7.3	<u>6.7</u>
20	1.1	0.6	4.4	14.8	21.1	24.8	24.6	26.4	23.4	14.6	7.8	6.1
21	1.0	0.8	4.4	15.6	21.9	24.2	25.4	25.9	22.6	11.9	8.2	4.6
22	1.3	0.9	4.5	16.0	22.4	24.0	26.5	23.5	22.7	10.6	7.8	3.8
23	1.0	<u>1.1</u>	4.9	15.8	22.8	23.3	27.3	22.7	22.2	11.5	7.1	4.0
24	1.1	0.6	5.0	<u>16.4</u>	23.3	23.6	27.5	23.0	22.0	12.2	6.7	4.4
25	1.1	0.6	4.9	16.7	23.7	23.7	27.5	22.8	22.2	12.1	6.3	4.3
26	0.4	0.8	4.9	15.9	24.4	24.1	27.6	22.3	21.7	10.9	6.9	3.4
27	0.3	1.1	5.4	15.1	24.8	24.4	27.1	21.6	21.5	9.8	6.1	2.8
28	0.1	1.2	5.8	14.9	25.8	24.5	27.2	20.9	21.6	9.9	6.7	3.0
29	0.1		6.0	14.7	26.6	24.8	27.4	20.2	20.2	8.9	6.8	2.5
30	0.1		5.0	16.4	27.5	25.4	27.6	21.4	<u> 19.4</u>	9.3	6.7	1.6
31	0.1		5.1		<u>27.7</u>		27.4	21.4		9.7		0.9
Средн.	1.2	0.5	3.5	12.1	20.6	24.7	26.5	25.5	22.4	14.2	8.1	4.4
Высш.	2.8	1.8	7.8	18.3	28.6	28.1	30.4	29.4	25.1	19.4	11.2	7.5
Низш.	0.1	-0.5	0.2	4.2	15.1	21.4	23.6	19.6	19.0	8.2	5.3	0.8

Характеристика	Температура	Да	Число	
температуры воды	воды	первая	последняя	случаев
Среднегодовая	13.6			
Высшая за год	28.4	25.07	30.07	2
Низшая за год	-0.5	07.02		1

Таблица 1.3а - Средние и экстремальные значения температуры воды у берега, 0 С 5. МГ- I Форт Шевченко 2005 г

Число												
	1	2	3	4	5	6	7	8	9	10	11	12
1	<u>2.0</u>	04	0.3	3.0	10.5	<u>23.2</u>	23.8	25.7	19.3	<u>16.8</u>	10.4	6.0
2	1.2	-0.4	0.0	2.2	12.8	21.5	24.2	<u>26.1</u>	18.4	16.9	10.8	<u>6.4</u>
3	0.3	-0.5	0.0	2.3	13.5	18.8	24.4	25.7	17.9	15.6	<u>10.9</u>	5.4
4	0.0	-0.4	0.6	<u>2.4</u>	12.5	18.2	25.2	25.8	18.2	15.3	10.8	5.0
5	-0.3	-0.6	0.6	2.2	11.4	18.1	24.2	23.8	17.9	14.8	11.0	5.8
6	0.1	-0.8	0.2	4.4	<u>12.6</u>	17.5	22.6	24.2	19.2	15.2	10.2	5.6
7	0.3	<u>-0.8</u>	0.6	4.7	13.6	<u>18.2</u>	22.9	24.0	19.2	15.3	10.0	5.7
8	-0.2	-1.0	0.4	3.6	14.2	19.3	<u>23.6</u>	23.6	19.4	14.4	9.9	5.8
9	-0.2	-0.9	0.4	5.0	14.6	20.8	23.6	23.6	<u>20.9</u>	14.6	8.9	5.4
10	<u>-0.4</u>	-1.1	0.4	5.6	14.8	21.0	23.8	23.9	20.2	14.5	8.7	5.0
11	<u>-0.6</u>	13	0.9	5.2	15.3	21.0	24.2	24.9	20.3	15.5	8.8	5.1
12	-0.3	-0.6	1.2	7.3	16.8	20.6	23.8	23.6	16.2	15.9	8.6	5.0
13	-0.1	-0.5	1.2	7.0	16.8	20.3	<u>23.5</u>	23.8	<u>17.8</u>	14.8	7.5	5.0
14	-0.2	-0.4	1.3	6.6	16.9	21.6	23.6	23.5	19.5	14.5	7.7	5.5
15	-0.4	-0.2	1.8	7.7	16.1	22.2	24.0	23.6	19.1	14.0	7.9	5.1
16	-0.6	-0.2	2.0	8.8	16.5	23.4	24.0	23.4	20.5	13.8	7.6	4.9
17	-0.6	-0.3	2.2	9.5	16.9	23.4	24.2	23.3	20.5	14.2	7.6	4.9
18	-0.5	-0.4	2.4	9.9	17.6	22.1	24.2	23.4	18.8	14.6	8.3	5.0
19	-0.6	-0.2	2.9	9.8	17.1	22.1	24.3	23.0	20.4	14.8	8.2	4.8
20	-0.5	-0.2	3.0	9.7	16.9	21.3	24.0	22.6	20.6	14.3	7.8	5.6
21	-0.6	-0.1	2.1	10.7	<u>18.1</u>	22.1	23.8	21.5	20.3	13.4	7.8	5.0
22	-0.6	-0.2	2.0	11.3	18.9	24.2	25.5	21.7	20.7	12.4	8.2	4.9
23	-0.5	-0.1	3.1	11.2	18.0	21.8	24.6	21.6	20.4	11.6	8.1	4.9
24	<u>-0.7</u>	0.4	3.0	10.9	19.2	21.3	<u>25.0</u>	20.2	19.6	11.8	7.1	4.8
25	<u>-0.6</u>	0.1	3.3	10.8	19.5	20.0	24.9	19.4	19.6	12.3	7.0	4.7
26	<u>-0.6</u>	-0.3	3.2	11.7	19.3	19.9	24.3	18.6	20.0	12.3	6.8	4.5
27	-0.6	0.2	3.4	11.8	19.0	23.2	25.0	18.1	19.6	12.0	6.8	3.9
28	-0.7	0.5	3.5	10.7	18.8	23.9	26.1	18.4	17.6	12.1	6.6	4.2
29	-0.6		4.4	9.4	19.2	23.6	25.9	18.6	17.1	11.6	6.3	4.0
30	-0.4		3.5	10.0	20.2	23.5	26.4	18.2	16.0	10.6	<u>6.0</u>	3.4
31	04		3.3		21.7		25.5	18.8		<u>9.7</u>		2.0
Средн.	-0.2	-0.2	1.8	7.5	16.4	21.3	24.4	22.5	19.2	13.9	8.4	4.9
Высш.	2.5	0.8	3.8	12.4	31.3	32.4	33.6	27.2	22.3	18.2	11.8	7.0
Низш.	07	-1.4	-0.2	1.7	9.8	16.1	19.6	17.5	14.0	9.3	5.5	1.7

Характеристика	Температура	Да	Число	
температуры воды	воды	первая	последняя	случаев
Среднегодовая	11.6			
Высшая за год	33.6	24.07		1
Низшая за год	-1.4	12.02		1

Таблица 1.3а - Средние и экстремальные значения температуры воды у берега, 0 С 6. МГ-II Актау 2005 г.

Число						Me	сяц					
	1	2	3	4	5	6	7	8	9	10	11	12
1	4.8	- 0.4	<u>4.2</u>	6.8	13.2	18.4	22.1	18.2	16.5	16.3	12.6	6.5
2	4.9	- 0.3	4.5	6.2	13.4	18.6	22.5	<u>17.0</u>	18.1	16.7	<u>12.7</u>	7.8
3	4.6	- 0.4	4.8	6.2	13.7	20.1	<u>22.8</u>	15.4	19.1	16.8	12.2	8.2
4	4.1	- 0.3	4.8	6.7	13.8	18.4	21.0	<u>14.7</u>	17.0	16.8	12.1	8.2
5	4.2	- 0.4	4.4	<u>6.6</u>	<u>13.1</u>	15.7	18.8	14.9	15.2	16.7	12.2	8.6
6	4.9	-0.5	4.3	6.5	13.1	12.3	19.5	17.4	14.0	16.8	12.0	8.5
7	4.8	<u>- 0.5</u>	4.7	<u>7.0</u>	13.8	12.6	16.0	17.0	14.3	16.9	11.9	8.4
8	5.4	- 0.3	5.0	7.6	14.3	12.3	14.8	15.1	14.0	16.7	11.9	8.0
9	5.4	- 0.3	5.5	8.6	14.3	12.4	13.4	14.3	14.3	16.7	11.6	6.7
10	5.7	- 0.3	5.5	3.3	14.5	12.1	14.1	15.1	<u>14.1</u>	16.7	11.2	6.7
11	5.6	- 0.4	5.6	9.6	15.5	13.8	14.3	14.6	14.0	<u>17.1</u>	11.0	6.9
12	<u>6.0</u>	<u>- 0.4</u>	5.7	10.3	14.9	17.4	13.6	14.0	15.8	17.2	10.5	7.4
13	5.8	- 0.2	5.7	10.8	14.3	18.4	13.3	14.5	16.7	16.8	10.6	7.0
14	5.7	- 0.3	6.1	10.9	14.9	16.6	<u>13.4</u>	16.2	19.2	15.9	10.0	7.2
15	5.6	- 0.1	6.8	11.6	15.2	14.7	13.4	17.2	17.9	15.0	9.7	7.1
16	5.6	- 0.1	7.0	12.8	14.9	13.7	13.0	19.2	18.9	14.5	9.7	7.0
17	5.3	0.1	6.9	12.7	14.4	12.2	14.9	19.6	19.9	14.0	9.7	8.0
18	4.6	0.4	7.0	12.9	14.6	13.3	15.2	20.8	20.1	14.3	9.4	<u>8.1</u>
19	4.4	0.9	7.4	12.8	14.5	12.9	15.3	22.2	2.8	14.7	9.4	7.8
20	4.4	1.2	7.0	14.0	16.0	15.6	14.9	23.3	<u>22.1</u>	15.3	10.3	8.4
21	4.6	1.5	6.9	13.6	17.0	17.0	15.1	20.3	22.3	14.8	10.4	8.4
22	4.4	1.8	6.8	13.2	17.5	14.0	15.9	16.6	22.0	13.5	10.3	8.2
23	4.2	2.2	6.9	13.0	17.7	13.1	16.3	15.6	21.4	13.0	10.7	8.1
24	3.3	2.7	6.7	<u>14.6</u>	17.4	13.4	17.3	15.3	19.5	13.2	10.0	7.9
25	2.7	3.0	6.3	14.4	17.2	15.2	19.3	15.7	18.4	<u>13.1</u>	9.6	7.9
26	2.6	3.2	6.4	14.2	17.8	17.3	19.4	15.2	18.1	13.6	9.1	7.8
27	2.2	3.5	6.7	13.6	18.6	18.4	20.6	<u>14.3</u>	16.7	13.4	8.9	7.3
28	1.3	<u>4.1</u>	7.1	13.1	19.2	20.2	20.8	13.9	16.1	13.5	8.4	6.9
29	0.4		<u>7.7</u>	13.0	19.6	20.8	21.6	13.2	16.1	13.5	7.5	5.5
30	<u>- 0.3</u>		7.3	13.0	<u>19.7</u>	<u>21.4</u>	20.9	14.3		13.7	<u>6.4</u>	5.6
31	<u>- 0.4</u>		7.2		18.8		20.4	15.9		13.3		<u>4.9</u>
C	4 1	0.7	<i>C</i> 1	10.0	7.4	15.7	17.0	16.5	17.6	15.0	10.4	7.7
Средн	4.1	0.7	6.1	10.9	7.4	15.7	17.2	16.5	17.6	15.2	10.4	7.5
Высш.	6.4	4.6	8.1	15.8	20.2	22.6	23.7	24.2	23.5	17.9	13.2	9.1
Низш.	- 0.5	0.6	3.0	6.0	12.7	11.1	11.6	12.7	12.8	12.4	6.2	4.6

Характеристика	Температура	Д	ата	Число
температуры воды	воды	первая	последняя	случаев
Среднегодовая	10.8			
Высшая за год	24.2	20.08		1
Низшая за гол	-0.5	30.01	31.01	2

						Me	сяц						Да	га пере	хода те	мпера	гуры во	оды	Наибольшая температура
Декада	1	2	3	4	5	6	7	8	9	10	11	12		сной че			нью че		за год, дата, число случаев
4^{0}													0.2^{0}	4.0^{0}	10.0^{0}	10^{0}	4.0^{0}	0.2^{0}	•
					1	. МГ	П - ІІ	Жан	бай										
1	1.3	1.3	1.6	1.4	9.7	16.8	19.2	20.0	15.3	12.3	2.2	1.4		28.04	08.05	17.10	31.10		20.3
2	1.3	1.3	1.5	2.9	16.4	18.9	18.7	18.8	15.6	9.3	1.0	1.0							04.08
3	1.3	1.3	1.5	5.3	17.7	17.5	20.2	16.1	14.0	6.6	1.3	1.3							
Средн.	1.3	1.3	1.5	3.5	14.7	17.7	19.4	18.2	14.9	9.3	1.5	1.3							1
					2	I M_I	І Пе	шилй											
						4. IVI-I	1 110	шпои											
1	-	-	-	3.5	14.9	21.7	24.1	24.0	18.5	12.7	4.8	1.0	-	09.04	19.04	20.10	23.11		32.1
2	-	-	-	8.7	20.1	23.3	23.6	23.4	20.6	12.1	2.7	1.6							26.07
3	-	-	-	10.6	20.2	18.9	23.2	15.7	15.0	5.2	1.6	0.6							
Средн.	-	-	-	7.9	19.1	22.0	24.4	21.2	18.7	9.9	3.2	1.1							1
					4	МГ.	III K	v na ni	SI OCT	nor									
					•	• 1411	111 1	.y	, oci	ров									
1	1.5	-0.1	1.0	7.7	16.8	25.4	26.5	27.5	22.5	17.4	9.9	4.9	28.01	14.03	09.04	08.11	26.12		28.4
2	1.6	0.6	4.1	12.9	20.2	24.7	25.9	27.1	23.1	15.8	7.7	5.2							25.07
3	0.6	0.9	5.1	15.8	24.5	24.2	27.1	22.3	21.6	10.6	6.9	3.2							30.07
Средн.	1.2	0.5	3.5	12.1	20.6	24.7	26.5	25.5	22.4	14.2	8.1	4.4							2
					0	5. MI	`- I Ф	орт Ц	Іевче	нко									
								#											
1	0.3	-0.6	0.4	3.5	13.1	19.7	23.8	24.6	19.1	15.3	10.2	5.6	08.01	09.04	30.04	08.11	29.12		33.6
2	-0.4	-0.3	1.9	8.2	16.7	21.8	24.0	23.5	19.4	14.6	8.0	5.1							24.07
3	-0.5	0.1	3.2	10.9	19.3	22.4	25.2	19.6	19.1	11.8	7.1	4.2							
Средн.	-0.2	-0.2	1.8	7.5	16.4	21.3	24.4	22.5	19.2	13.9	8.4	4.9							1

						Me	сяц						Дата перехода т	емпературы воды	Наибольшая температура
Декада	1	2	3	4	5	6	7	8	9	10	11	12	весной через	осенью через	за год, дата, число случаев
													0.2^{0} 4.0^{0} 10.0^{0}	10^0 4.0^0 0.2^0	,

06. МГ-II Актау

1	4.5	-0.4	4.5	6.6	13.7	15.3	18.5	15.9	15.7	16.7	12.0	7.8	30.01	28.02	12.04	24.11	24.2
2	5.3	0.1	6.5	11.8	14.9	14.9	14.1	18.2	16.7	15.5	10.0	7.5					20.08
3	2.3	2.8	6.9	13.6	18.2	17.1	18.9	15.5	17.1	13.5	9.1	7.1					
Средн.	4.1	0.7	6.1	10.9	7.4	15.7	17.2	16.5	17.6	15.2	10.4	7.5					1

Соленость воды

На береговых станциях отбор проб воды для определения солености производился один раз в сутки (в срок, приходящийся ближе к полудню). Пробы воды отбирались в тех же местах, где производилось измерение температуры воды.

Сведения о солености воды приведены в таблице 1.4 в виде средних суточных, средних месячных и экстремальных значений за год.

Средние суточные значения солености вычислены по удельному весу проб морской воды, определенному ареометрированием.

Наибольшая и наименьшая соленость воды выбиралась из всех определений - срочных и дополнительных.

Знак тире (-) означает пропуски в наблюдениях или брак.

По МГ-II Актау 06, 09-16, 20.02, 13.04 данные о солености не приведены из - за отсутствия определений.

В 2005 г. отбор проб для определения солености на морских станциях № 1-4, 7 не производился.

Таблица 1.4 - Средние и экстремальные значения солености воды, $^{0}/_{00}$

5. МГ-ІІ – Форт Шевченко

2005 г.

Число						Me	сяц					
	1	2	3	4	5	6	7	8	9	10	11	12
1	13.96	14.01	13.98	14.01	14.02	13.93	14.01	13.78	13.97	14.01	13.98	13.97
2	13.93	13.93	14.01	14.01	14.02	13.97	14.05	13.7	14.05	14.06	13.98	13.96
3	13.95	14.01	14.00	14.01	14.06	14.04	14.02	13.82	14.05	14.11	13.95	13.93
4	13.95	14.01	13.97	14.06	14.09	14.04	13.71	13.80	14.05	13.96	13.97	13.93
5	13.92	14.01	13.98	14.05	13.91	14.00	13.98	13.86	14.06	13.93	14.01	13.95
6	13.95	14.01	13.97	14.02	14.04	14.02	14.00	13.84	14.05	14.04	13.98	13.95
7	13.95	14.01	14.00	14.05	13.97	13.87	14.01	13.82	14.09	13.96	13.97	13.93
8	13.95	14.01	13.98	14.02	13.91	14.01	14.04	13.82	14.11	13.97	13.93	13.93
9	13.93	14.01	14.04	14.01	14.06	13.96	14.00	13.86	14.07	13.97	13.95	13.96
10	13.93	14.01	13.98	14.01	13.98	13.89	14.02	13.89	14.07	13.95	13.97	13.93
11	13.95	14.01	14.02	14.01	14.06	14.02	14.01	13.87	14.11	13.97	13.93	13.96
12	13.95	14.00	14.04	14.02	14.00	14.00	14.05	13.89	14.02	13.75	13.97	13.98
13	13.95	14.00	14.05	13.98	14.00	13.89	14.02	13.87	14.09	13.95	13.98	14.00
14	13.95	14.01	14.00	14.02	14.04	14.05	13.96	13.84	14.07	13.93	13.93	13.96
15	13.95	14.00	14.04	14.04	14.01	13.97	13.69	13.87	14.09	13.93	13.95	14.01
16	13.93	14.00	13.98	13.97	14.11	14.00	14.05	13.88	14.09	13.95	13.95	13.93
17	13.95	14.00	14.00	14.07	13.93	14.15	13.69	13.86	14.12	13.96	13.95	13.96
18	13.95	14.00	14.00	14.06	13.91	14.04	13.71	13.89	14.11	14.01	13.93	13.96
19	13.95	14.00	14.05	13.96	13.92	14.02	13.69	13.93	14.16	13.95	13.95	13.95
20	13.95	14.00	13.98	13.97	14.02	13.96	13.73	13.89	14.13	13.96	13.93	13.95
21	13.93	14.01	14.02	14.01	13.95	13.98	13.73	13.96	14.13	13.96	13.97	13.97
22	13.95	13.88	14.00	14.02	14.09	14.04	13.71	13.93	14.09	13.95	14.01	13.98
23	13.95	13.59	14.00	14.07	14.04	14.01	13.75	13.82	14.11	13.97	13.93	13.98
24	13.95	13.59	14.00	14.01	14.05	14.01	13.71	13.93	14.09	13.95	13.93	13.95
25	13.95	14.00	14.00	14.06	14.02	14.04	13.73	13.80	14.07	13.93	13.95	13.93
26	13.95	13.88	14.05	14.01	14.06	14.04	13.73	14.06	14.11	13.96	13.95	13.96
27	13.95	14.01	14.00	14.00	14.00	14.06	13.73	14.05	14.11	13.96	13.97	13.93
28	13.95	14.00	14.00	13.96	14.02	14.05	13.78	13.93	13.98	13.95	14.00	13.98
29	13.95		13.98	14.11	14.04	14.05	13.77	13.87	14.01	13.93	13.96	13.93
30	13.95		14.00	14.02	14.00	14.05	13.77	13.95	14.01	13.97	14.00	13.96
31	13.95		14.00		14.04		13.80	14.04		13.96		13.93
Средн	13.95	14.00	14.00	14.02	14.01	14.05	13.86	13.88	14.08	13.96	13.96	13.95
Наиб.	13.96	14.01	14.05	14.11	14.11	14.15	14.05	14.06	14.16	14.11	14.01	14.01
Наим.	13.93	13.59	13.97	13.96	13.91	13.87	13.69	13.78	13.97	13.75	13.93	13.93

Характеристика	Соленость	Да	та	Число
солености		первая	последняя	случаев
Среднегодовая	13.98			
Высшая за год	14.16	19.09		1
Низшая за год	13.59	24.02		1

Таблица 1.4 - Средние и экстремальные значения солености воды, $^{0}/_{00}$ 6. I МГ-II Актау 2005 г.

Число	Месяц											
	1	2	3	4	5	6	7	8	9	10	11	12
_	10	40.00	40.00	10.1-	40.00	10	10	40.00	40.00	40 * *	40.00	10 ==
1	12.77	12.88	12.88	13.15	12.88	12.77	13.14	12.88	12.88	13.14	12.88	12.77
2	12.65	13.15	12.88	13.02	12.88	12.56	12.88	12.88	12.65	12.88	12.88	13.14
3	12.77	13.14	12.88	12.65	12.02	13.14	12.65	12.77	12.77	12.65	12.88	12.88
4	12.88	12.56	13.02	13.02	12.56	13.56	12.65	12.77	13.14	12.65	12.77	12.77
5	12.65	12.88	13.02	13.15	12.56	12.65	13.02	12.56	12.88	12.65	12.77	13.14
6	12.65	-	13.02	12.77	12.88	12.65	12.88	12.77	12.65	12.65	12.88	12.56
7	12.56	13.14	13.02	12.57	12.88	12.65	12.65	12.77	12.65	12.65	12.88	12.65
8	12.56	13.00	13.14	13.02	12.73	12.65	12.88	12.65	12.77	12.88	12.77	13.02
9	12.65	-	12.88	13.15	12.56	12.56	12.65	12.65	12.77	12.77	13.02	13.02
10	12.65	-	13.02	13.02	12.56	12.65	12.77	13.02	12.88	12.65	13.14	12.65
11	12.56	_	13.02	12.88	12.77	12.88	12.77	12.88	12.88	12.56	12.65	12.77
12	12.65	_	13.11	12.88	12.77	12.74	12.65	12.77	13.02	12.65	12.65	13.02
13	12.77	_	13.11	-	12.65	12.88	12.88	13.02	12.77	12.56	12.77	12.77
14	12.88	_	12.77	13.02	12.65	12.56	13.02	12.88	12.77	12.56	12.65	12.77
15	12.65	_	13.02	13.14	12.88	12.88	13.02	12.88	12.65	12.77	12.65	12.88
16	12.88	_	13.14	13.02	12.65	12.77	12.56	13.02	12.56	12.56	13.15	13.02
17	12.77	13.15	13.14	13.15	13.15	12.56	12.77	13.02	12.77	12.65	12.65	13.02
18	12.65	12.88	12.77	12.88	13.02	13.02	13.02	12.88	12.88	12.88	13.02	12.65
19	12.88	13.14	13.02	13.88	12.77	13.02	12.65	13.14	12.65	12.77	12.77	12.65
20	12.65	-	13.02	13.14	12.57	12.65	12.65	12.88	12.19	12.77	12.77	13.14
21	13.14	13.14	13.14	13.02	12.63	12.56	12.77	13.02	12.56	12.77	12.88	13.02
22	12.77	12.88	12.88	13.02	12.77	12.88	12.56	13.02	12.56	12.77	12.65	12.88
23	12.77	13.14	13.02	13.15	12.88	12.88	12.65	12.77	12.54	12.77	12.77	13.02
24	13.02	13.14	13.14	13.02	12.88	12.88	12.77	12.88	12.65	12.65	12.88	12.88
25	12.65	12.77	13.02	13.02	12.65	12.88	12.88	12.56	12.56	12.65	12.77	12.88
26	13.02	12.56	13.02	13.02	13.02	13.02	13.02	12.88	12.77	12.88	12.88	12.88
27	13.02	12.88	13.02	12.88	12.65	13.15	12.65	12.77	12.54	12.65	13.15	13.14
28	12.77	13.02	13.02	12.88	12.56	13.02	12.56	12.65	13.02	12.88	13.02	12.77
29	13.02		12.88	13.15	12.65	12.77	13.02	12.77	12.65	12.77	12.65	12.88
30	13.02		13.14	13.02	12.88	12.88	12.65	12.88	12.77	12.65	12.77	12.77
31	12.88		13.02		12.65		12.65	13.02		12.88		12.88
Средн.	12.78	-	13.00	-	12.72	12.82	12.81	12.84	12.73	12.72	12.83	12.88
Наиб.	13.14	-	13.14	13.15	13.15	13.15	13.14	13.14	13.14	13.14	13.15	13.14
Наим.	12.56	-	12.77	12.57	12.56	12.56	12.56	12.56	12.56	12.56	12.65	12.56

Характеристика	Соленость	Да	та	Число
солености		первая	последняя	случаев
Среднегодовая	-	-	-	-
Высшая за год	-	-	-	-
Низшая за год	-	_	-	-

Волнение моря

На сети морских станций № 4, 5, 6 наблюдения за волнением моря производятся визуально в сроки 6 и 12 часов по среднегринвичскому времени.

В таблице 1.5 приведены максимальные значения параметров волнения: высота максимальной волны, первая дата ее возникновения (число случаев появления максимальной волны в месяц), тип волнения (вв - ветровое волнение, зб - зыбь, мз - мертвая зыбь, вз - ветровое волнение и зыбь, то - толчея), преобладающее из всех случаев направление волнения. Направление распространения волн определяется, как и направление ветра, т. е. откуда идут волны.

В таблице 1.5 также помещены параметры ветра (направление и скорость ветра), измеренные в сроки прохождения максимального волнения. Характеристика волнения дана по высоте максимальной волны:

```
до 0.25 м - слабое, от 0.25 до 0.75 м - умеренное, от 0.75 до 1.25 м - значительное, с баллом III, от 1.25 до 2.0 м - значительное, с баллом IV, от 2.0 до 3.5 м - сильное, с баллом VI, от 6.0 до 8.5 м - очень сильное, с баллом VIII, более 11.0 м - исключительное, с баллом IX.
```

По морской станции Форт Шевченко приведены наблюдения за волнением в открытой части моря и в бухте.

Таблица 1.5 - Волнение моря. Максимальные значения параметров волнения

—	Максималь-	Дата	Тип волне-	Направление	Ber	гер	Характеристика
Месяц	ная высота	(число случаев)	ния,	основного	Преобладающее	Максимальная	волнения
Me	волн, м		шифр	волнения,	направление,	скорость,	
				румб	румб	M/c	
			4. MΓ-III 1	Кулалы, острог	В		
1	1.5	07,09,12,13(5)	BB	В	CB	15	значительное
2	1.0	01,17,18 5)	BB	CB	CB	14	сильное
3	2.0	17,20 (3)	BB	CB	CB	14	сильное
4	2.0	28 (2)	BB	ЮЗ	ЮЗ	16	сильное
5	2.0	05 (2)	BB	CB	CB	23	сильное
6	2.0	17,18 (3)	BB	Ю3	Ю3,С3	17	сильное
7	1.5	07 (1)	BB	C3	C3,CB	14	значительное
8	1.5	31 (1)	BB	CB	CB	12	значительное
9	1.5	14 (2)	BB	CB	CB	15	значительное
10	2.0	18,20,21 (4)	BB	C3	C3,CB	18	сильное
11	2.0	23 (2)	BB	CB	CB	19	сильное
12	1.5	21 (1)	ВВ	СВ,В	В	14	сильное
			5. МГ-І Фо	рт Шевченко ((открытая часть)		
1	0.75	9,10,13,14,22,30,31 (8)	BB	ЮВ	ВЮВ	14	значительное
2	0.75	02,15-19,27,28 (15)	BB	ЮВ	ЮВ	24	значительное
3	0.75	03,04,17,20,21,29(11)	BB	C,CB	C	16	значительное
4	1.25	23 (1)	BB	ЮЗ	ЮЮЗ	16	значительное
5	1.25	05 (1)	BB	C	C	14	значительное
6	0.75	19,23-25 (7)	BB	C3,C	C3	14	значительное
7	0.75	04,17 (3)	BB	C3	C3	16	значительное
8	0.50	07,13,15-19,22,23 (8)	BB	C	C,C3	14	умеренное
9	0.75	10 (2)	BB	C	C	12	значительное
10	0.75	13,17,18,20-22,25 (14)	BB	ЮВ	ЮВ	20	значительное
11	1.25	23 (2)	BB	ЮВ	ЮВ,ВЮВ	18	значительное
12	0.75	16,17 (2)	BB	CB,B	BCB	14	значительное

Таблица 1.5 - Волнение моря. Максимальные значения параметров

н	Максималь-	Дата	Тип волне-	Направление	Be	гер	Характеристика
Месяц	ная высота	(число случаев)	ния,	основного	Преобладающее	Максимальная	волнения
Me	волн, м		шифр	волнения,	направление,	скорость,	
				румб	румб	M/C	
			5. МГ-І Фо	рт Шевченко ((бухта)		
1	0.50	19,22,28-31 (8)	ВВ	ЮВ	ВЮВ	14	умеренное
2	лед	-	-	-	ЮВ	24	-
3	0.50	03-05,07,29,30 (7)	BB	С, шт (25%)	C	16	умеренное
4	0.75	23 (1)	BB	шт (67%)	ЮЮЗ	16	значительное
5	0.75	05 (2)	BB	шт (43%)	C	14	значительное
6	0.50	18,19 (2)	BB	шт (33%)	C3	14	умеренное
7	0.50	04,05,17 (4)	BB	шт (53%)	C3	16	умеренное
8	0.50	19 (1)	BB	шт (50%)	C,C3	14	умеренное
9	0.50	10 (2)	BB	шт (47%)	C	12	умеренное
10	0.50	13,17,18,21,22 (10)	BB	ЮВ, шт (25%)	ЮВ	20	умеренное
11	0.50	01,02,16,21,23,24 (7)	BB	ЮВ	ЮВ,ВЮВ	18	умеренное
12	0.50	08,17 (2)	ВВ	шт (25%)	BCB	14	умеренное
			6. MΓ-II A	ктау			
1	2.5	13 (1)	BB	ЮВ	ВЮВ	18	сильное
2	1.0	17,19 (2)	BB	ЮВ,В	ЮВ	22	значительное
3	0.75	20 (1)	BB	CB	C,CCB	14	значительное
4	0.50	04,15,24,26 (5)	BB	СЗ,Ю	C3	17	умеренное
5	⟨0.25	01-31 (62)	BB	3,C3	3,3C3	12	умеренное
6	2.0	21 (1)	BB	3	3C3	18	сильное
7	0.50	07,30 (2)	BB	C3	3C3	13	умеренное
8	0.50	20 (1)	BB	C3	3C3	13	умеренное
9	0.75	14 (1)	BB	3,C3	CC3	12	значительное
10	2.0	21 (1)	BB	ЮВ	ВЮВ	16	сильное
11	2.5	23,24 (3)	ВВ	ЮВ	ВЮВ	20	сильное
12	0.75	16 (1)	BB	В,ЮВ	В,ВЮВ	16	значительное

Ледовые явления

В таблице 1.6 приведены сведения о сроках наступления ледовых явлений на море и продолжительности ледовых фаз по данным морских станций и постов, проводящих наблюдения за ледовой обстановкой в период от начала ледовых явлений осенью 2004 г. и до их окончания весной 2005 г.

За дату начала ледовых явлений принята дата образования устойчивых заберегов или припая, плавучего льда, шуги или ледостава. Кратковременные (1-3 суток) ледовые явления, отделяющиеся от последующих за ними устойчивых ледяных образований длительным свободным от ледовых явлений периодом (10 суток и более), во внимание не принимались и отнесены к свободному ото льда периоду.

За начало ледостава принята дата появления устойчивого неподвижного ледяного покрова.

Таблица 1.6 содержит значения наибольшей толщины льда и дату её наблюдения.

За начало разрушения льда принята дата появления закраин, воды на льду, участков чистой воды (проталин, разводий) и других явлений, характеризующих изменение состояния льда при наличии ледостава.

Окончанию ледостава соответствует дата, предшествующая первой дате появления ледяных полей, битого льда, начала дрейфа под действием ветра. За дату очищения ото льда принят день, начиная с которого ледовые явления в данном сезоне больше не наблюдались.

Продолжительность ледостава вычислена от даты начала ледостава в предшествующем году до даты окончания ледостава в данном году включительно.

Продолжительность периода с ледовыми явлениями вычислена от даты появления ледяных образований осенью предыдущего года до даты очищения водоёма весной.

Ледообразование

Дата устой-	Дата устой-	Дата	Дата	Дата	Дата	Дата	Величина
чивого пере-	чивого пере-	первого	первого об-	устойчи-	начала обра-	первого	устойчивой
хода темпера-	хода темпе-	ледообра-	разования	вого	зования	появления	ширины
туры возду-	ратуры во-	зования	заберега	ледообра-	устойчи-	принос-	припая,
ха через 0 °C	ды через 0 °С		или припая	зования	вого припая	ного льда	KM
			М - II П	[ешной			
17.12	-	01.12	01.12	02.12	02.12	нб	0.1-0.5
		N	ИГ- III Кула	алы, остров	1		
25.01	нб	08.02	08.02	08.02	08.02	нб	12.2
		I	МГ- І Форт	Шевченко			
26.01	30.01	1.02	04.02	04.02	04.02	нб	4-7
			MΓ-II	Актау			
26.01	30.01	30.01	06.02	06.02	06.02	нб	0.1

Полное замерзание

	Наиболь-	Полное за	амерзание	Наибольшая	Дата
Станция	шая шири-	первая	оконча-	толщина	измерения
	на припая,	дата	тельная	льда,	наибольшей
	KM		дата	СМ	толщины льда
М - II Пешной	0.1 - 0.5	23.12	23.12	32	19.02
МГ-III Кулалы, остров	12.2	08.02	нб	1.0	08.02
МГ-І Форт-Шевченко	4 - 7	04.02	04.02	14	13.02
MГ-II Актау	0.1	12.02	нб	-	-

Таяние и разрушение

1 1 2						
	Дата устой-	Дата устой-	Дата	Дата	Дата	Дата
	чивого пе-	чивого пе-	появления	появления	образова-	начала
Станция	рехода тем-	рехода тем-	снежниц	проталин	ния	взлома
	пературы	пературы			ледяного	или первой
	воздуха	воды			заберега	подвижки
	через 0 °С	через 0 °С				припая
М - II Пешной	05.04	нб	нб	нб	нб	12.03
МГ-III Кулалы, остров	09.03	нб	нб	нб	нб	09.02
МГ-І Форт-Шевченко	08.03	28.02	нб	нб	нб	22.02
MГ-II Актау	19.02	18.02	нб	нб	нб	13.02

Очищение от единичных льдин

	Дата	Дата очище	ние ото льда	Число дней	Число дней	Примеча-
Станция	полного	первая	оконча-	в ледовый	в ледовый	ние
	разруше-		чательная	период со период		
	ния припая			льдом	безо льда	
М- II Пешной	14.03	23.03	23.03	112	0	
МГ-III Кулалы, остров	10.02	10.02	10.02	2	0	
МГ-І Форт-Шевченко	25.02	03.03	03.03	30	0	блинч.лёд
МГ-ІІ Актау	13.02	15.02	15.02	16	0	блинч.лёд

Водный баланс Каспийского моря

В таблице 1.7 приведены ежемесячные и годовые значения составляющих водного баланса Каспийского моря.

Водный баланс рассчитывался на основе гидрометеорологических наблюдений, проводимых на береговых и островных пунктах наблюдений всех прикаспийских стран, гидрометрических данных на замыкающих створах рек, гипсометрической характеристики моря с применением ряда формул и приемов для расчета составляющих водного баланса.

Условные обозначения.

Приходные составляющие водного баланса:

Vp - суммарный речной сток в км³, определялся по гидрологическим данным на замыкающих створах рек Волги (с учетом потерь стока в ее дельте), Урала, Терека, Самура, Сулака, Куры. Учитывался сток малых и иранских рек (средняя многолетняя величина).

Voc - атмосферные осадки, выпадающие на поверхность моря, км³ определялись по данным береговой станции Форт Шевченко и островных станций - Тюлений, Нефтяные Камни, Куули-Маяк (Гувлымаяк), Огурчинский (Огрыжа) с учетом норм осадков за период 1940-1970 гг.

Vпс - фиксированный подземный сток в море принимался равным приближенно $0.33~{\rm km^3/mec}.$

Расходные составляющие водного баланса:

Vис - испарение с поверхности моря, определялось по тем же станциям, что и осадки, с учетом норм испарения за период 1940-1970гг.

Vкбг - сток морских вод в залив Кара-Богаз-Гол, км³.

 Δ Вв - баланс моря (изменение объема моря), определялся как разность между приходной и расходной частями водного баланса.

 Δ Нв - вычисленное приращение уровня моря, определялось как отношение изменения объема моря к площади моря, соответствующей среднемесячному фактическому уровню Нн. При вычислении Δ Нн учитывались многолетние колебания уровня.

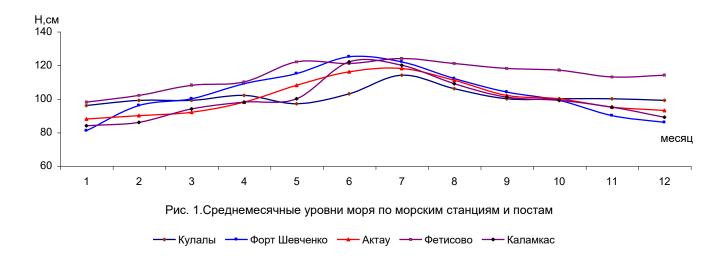
Sн - площадь моря, определялась как функция среднемесячного и среднегодового уровня моря по гипсометрической характеристике.

Нн - наблюденное среднемесячное и среднегодовое значение уровня моря в системе высот 1950 г. определялось по уравнениям регрессии, рассчитанным для каждого месяца методом наименьших квадратов по данным береговых станций Форт Шевченко, Махачкала, Нефтяные Камни, Туркменпаши (Красноводск).

 Δ Нн - наблюденное месячное и годовое приращение уровня моря определялось по данным береговых станций Форт Шевченко, Махачкала, Нефтяные Камни, Туркменпаши (Красноводск).

 ΔH в- ΔH н - разность между вычисленными и наблюденными приращениями уровня моря, характеризует погрешность расчета водного баланса.

Таблица 1.7 - Водный баланс Каспийского моря


2005 г.

Месяц	Приход, км ³			Расход, км ³			ΔВв,	SH,	Нн,	ΔНн,	ΔНв,	ΔНв-ΔНн,	
	Vp	Voc	Vпс	сумма	Vис	Vкбг	сумма	км ³	тыс.км ²	мБС	СМ	СМ	СМ
1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	22.28	8.28	0.33	30.89	19.17	1.47	20.64	10.25	391.4	-27.10	2.1	1.6	-0.5
2	20.26	7.61	0.33	28.20	19.54	1.19	20.73	7.47	392.0	-27.05	4.0	1.3	-2.7
3	25.78	7.62	0.33	33.73	15.01	1.46	16.47	17.26	392.4	-27.02	5.0	4.2	-0.8
4	31.12	2.36	0.33	33.81	13.95	1.64	15.59	18.22	393.2	-26.95	7.0	4.7	-2.3
5	71.39	3.57	0.33	75.29	12.36	1.86	14.22	61.07	394.0	-26.88	8.5	16.2	7.7
6	52.64	6.25	0.33	59.22	31.39	1.83	33.22	26.00	395.2	-26.78	7.5	8.1	0.6
7	24.04	1.69	0.33	26.06	26.86	1.98	28.84	-2.78	395.8	-26.73	-0.5	1.3	1.8
8	20.26	2.26	0.33	22.85	43.65	1.88	45.53	-22.68	395.1	-26.79	-8.0	-4.1	3.9
9	18.07	7.89	0.33	26.29	30.25	1.64	31.89	-5.60	393.9	-26.89	-8.0	-1.3	6.7
10	17.14	18.25	0.33	35.72	48.57	1.70	50.27	-14.55	393.2	-26.95	-4.5	-4.7	-0.2
11	15.70	5.64	0.33	21.67	32.64	1.65	34.29	-12.62	392.8	-26.98	-2.0	-4.8	-2.8
12	16.12	10.54	0.33	26.99	22.89	1.74	24.63	2.36	392.7	-26.99	-4.4	-1.0	3.4
Год	334.80	81.96	3.96	420.72	316.28	20.04	336.32	84.40	393.5	-26.93	6.7	21.5	14.8

Обзор гидрометеорологического режима Северного и Среднего Каспия

Внутригодовой год уровня Каспийского моря определяется изменением его среднемесячных значений, которое, в основном, обусловлено сезонной изменчивостью составляющих водного баланса и влиянием сгонно-нагонных явлений.

Внутригодовые величины подъема и спада уровня Каспийского моря в 2005г. изменялись в довольно широком диапазоне. Самое низкое положение уровня по данным морских станций и постов на Северном и Среднем Каспии наблюдалось в январе — феврале, затем — весенне - летнее повышение уровня моря до максимума в июне — июле и летнеосенний спад до зимнего минимума.

Сгонно-нагонные колебания уровня Каспийского моря наблюдались в пределах его казахстанского побережья в течение всего года. Казахстанскими морскими гидрологическими станциями и постами зарегистрировано 32 случая со сгонно-нагонными ситуациями, из них 18 нагонов и 14 сгонов, причём все они были зафиксированы в мелководной части Северного Каспия. В районе Среднего Каспия, согласно данным МГ- I Форт Шевченко и МГ - II Актау, в 2005 г существенных (с высотой подъёма/спада уровня более 20 см) сгонно-нагонных колебаний уровня моря не наблюдалось.

Из общего числа зарегистрированных случаев со сгонно-нагонными ситуациями наиболее значительными и опасными были шесть нагонов и один сгон. По принятым критериям опасности сгонно-нагонных колебаний уровня моря при уровне, достигшем или превышающем опасную отметку во время нагона, происходит подтопление дамб и построек, затопление побережья до 10 км и более, а во время сгона - ухудшение условий плавания малых и средних судов.

- 9, 10 января на М II Пешной зафиксирован подъем уровня до отметки минус 26.59 м. Автоматическая станция Аджип КСО Кайран, находящаяся вблизи восточного побережья Северного Каспия, зафиксировала 9 января повышение уровня моря до отметки минус 26.32 м. Подъём уровня моря на 88 см по сравнению с предшествующим уровнем был вызван сильным северо-восточным ветром (с порывами более 15 м/с).
- В результате формирования над Каспийским морем зоны с высокими барическими градиентами и последующим усилением юго-восточного ветра (в районе М II Пешной средняя скорость ветра составляла 12 м/с с порывами до 17 м/с, в Атырау средняя скорость ветра составляла 15 м/с), 16 апреля на северном побережье Каспийского моря произошёл опасный нагон морской воды. Уровень моря в районе МГП II Жанбай поднялся до отметки минус 25.90 м, что на 85 см выше предшествующего уровня.

- В середине первой декады мая в районах северо-восточного и восточного побережья Северного Каспия были зафиксированы подъёмы уровня моря, вызванные воздействием сильного юго-западного ветра (до 10 м/с). 5 мая автоматической станцией Аджип КСО Кайран (восточное побережье) было зарегистрировано поднятие уровня моря на 50 см до отметки минус 26.30 м. Согласно данным станции М II Пешной (северовосточное побережье), 6 мая на фоне высокого стояния фонового уровня моря (минус 26.60 м) наблюдался ветровой нагон с повышением уровня на 41 см до отметки минус 26.19 м.
- В третьей декаде июня через Средний Урал на север Казахстана смещался глубокий циклон, ложбина которого оказывала влияние на атмосферные процессы, формирующиеся над Северным Каспием. В тыл этому циклону распространялась через Средний Каспий область высокого давления. Усиление атмосферных барических градиентов над районом Северного Каспия вызвало в данном районе продолжительный сильный ветер западного направления (7–15 м/с, с порывами до 20–27 м/с), под воздействием которого 23 24 июня на восточном побережье Северного Каспия произошло опасное повышение уровня моря до отметки минус 25.69 м. По данным автоматической станции Аджип КСО Кайран уровень моря в данном районе повысился на 91 см по сравнению с предыдущим.
- В конце первой декады июля в районе восточного побережья Северного Каспия продолжительное воздействие сильного (до 10 м/с) юго-западного ветра вызвало подъём уровня моря на 60 см до отметки минус 26.30 м, что зафиксировано 8 июля автоматической станцией Аджип КСО Кайран.
- Повторное повышение уровня моря в данном районе произошло в конце третьей декады июля, когда продолжительный юго-западный ветер вызвал 29 июля повышение уровня моря до отметки минус 26.18 м, на 62 см выше предшествующего уровня.
- Согласно данным автоматической станции Аджип КСО Кайран, 22 30 сентября, при продолжительном воздействии сильного восточного ветра (более 10 м/с), на восточном побережье Северного Каспия сформировался опасный сгон морской воды с падением уровня моря по сравнению с предшествующим на 93 см до отметки минус 28.04 м.

По данным, приведенным в таблице 1.7, средний уровень Каспийского моря за 2005 г. составил минус 26.93 м, что на 9 см выше среднего уровня моря за 2004 г.

Ледовые явления на Каспийском море зимой 2004-2005 гг. наблюдались как в мелководном Северном Каспии, так и в глубоководном Среднем Каспии. Анализ космических снимков, поступающих в Казгидромет со спутников NOAA, позволил отследить границы распространения льда на Северном и Среднем Каспии в течение всей зимы (рисунки 1 – 5), что дало основание отнести зиму 2004 –2005 г. на Каспийском море в пределах казахстанского побережья к средней по степени ледовитости. В Северном Каспии лёд появился в начале декабря и наблюдался по конец марта. В районе станции М - II Пешной максимальная толщина льда была зафиксирована в феврале и составила 32 см. В глубоководной части Каспийского моря, по данным станции МГ – ІІІ Кулалы, остров, лёд наблюдался в течение двух дней в конце первой декады февраля. На Среднем Каспии, в соответствии с данными наблюдений на $M\Gamma$ - I Форт Шевченко и $M\Gamma$ – II Актау, лёд появился в первой декаде февраля, причём, наиболее длительный ледовый период отмечен в районе МГ - І Форт Шевченко (30 дней), с максимальной толщиной льда в начале первой декады февраля – 14 см. В мелководной части Северного Каспия, устойчивое ледообразование началось в конце декабря 2004 г. (рис. 1–2), а в глубоководной части (о.Кулалы) и у побережья Среднего Каспия (г.Форт Шевченко и порт Актау) – в первой декаде февраля 2005 г. Наибольшая площадь ледового покрова на море отмечена в феврале, когда лёд распространился на всю центральную часть Северного Каспия до о. Кулалы, захватив прибрежную часть Среднего Каспия (г.Форт Шевченко, порт Актау). Как видно на снимке за 3 февраля 2005 г. (рис. 3), вдоль всего северо-восточного побережья Северного Каспия

установился сплошной припай, сплочённый лёд наблюдается по всей акватории этой части моря.

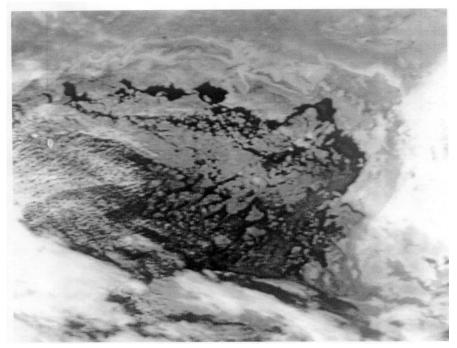


Рис.1- Начало процесса ледообразования вдоль северного побережья Каспийского моря. Снимок со спутника NOAA за 31 декабря 2005 г.

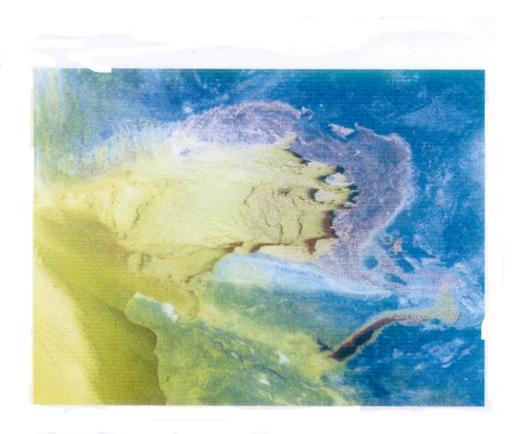


Рис.2 -Установление устойчивого припая, Северный Каспий. Снимок со спутника NOAA за 27 января 2005 г.

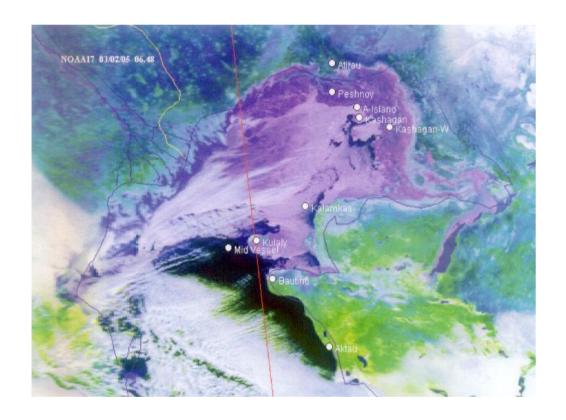


Рис.3 - Распространение ледового покрова по акватории Северного и Среднего Каспия. Снимок со спутника NOAA за 3 февраля 2005 г.

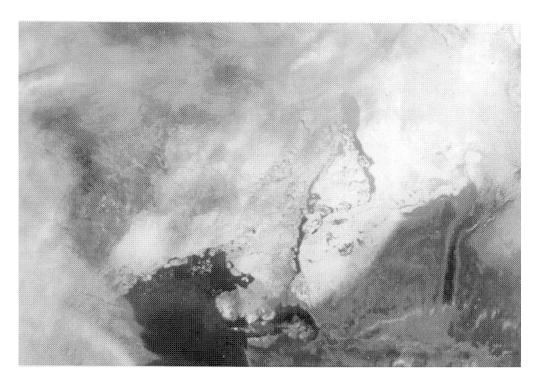


Рис.4 - Начало весеннего очищения ото льда, Средний Каспий. Снимок со спутника NOAA за 1 марта 2005 г.

Рис.5 - Начало весеннего взлома припая, Северный Каспий. Снимок со спутника NOAA за 15 марта 2005 г.

Весеннее разрушение ледового покрова началось с глубоководной части Северного Каспия во второй декаде февраля 2005 г.(по данным МГ – III Кулалы, остров), а прибрежная восточная часть моря в районе г. Форт Шевченко полностью очистилась ото льда в начале первой декады марта 2005 г.(рис. 4).

В мелководном Северном Каспии интенсивные весенние разрушения ледового покрова начались во второй декаде марта. На снимке со спутника NOAA за 15 марта хорошо видно, что припай вдоль северо-восточного побережья Северного Каспия полностью разрушен (рис. 5).

Прогревание водной массы моря у казахстанского побережья происходило до середины июля начала августа. Наибольшая температура воды в Северном Каспии достигла $32.1~^{0}$ С по данным M-II Пешной 26 июля. На Среднем Каспии наибольшая температура воды $33.6~^{0}$ С наблюдалась в районе $M\Gamma-I$ Форт Шевченко 24 июля.

Обзор синоптических процессов и условий погоды на море Северная часть Каспийского моря

В среднем за 2005 год над акваторией Северного Каспия температура воздуха была $11...13~^{\circ}$ С, что выше нормы на $1...2~^{\circ}$ С.

В течение периода январь – февраль над регионом Северного Каспия преобладал западный перенос воздушных масс, который в марте сменился юго-западными потоками. Это привело к формированию теплой и сухой погоды в январе – феврале и влажной погоды - в марте.

Апрель – май был теплым и сухим. В течение периода сохранились зональные направления потоков, что обуславливало повышение температуры воздуха.

Июнь был близким к норме по температуре, а также около и больше нормы по осадкам, июль — теплым и сухим, август — около нормы, отмечался дефицит осадков. В июне преобладали юго-западные потоки, в июле — западные, что обеспечивало дальнейшее повышение температуры воздуха; в августе воздушные потоки сменялись на северозападные, способствуя тем самым затоку холода на регион.

Сентябрь был достаточно теплым и сухим. Это было обусловлено преобладанием юго-западных потоков над регионом.

Период октябрь – декабрь также был теплее обычного. В это время западные и северо-западные потоки воздуха чередовались юго-западными. В октябре и декабре осадков выпало больше нормы, что связано с выходом теплых южных циклонов.

Синоптические процессы и условия погоды по месяцам

Январь был экстремально теплым. Средняя месячная температура воздуха была 4...10 мороза, что выше нормы на 2...5 °C. Осадки выпадали преимущественно в первой половине месяца, их количество было меньше нормы.

Первые две декады над территорией Казахстана преобладали широтные потоки, которые приносили теплые и влажные воздушные массы с Атлантики. В третьей декаде произошла перестройка в средней тропосфере: над районами Башкирии образовался высотный антициклон, его гребень простирался с районов Северного Каспия на полуостров Таймыр, по обе стороны от него располагались глубокие барические ложбины. Заток выхоложенного воздуха с районов Восточной Сибири способствовал развитию Сибирского максимума, который распространился практически на всю территорию Казахстана и сформировал отрицательные аномалии температуры воздуха в третьей декаде. Все это обусловило распределение температуры воздуха на территории Северного Каспия следующим образом.

В первую декаду отмечалось повышение температуры воздуха ночью от 5...10 мороза, на юге региона 2 мороза до 0...5 тепла, днем от 0...5 мороза, местами 2 тепла до 3...8 тепла. Во второй и третьей декаде наблюдалось постепенное понижение температуры воздуха ночью до 16...21 мороза, на юге региона до 12 мороза, днем до 7...12 мороза, на юге - до 2...7 мороза.

В течение первой и второй декады часто наблюдался туман.

- 8-9 января в Актау отмечался юго-западный ветер 12-14, с порывами 18-21 м/с.
- 22-25 января в Актау отмечался юго-восточный ветер с переходом на восточный 12, с порывами 16 м/с.
- 30-31 января в Актау, Кулалах и Пешном отмечался восточный ветер 9-12, с порывами 15-17 м/с.
- В феврале средняя месячная температура воздуха составила 2...10 мороза, что выше нормы на 1...2 °С на северо-западе и около нормы на остальной территории региона, отмечался дефицит осадков, лишь на крайнем северо-западе осадков выпало около нормы.

В самом начале февраля еще сохранялся антициклон с центром над Екатеринбургом, во второй половине первой декады он переместился на территорию Восточной Сибири, а на Казахстан распространилась высотная ложбина. Во второй декаде ситуация повторилась, а в конце декады большая часть территории республики находилась под влиянием юго-западного выноса тепла. В третьей декаде над северной половиной республики преобладали северные и северо-западные потоки, а над южной половиной наблюдался западный перенос воздушных масс. Поэтому на территории Северного Каспия в первой декаде отмечалось колебание температуры воздуха ночью от 14...19 мороза до 7...12 мороза, днем от 6...11 мороза до 1...6 мороза. Во второй декаде температуры воздуха постепенно повышалась ночью до 0...5 мороза, днем до 2...7 тепла. В третьей декаде наблюдалось колебание температуры воздуха ночью от 0...5 мороза, местами 5 тепла до 5...10 мороза, на севере региона до 13 мороза, днем от 3...8 тепла, на юге региона 13 тепла до 2 мороза...3 тепла.

- 1-2 февраля в Пешном отмечался восточный ветер 10-12, с порывами 17 м/с.
- 17-18 февраля в Актау, Форте Шевченко, Кулалах и Пешном отмечался юговосточный ветер с переходом на южный 9-10, с порывами 18-20 м/с.
- 28 февраля в Актау и Пешном отмечался южный ветер с переходом на юговосточный 8, с порывами 17 м/с.

В марте средняя месячная температура воздуха составила 1 мороза...4 тепла, что около нормы на севере и выше на 1...2 °С на востоке региона, осадков выпало меньше нормы.

На большей части территории республики март оказался экстремально теплым и влажным, что было обусловлено преобладанием меридиональных процессов типа С по М.Х. Байдалу. В течение месяца практически над всей территорией республики наблюдался интенсивный вынос теплых воздушных масс, под ВФЗ проходили циклонические образования и приносили обильные осадки, лишь над западом республики преобладали северо-западные потоки. Такие синоптические процессы в средней тропосфере обусловили распределение температуры воздуха на территории Северного Каспия следующим образом:

В первой декаде отмечалось колебание температуры воздуха ночью от 2 мороза...3 тепла до 2...7 мороза, днем от 6...11 тепла до 3 мороза...2 тепла. Во второй и третьей декадах преобладали температуры воздуха ночью 0...5 мороза, на юге региона 5 тепла, днем 5...10 тепла.

В начале первой декады наблюдался гололед, во второй декаде – туман.

3-4 марта в Кулалах и Пешном отмечался северо-восточный ветер 11-12, с порывами 16-17 м/с.

9 марта в Актау отмечался южный ветер 13, с порывами 20 м/с.

- 10 марта в Актау и Кулалах отмечался западный ветер с переходом на северозападный 8-14, с порывами 16 м/с.
 - 11 марта в Пешном отмечался восточный ветер 10, с порывами 16 м/с.
 - 20 марта в Актау и Пешном отмечался северный ветер 14, с порывами 16 м/с.
- 21 марта в Форте Шевченко и Кулалах отмечался юго-западный ветер 13, с порывами 18 м/c.
- 26-27 марта в Актау, Форте Шевченко, Кулалах и Пешном отмечался югозападный ветер с переходом на западный 8-11, с порывами 16-18 м/с.

Апрель на большей части территории Казахстана был теплым и сухим. Средняя месячная температура воздуха над Северным Каспием была 10...13 °C, что около и выше нормы на 1 °C.

В первой половине месяца над Казахстаном сохранялись северо-западные потоки, что привело к значительному понижению температуры воздуха на востоке Северного Каспия и выпадению обильных осадков в регионе в первой декаде, количество которых превысило норму в 1,3...2 раза. Во второй половине месяца над Казахстаном сформиро-

вался высотный барический гребень, и у поверхности земли установилось поле повышенного давления, что обусловило над районами Северного Каспия формирование положительных аномалий температуры воздуха.

В течение месяца температура воздуха постепенно повышалась ночью от 2...7 мороза до 15...20 тепла, днем от 3...8 до 25...30 тепла, в самом конце месяца — понизилась ночью до 7...12 тепла, днем до 15...20 тепла.

Осадки выпадали преимущественно в начале и конце месяца, их количество было около и меньше нормы, лишь на крайнем севере региона – больше нормы.

В начале третьей декады наблюдался туман.

4 апреля в Пешном отмечался западный ветер 12, с порывами 16 м/с.

15-17 апреля в Форте Шевченко и Кулалах отмечался юго-восточный ветер с переходом на южный 8-14, с порывами 16-21 м/с.

21 апреля в Актау и Кулалах отмечался северо-восточный ветер 12, с порывами 16 м/с.

23-24 апреля в Актау, Форте Шевченко и Кулалах отмечался юго-восточный ветер 9-12, с порывами 17-18 м/с.

26-27 апреля в Кулалах и Пешном отмечался северный ветер с переходом на северо-восточный 10-11, с порывами 16 м/с.

29 апреля в Кулалах и Пешном отмечался юго-западный ветер 12, с порывами 15 м/с.

Май был теплым и сухим. Средняя месячная температура воздуха составила 20...23 °C, что выше нормы на 2...3 °C.

В первой декаде северо-восточные потоки сменялись на юго-западные, а в последующие две декады над районами Северного Каспия в средней тропосфере преобладали западные и юго-западные потоки, способствуя развитию погодных условий следующим образом.

В первой декаде отмечалось колебание температуры воздуха ночью от 8...13 до 13...18 тепла, днем от 13...18 до 22...27, местами 17 тепла. Затем температура воздуха постепенно повышалась ночью до 15...20, днем до 30...35 тепла.

Осадки выпадали в первой и третьей декаде, а их количество за месяц было меньше нормы.

2 мая в Кулалах отмечался юго-западный ветер 6, с порывами 15 м/с.

3 мая в Кулалах отмечался северо-восточный ветер 11, с порывами 16 м/с.

4-5 мая в Пешном отмечался южный ветер 10-12, с порывами 15-16 м/с.

14 мая в Форте Шевченко, Кулалах и Пешном отмечался юго-восточный ветер 9, с порывами 15 м/с.

18 мая в Форте Шевченко и Пешном отмечался юго-восточный ветер, с порывами 16 м/с.

20 мая в Форте Шевченко отмечался северо-восточный ветер 7, с порывами 15 м/с.

21 мая в Пешном отмечался юго-западный ветер 5, с порывами 15 м/с.

24 мая в Форте Шевченко отмечался восточный ветер 12, с порывами 16 м/с.

29 мая в Форт Шевченко и Кулалах отмечался юго-восточный ветер 12, с порывами 17 м/с.

В **июне** средняя месячная температура воздуха составляла 23...26 °C, что около нормы.

В первой декаде погоду на территории республики определял высотный гребень, перемещающийся с запада на восток. В первой половине второй декады над Казахстаном преобладали юго-западные потоки, у поверхности земли сохранялось поле повышенного давления. Во второй половине второй декады южные области республики были подвержены влиянию поля низкого давления, а остальная территория – перебойному полю высо-

кого давления. Поэтому над Северным Каспием наблюдалось следующее распределение температуры воздуха.

В первой декаде отмечалось колебание температуры воздуха ночью от 18...23 до 13..18 тепла, днем от 30...35 до 20...25 тепла. Во второй и в третьей декадах преобладали температуры воздуха ночью 17...22, днем 25...30 тепла.

Осадки отмечались в первой декаде и во второй половине месяца, их количество за месяц было около нормы.

3 июня в Актау и Форт Шевченко отмечался северный ветер 12, с порывами 16 м/с.

9 июня в Кулалах отмечался западный ветер 10, с порывами 16 м/с.

17-18 июня в Форте Шевченко и Кулалах отмечался северный ветер с переходом на северо-западный ветер 6-14, с порывами 16 м/с.

21 июня в Форте Шевченко и Кулалах отмечался западный ветер 8, с порывами 15 м/с.

23-25 июня в Форте Шевченко, Кулалах и Пешном отмечался западный ветер 8-14, с порывами 17-19 м/с.

29 июня в Пешном отмечался северо-восточный ветер 3, с порывами 16 м/с.

В **июле** средняя месячная температура воздуха составила 26...30 °C, что около нормы на севере и выше на 2...3 °C на востоке региона.

В первой декаде наблюдался юго-западный перенос теплых воздушных масс с районов Черного моря. В начале второй декады территория республики была под влиянием высотной ложбины, у поверхности земли сохранялось поле пониженного давления, во второй половине декады высотная ложбина сместилась на восточные районы республики, а западные области оказались под влиянием высотного барического гребня. Во второй половине третьей декады на западе проходил циклон, с которым были связаны обильные дожди.

В первой половине месяца наблюдалось колебание температуры воздуха ночью от 21...26 до 16...21 тепла, днем от 31...36, на юге региона 39, до 25...30 тепла.

Количество осадков выпавших за месяц в регионе оказалось меньше нормы, а на востоке - около нормы.

7 июля в Пешном отмечался юго-западный ветер 11, с порывами 15 м/с.

17-18 июля в Форте Шевченко и Кулалах отмечался юго-восточный ветер с переходом на южный 8-12, с порывами 15 м/с.

20 июля в Пешном отмечался юго-западный ветер 10, с порывами 15 м/с.

22 июля в Актау отмечался северный ветер 7, с порывами 19 м/с.

27-28 июля в Кулалах и Пешном отмечался западный ветер с переходом на югозападный 8-10, с порывами 15-18 м/с.

30-31 июля в Актау, Форте Шевченко и Кулалах отмечался западный ветер 8-11, с переходом на северо-западный 16 м/с.

В августе средняя месячная температура воздуха составила 24...26 °C, что около нормы.

В первой декаде высотный циклон, занимавший в начале всю территорию Казахстана, постепенно смещался на восточные районы, при этом над западными областями, северо-западные потоки сменились на западные и юго-западные, приводя к повышению температуры воздуха. Во второй декаде над западными областями республики сформировался высотный гребень с осью, направленной с Каспийского на Белое море. Третья декада оказалась холодной почти на всей территории республики. Это было обусловлено влиянием активной циклонической деятельности, при этом высотный циклон, с которым происходил заток холодного воздуха с севера и северо-запада, располагался над северными областями Казахстана, вызывая частые дожди и формируя низкий фон температуры воздуха в этих районах.

Первые две декады наблюдалось постепенное повышение температуры воздуха ночью от 15...20 до 20...25 тепла, днем от 24...29 до 30...35 тепла. В третьей декаде от-

мечались колебания температуры воздуха ночью от 18...23 до 13...15 тепла, днем от 28...33 до 23...28 тепла.

Количество осадков выпавших в первой и третьей декаде, оказалось меньше нормы.

10 августа в Актау отмечался северо-восточный ветер 9, с порывами 17 м/с.

19 августа в Форте Шевченко отмечался северо-восточный ветер 11, с порывами 20 м/с.

Сентябрь был теплым и сухим. Средняя месячная температура воздуха была 20...22 °C, что на 3...4 °C выше нормы, это обусловлено преобладанием юго-западных потоков над регионом.

В первой декаде погоду на территории Казахстана обусловливала высотная ложбина, ориентированная с районов полуострова Таймыр на Каспийское море. Из районов Баренцева моря на западные области республики поступали холодные воздушные массы, что вызвало здесь понижение температурного фона. Во второй и третьей декадах югозападные потоки выносили теплые воздушные массы на регион.

В первой декаде отмечались колебания температуры воздуха ночью от 15...20 до 10...15 тепла, днем от 27...32 до 22...27 тепла. Во второй и третьей декадах наблюдалась преобладающая температура воздуха ночью 15...20 тепла, днем 26...31 тепла.

1 сентября в Актау отмечался юго-западный ветер 10, с порывами 15 м/с.

24 сентября в Форте Шевченко и Кулалах отмечался северо-восточный ветер 10, с порывами 15 м/с.

26 сентября в Актау и Форте Шевченко отмечался восточный ветер 10, с порывами 15 м/с.

Октябрь был теплым и влажным. Средняя месячная температура воздуха составляла 10...15 °C, что на 2...4 °C выше нормы, а осадков выпало около и больше нормы в 1,3...6,8 раз.

В первой декаде на территории Казахстана преобладало поле повышенного атмосферного давления, что привело к формированию теплой и сухой погоды. Циклон, проходивший по Европейской территории России, в конце второй декады обусловил выпадение осадков на западе республики Казахстан. В начале третьей декады прохождение южного циклона через западные и северные районы республики сопровождалось выпадением осадков. Вслед за ним на территорию Казахстана произошло западное вторжение. В конце декады с Европейской территории России через западные, а затем центральные и северные районы республики проходил циклон, обусловливая здесь выпадение осадков и понижение температуры воздуха.

В первой половине месяца наблюдалась преобладающая температура воздуха ночью 7...12, на юге региона 17 тепла, днем 18...23 тепла. Во второй половине месяца отмечались колебания температуры воздуха ночью от 7...12 до 0...5 тепла, днем от 15...20 до 5...10, на севере региона до 5 тепла.

В конце месяца наблюдался туман.

17-18 октября в Актау, Форте Шевченко, Кулалах и Пешном отмечался юговосточный ветер 8-12, с порывами 15-20 м/с.

20-21 октября в Форте Шевченко, Кулалах и Пешном отмечался западный ветер с переходом на юго-западный 12-13, с порывами 17-18 м/с.

Ноябрь был теплым и сухим. Средняя месячная температура воздуха составляла 2...9 °C, что на 2...3 °C выше нормы. Осадков выпало меньше нормы.

В первой декаде над Атлантическим океаном установилась высотная ложбина, интенсивная высотная фронтальная зона (ВФЗ) имеющая антициклонический прогиб над районами полуострова Скандинавия, далее через центр Урала направлялась на территорию Казахстана. У поверхности земли под ВФЗ часто проходили циклоны, вынося большое количество тепла с Атлантики на районы Баренцева моря, затем, не успев трансформироваться эти теплые воздушные массы, перемещались на территорию республики,

формируя здесь положительные аномалии температуры воздуха. В первой половине второй декады в средней тропосфере над Карагандинской областью сформировался циклон, у поверхности земли над большей частью республики преобладало перебойное поле пониженного давления. Во второй половине декады произошла перестройка барического поля: в средней тропосфере над Казахстаном сформировался высотный гребень, а у поверхности земли установилось поле повышенного давления. В начале третьей декады почти вся территория республики, находилась под влиянием юго-западных потоков. Во второй половине декады западная половина территории республики находилась под влиянием передней части высотного гребня.

В первой половине месяца наблюдалось понижение температуры воздуха ночью от 8...13, местами 3 тепла до 0...5 тепла, на севере региона до 7 мороза, днем от 15...20 до 3...8 тепла, местами до 1 мороза. Во второй половине второй декады температура воздуха повысилась ночью до 5...10, местами 1 тепла, днем до 12...17, местами 7 тепла. К концу третьей декады температура воздуха понизилась ночью до 1 мороза...4 тепла, днем до 2...7 тепла.

В конце первой и середине третьей декады часто наблюдались туманы.

23 ноября в Форте Шевченко и Кулалах отмечался юго-западный ветер с переходом на западный 8-11, с порывами 16-18 м/с.

Декабрь был преимущественно теплым. Средняя месячная температура воздуха составляла 2 мороза...4 тепла, что выше нормы на 2...3 °C. Осадков выпало около и больше нормы в 1,3...2 раз.

В первой декаде декабря над регионом в средней тропосфере преобладали югозападные потоки. Во второй декаде осуществлялся более интенсивный вынос тепла на Северный Каспий. Большую часть третьей декады запад Казахстана находился под влиянием северных и северо-западных потоков.

В первой и во второй декадах наблюдалась преобладающая температура воздуха ночью 3...8 тепла, на севере региона 4 мороза, днем 5...10 тепла, на севере - около нуля. В третьей декаде температура воздуха резко понизилась ночью до 5...10, местами 15 мороза, днем до 3...8 мороза, местами 3 тепла.

Во второй декаде часто наблюдались туманы.

16-17 декабря в Актау, Форте Шевченко, Кулалах отмечался юго-восточный ветер с переходом на южный 9-11, с порывами 15-17 м/с.