МИНИСТЕРСТВО ЭНЕРГЕТИКИ РЕСПУБЛИКИ КАЗАХСТАН

РЕСПУБЛИКАНСКОЕ ГОСУДАРСТВЕННОЕ ПРЕДПРИЯТИЕ "КАЗГИДРОМЕТ"

ИНФОРМАЦИОННЫЙ БЮЛЛЕТЕНЬ О ТРАНСГРАНИЧНОМ ПЕРЕНОСЕ ТОКСИЧНЫХ КОМПОНЕНТОВ В ОБЪЕКТАХ ОКРУЖАЮЩЕЙ СРЕДЫ

за 2017 год

Астана 2017

	СОДЕРЖАНИЕ	Стр.							
1	Состояние качества вод трансграничных рек Республики	3							
	азахстан по гидрохимическим показателям за 2017 год								
2	Результаты радионуклидного и макро-микроэлементного анализа								
	компонентов окружающей среды за 2017 год								
3	Основные результаты и выводы								
4	Приложение	34							

1. Состояние качества вод трансграничных рек Республики Казахстан за 2017 год

Данные мониторинга загрязнения поверхностных вод обработаны по 35 гидрохимическим створам на 31 трансграничных реках (таблица 1): Ертис — с. Боран и с. Прииртышское, Есиль — с. Долматово, Тобыл — с. Милютинка и п. Аккарга, Айет — с.Варваринка, Тогызак — ст. Тогузак, Обаган — с. Аксуат, Уй — с. Уйское, Жайык — с.Январцево, Улькен Кобда — п. Кобда, Шаган — п. Чувашинский (п. Каменный), Караозен — с. Жалпактал, Сарыозен — с. Бостандыксий, Елек — с. Целинный и с. Шилик, Орь — с. Богетсай, проток Шаронова — с. Ганюшкино, рукав Кигаш — с.Котяевка, Иле - пр. Добын, Текес — с. Текес, Коргас — с. Баскуншы и с. Ынталы, Емель — с. Кызылту, Каркара — у выхода из гор, Баянкол — с. Баянколь, Сырдария — с. Кокбулак, Шу — с.Благовещенское, Талас — с. Жасоркен, Асса — жд. ст. Маймак, Аксу — с. Аксу, Токташ — п. Жаугаш батыр, Карабалта — на границе с Кыргызстаном, Сарыкау — на границе с Кыргызстаном, Желкуар — п. Чайковское.

Республика Казахстан – Российская Федерация

реки Ертис — с. Прииртышское, Есиль — с. Долматово, Тобыл — с. Милютинка, Тобыл — п. Аккарага, Желкуар — п. Чайковское, Айет — с. Варваринка, Тогызак — ст. Тогызак, Обаган — с. Аксуат, Уй — с. Уйское, Жайык — с. Январцево, Шаган — п. Чувашинский, Караозен (Большая Узень) — с. Жалпактал, Сарыозен (Малая Узень) — с. Бостандыксий, Елек — с. Целинный и с. Шилик, р. Улькен Кобда — п. Кобда, Орь — с. Богетсай, проток Шароновка — с. Ганюшкино, рукав Кигаш — с. Котяевка.

Качество воды трансграничных рек РК-РФ оценивается следующим образом: вода *«нормативно-чистая»* – проток Шаронова;

вода *«умеренного уровня загрязнения»* – реки Кигаш, Ертис, Жайык, Елек – с. Шилик, Есиль, Шаган, Улькен Кобда, Караозен и Сарыозен, Уй, Желкуар, Тогызак;

вода «высокого уровня загрязнения» — реки Тобыл, Айет, Обаган, Елек — п. Целинный, Орь.

На границе с территорией России качество воды **р. Ертис в створе Прииртышское** характеризуется как «умеренного уровня загрязнения». КИЗВ составил 1,60. Превышение ПДК было зафиксировано по веществу из группы тяжелых металлов (медь (2+)-1,6 ПДК). Кислородный режим в норме $(10,77 \text{ мгO}_2/\pi)$.

Качество воды **р. Есиль** – **с.** Долматово (Есильский водохозяйственный бассейн) относится к степени «умеренного уровня загрязнения» (КИЗВ – 2,0). При этом отмечено превышение ПДК по веществам из групп главных ионов (сульфаты – 1,1 ПДК), биогенных веществ (железо общее – 1,6 ПДК), тяжелых металлов (медь (2+) – 3,3 ПДК). Кислородный режим в норме (11,02 мгО₂/л).

Качество воды **р. Тобыл** – **с. Милютинка** (Тобыл–Торгайский водохозяйственный бассейн) характеризуется как «высокого уровня загрязнения», КИЗВ составил 3,39. Превышения ПДК были зафиксированы по веществам из групп главных ионов (магний 1,8 ПДК, сульфаты – 1,5 ПДК), биогенных веществ (железо общее – 4,4 ПДК, аммоний солевой 3,2 ПДК), тяжелых металлов (медь (2+) – 5,7 ПДК, никель (2+) – 4,9 ПДК, марганец (2+) – 3,6 ПДК). Кислородный режим в норме $(9,11 \text{ мгO}_2/\pi)$.

Качество воды **р. Тобыл** – **п. Аккарга** (Тобыл—Торгайский водохозяйственный бассейн) характеризуется как «высокого уровня загрязнения», КИЗВ составил 3,39. Превышения ПДК были зафиксированы по веществам из групп тяжелых металлов

(никель (2+) – 4,9 ПДК, медь (2+) – 5,7 ПДК, марганец (2+) – 3,6 ПДК), главных ионов (сульфаты – 1,5 ПДК, магний – 1,8 ПДК), биогенных веществ (железо общее – 4,4 ПДК, аммоний солевой 3,2 ПДК). Кислородный режим в норме $(7,74 \text{ мгO}_2/\pi)$.

Качество воды **р.** Желкуар — **п.** Чайковское (Тобыл—Торгайский водохозяйственный бассейн) характеризуется как «умеренного уровня загрязнения», КИЗВ составил 2,32. Превышения ПДК были зафиксированы по веществам из групп главных ионов (сульфаты — 2,1 ПДК, магний — 1,3 ПДК), биогенных веществ (железо общее — 1,3 ПДК), тяжелых металлов (медь (2+) — 4,0 ПДК, марганец (2+) — 4,7 ПДК, никель (2+) — 6,2 ПДК), органических веществ (нефтепродукты — 2,7 ПДК). Кислородный режим в норме $(8,00 \text{ мгO}_2/л)$.

р. Айет — с. Варваринка (Тобыл—Торгайский водохозяйственный бассейн) относится по качеству воды к степени «высокого уровня загрязнения» с КИЗВ — 3,31. Превышения ПДК были зафиксированы по веществам из групп главных ионов (сульфаты — 1,9 ПДК, магний — 1,3 ПДК), биогенных веществ (железо общее — 2,8 ПДК, азот нитритный — 1,2 ПДК), тяжелых металлов (медь (2+) — 3,4 ПДК, марганец (2+) — 5,2 ПДК, никель (2+) — 10,4 ПДК). Кислородный режим в норме (9,15 мгO2/л).

Качество воды **р. Тогызак – ст. Тогызак** (Тобыл–Торгайский водохозяйственный бассейн) характеризуется как «умеренного уровеня загрязнения». КИЗВ составил 2,61. Превышения ПДК были зафиксированы по веществам из групп главных ионов (сульфаты – 2,7 ПДК, магний – 1,6 ПДК), биогенных веществ (железо общее – 2,6 ПДК), тяжелых металлов (медь (2+) – 4,3 ПДК, цинк (2+) – 1,1 ПДК, никель (2+) – 10,0 ПДК, марганец (2+) – 2,7 ПДК), органических вещещств (нефтепродукты – 1,2 ПДК). Кислородный режим в норме $(9,93 \text{ мгO}_2/л)$.

Качество воды **р. Обаган** — **с. Аксуат** (Тобыл—Торгайский водохозяйственный бассейн) оценивается как вода «высокого уровеня загрязнения». КИЗВ составил 3,71. Превышения ПДК были зафиксированы по веществам из групп главных ионов (сульфаты 6,8 ПДК, хлориды — 2,7 ПДК, магний 4,3 ПДК), биогенных веществ (железо общее 3,0 ПДК, аммоний солевой — 3,2 ПДК), тяжелых металлов (медь (2+) 5,7 ПДК, марганец (2+) 2,0 ПДК, никель (2+) 5,6 ПДК), органических веществ (нефтепродукты — 2,7 ПДК). Кислородный режим в норме (6,15 мгO2/л).

Качество воды **р. Уй – с. Уйское** (Тобыл—Торгайский водохозяйственный бассейн) оценивается как вода «умеренного уровеня загрязнения». КИЗВ составил 2,68. Превышения ПДК были зафиксированы по веществам из групп главных ионов (сульфаты 2,2 ПДК, магний 1,2 ПДК), биогенных веществ (фториды 1,2 ПДК, железо общее 2,7 ПДК), тяжелых металлов (медь (2+) 5,7 ПДК, марганец (2+) 2,0 ПДК, никель (2+) 5,6 ПДК). Кислородный режим в норме (7,54 мгO2/л).

В Актюбинской области **р. Елек – с. Целинный** (Жайык–Каспийский водохозяйственный бассейн) качество воды относится к степни «высокого уровня загрязнения», КИЗВ составил 3,08. Наблюдались повышения веществ из групп биогенных веществ (бор (3+) – 5,1 ПДК, аммоний солевой – 1,6 ПДК), тяжелых металов (медь (2+) – 1,4 ПДК, хром (6+) – 3,8 ПДК, хром (3+) – 2,4 ПДК, марганец (2+) – 3,6 ПДК). Кислородный режим в норме $(9,99 \text{ мгO}_2/\pi)$.

Качество воды **р.** Елек – **с.** Шилик (Жайык–Каспийский водохозяйственный бассейн) качество воды относится к степени «умеренного уровня загрязнения», КИЗВ составил 1,53. Превышения ПДК были зафиксированы по веществам из групп главных ионов (хлориды – 1,5 ПДК), биогенных веществ (азот нитритный – 1,8 ПДК, железо общее – 1,3 ПДК). Кислородный режим в норме (10,28 мгО₂/л).

Индекс загрязненности воды **р. Жайык – п. Январцево** (Жайык–Каспийский водохозяйственный бассейн) составил 1,30 что соответствует степени качества воды «умеренного уровня загрязнения». Превышения ПДК были зафиксированы по веществам из группы биогенных веществ (азот нитритный – 1,2 ПДК, железо общее – 1,4 ПДК). Кислородный режим в норме (10,22 мгО₂/л).

В Актюбинской области **р. Орь** – **с. Богетсай** (Жайык–Каспийский водохозяйственный бассейн) качество воды относится к степени «высокого уровня загрязненная», КИЗВ составил 3,65. Превышения ПДК были зафиксированы по веществам из групп биогенных веществ (аммоний солевой – 3,0 ПДК) тяжелых металлов (медь (2+) – 5,8 ПДК, марганец (2+) – 5,7 ПДК), органических веществ (фенолы – 2,2 ПДК). Кислородный режим в норме $(11,09 \text{ мгO}_2/\pi)$.

В Актюбинской области **р. Улькен Кобда** – **п. Кобда** (Жайык–Каспийский водохозяйственный бассейн) качество воды относится к степени «умеренного уровня загрязнения», КИЗВ составил 2,33. Превышения ПДК были зафиксированы по веществам из групп главных ионов (хлориды – 1,1 ПДК), биогенных веществ (аммоний солевой – 1,1 ПДК), тяжелых металлов (медь (2+) – 8,6 ПДК, цинк (2+) – 1,2 ПДК, марганец (2+) – 4,6 ПДК). Кислородный режим в норме $(9,35 \text{ мгO}_2/\pi)$.

Качество воды **р. Шаган** – **п. Чувашинский** (Жайык–Каспийский водохозяйственный бассейн) относится к степени качества воды «умеренного уровня загрязнения», КИЗВ составил 1,15. Превышения ПДК были зафиксированы по веществам из групп главных ионов (хлориды – 1,2 ПДК), биогенных веществ (железо общее – 1,1 ПДК). Кислородный режим в норме (10,75 мгО₂/ π).

Комплексный индекс загрязненности воды **р. Караозен** – **с. Жалпактал** (Жайык—Каспийский водохозяйственный бассейн) составил 1,25, что соответствует к степени «умеренного уровня загрязнения». Превышения ПДК были зафиксированы по веществам из групп биогенных веществ (азот нитритный – 1,1 ПДК, железо общее – 1,5 ПДК), органических веществ (фенолы – 1,2 ПДК). Кислородный режим в норме (9,56 мгО $_2$ /л).

Комплексный индекс загрязнения воды **р. Сарыозен** – **с. Бостандыкский** (Жайык–Каспийский водохозяйственный бассейн) составил 1,12, что соответствует степени «умеренного уровня загрязнения». Превышения ПДК были зафиксированы по веществам из групп главных ионов (магний – 1,1 ПДК), биогенных веществ (аммоний солевой – 1,1 ПДК, азот нитритный – 1,1 ПДК, железо общее – 1,3 ПДК), органических веществ (фенолы – 1,1 ПДК). Кислородный режим в норме (9,68 мгО₂/л).

Качество воды протока **Шаронова** (бассейн реки Волга) характеризуется как «нормативно чистая» (КИЗВ=0,0). Превышения ПДК не зафиксированы. Кислородный режим в норме $(9,49 \text{ мгO}_2/\pi)$.

Качество воды рукава **Кигаш** (бассейн реки Волга) относится к степени качества воды «умеренного уровня загрязнения», КИЗВ составил 1,1. Превышение ПДК было зафиксировано по веществу из группы биогенных веществ (бор (3+) – 1,1 ПДК). Кислородный режим в норме $(9,3 \text{ мгO}_2/\pi)$.

Республика Казахстан – Республика Узбекистан

р. Сырдария – с. Кокбулак (Арало—Сырдаринский водохозяйственный бассейн) по качеству воды относится к степени «высокого уровня загрязнения» (КИЗВ – 3,15). Превышения ПДК были зафиксированы по веществам из групп главных ионов (сульфаты 4,5 ПДК), биогенных веществ (азот нитритный – 3.0 ПДК), тяжелых металлов (медь (2+)

-1,4 ПДК) и органических веществ (фенолы -3,7 ПДК). Кислородный режим в норме $(9,87 \text{ мгO}_2/\pi)$.

Республика Казахстан – Кыргызская Республика

реки Шу – с. Благовещенское, Талас – с. Жасоркен, Асса – жд. ст. Маймак, Аксу – с. Аксу, Токташ – п. Жаугаш батыр, Карабалта – на границе с Кыргызстаном, Сарыкау – на границе с Кыргызстаном, Каркара – у выхода из гор.

По качеству воды все водные объекты оцениваются как:

вода *«умеренного уровня загрязнения»* – реки Шу, Талас, Асса, Аксу, Токташ, Сарыкау и Каркара;

вода «высокого уровня загрязнения» – река Карабалта – у выхода из гор.

Качество воды реки Шу – с. Благовещенское (Шу—Таласский водохозяйственный бассейн) относится к степени «умеренного уровня загрязнения». КИЗВ составил 1,83. Превышения ПДК были зафиксированы по веществам из групп главных ионов (сульфаты – 1,4 ПДК), тяжелых металлов (медь (2+) – 2,4 ПДК), органических веществ (фенолы – 1,7 ПДК). Кислородный режим в норме $(9,61\text{мгO}_2/\pi)$.

Комплексный индекс загрязненности воды **р. Талас – с. Жасоркен** составляет 2,7, по качеству, вода «умеренного уровня загрязнения». Загрязнение наблюдается за счет группы тяжелых металлов (медь (2+) – 2,7 ПДК). Кислородный режим в норме (10,0) мг O_2/π).

Для реки Асса — жд. ст. Маймак КИЗВ составляет 1,9 и относится к степени качества, вода «умеренного уровня загрязнения». Превышение ПДК было зафиксировано по веществу из группы тяжелых металлов (медь (2+) — 1,9 ПДК). Кислородный режим в норме $(9,83 \text{ мгO}_2/\pi)$.

Комплексный индекс загрязненности воды **р. Аксу** – **с. Аксу** составил 1,99 и классифицируется как вода «умеренного уровня загрязнения». Превышения ПДК были зафиксированы по веществам из групп главных ионов (магний – 1,2 ПДК, сульфаты – 2,5 ПДК), биогенных веществ (фториды – 1,3 ПДК), тяжелых металлов (медь (2+) – 3,1 ПДК), органических веществ (фенолы – 1,7 ПДК). Кислородный режим в норме (10,3 мгO₂/л).

Река Токташ – п. Жаугаш Батыр (Шу–Таласский водохозяйственный бассейн) относится к степени «умеренного уровня загрязнения», КИЗВ составил 2,28. Превышения ПДК были зафиксированы по веществам из групп главных ионов (магний – 1,4 ПДК, сульфаты – 3,7 ПДК), тяжелых металлов (медь (2+) – 3,1 ПДК, марганец (2+) – 1,9 ПДК), органических веществ (фенолы – 1,8 ПДК). Кислородный режим в норме (10,2) мг O_2 / π).

Река Карабалта — на границе с Кыргызстаном (Шу—Таласский водохозяйственный бассейн) характеризуется по качеству воды как «высокого уровня загрязнения». Комплексный индекс загрязненности воды составил 3,15, превышения ПДК были зафиксированы по веществам из групп главных ионов (магний — 1,9 ПДК, сульфаты — 5,2 ПДК), тяжелых металлов (медь (2+) — 3,4 ПДК), органических веществ (фенолы — 2,5 ПДК). Кислородный режим в норме $(10,7 \text{ мгO}_2/\pi)$.

Река Сарыкау — на границе с Кыргызстаном (Шу—Таласский водохозяйственный бассейн) характеризуется по качеству воды как «умеренного уровня загрязнения». Комплексный индекс загрязненности воды составил 2,5. Превышения ПДК были зафиксированы по веществам из групп главных ионов (магний — 1,8 ПДК, сульфаты — 4,8 ПДК), биогенных веществ (фториды — 1,5 ПДК, железо общее — 1,7 ПДК),

тяжелых металлов (медь (2+) - 3.7 ПДК, марганец (2+) - 1.5 ПДК), органических веществ (фенолы -2.5 ПДК). Кислородный режим в норме 10.4 мг O_2 /л.

Река Каркара – у выхода из гор (Балхаш—Алакольский водохозяйственный бассейн) характеризуется по качеству воды как «умеренного уровня загрязнения» с КИЗВ – 1,3. Превышения ПДК были зафиксированы по веществам из групп тяжелых металлов (медь (2+) – 1,4 ПДК) и главных ионов (сульфаты – 1,2 ПДК). Кислородный режим в норме 10,8 мг O_2 /л.

Республика Казахстан – Китайская Народная Республика

реки Кара Ертис — с. Боран, Иле — пр. Добын, Текес — с. Текес, Коргас — с. Баскуншы и с. Ынталы, Емель — с. Кызылту, Баянкол — с. Баянколь.

Качество воды реки Коргас - с. Ынталы характеризуется как «высокого уровня загрязнения», в остальных реках - «умеренного уровня загрязнения».

На трансграничной **реке Кара Ертис** в створе **с. Боран** (Ертисский водохозяйственный бассейн) качества воды, поступающая с территории КНР относится к к степени «умеренного уровня загрязнения». КИЗВ составил 2,10, превышение ПДК зафиксировано из группы тяжелых металлов (медь (2+) - 2,1 ПДК). Кислородный режим в норме $(10,44 \text{ мгO}_2/л)$.

По реке Иле – пр. Добын (Балхаш–Алакольский водохозяйственный бассейн) с территории КНР поступает вода, относящаяся по качеству к степени «умеренного уровня загрязнения», КИЗВ – 2,57. Превышения ПДК были зафиксированы по веществам из группы тяжелых металлов (медь (2+) – 2,1 ПДК, марганец (2+) – 1,1 ПДК), биогенных веществ (железо общее – 4,1 ПДК, азот нитритный – 3,0 ПДК). Кислородный режим в норме $(10,08 \text{ мгO}_2/\pi)$.

Качество воды **реки Текес** – **с. Текес** (Балхаш–Алакольский водохозяйственный бассейн) относится к степени «умеренного уровня загрязнения», КИЗВ составил 2,03. Превышения ПДК были зафиксированы по веществам из групп тяжелых металлов (медь (2+)-2,6 ПДК, марганец (2+)-3,7 ПДК) и биогенных веществ (железо общее -2,5 ПДК, азот нитритный -1,2 ПДК) и главные ионы (сульфаты -1,1 ПДК). Кислородный режим в норме $(10,7 \text{ мгO}_2/\pi)$.

Качество воды **реки Коргас** – **с. Баскуншы** (Балхаш–Алакольский водохозяйственный бассейн) относится к степени «умеренного уровня загрязния», КИЗВ составил 1,5. Превышение ПДК было зафиксировано по веществу из группы биогенных веществ (железо общее – 1,5 ПДК). Кислородный режим в норме (11,31 мгО $_2$ /л).

Качество воды **реки Коргас** – **с. Ынталы** (Балхаш–Алакольский водохозяйственный бассейн) относится к степени «высокого уровня загрязния», КИЗВ составил 3,8. Превышения ПДК были зафиксированы по веществам из групп тяжелых металлов (медь (2+) – 3,8 ПДК, марганец (2+) – 4,4 ПДК) и биогенных веществ (железо общее – 5,9 ПДК, азот нитритный – 1,1 ПДК). Кислородный режим в норме $(10,4 \text{ мгO}_2/\pi)$.

По реке Емель – п. Кызылту (Балхаш–Алакольский водохозяйственный бассейн) по результатам анализа качество воды относится к степени «умеренного уровня загрязнения». Комплексный индекс загрязненности воды составил 1,67. Превышения ПДК были зафиксированы по веществам из групп главных ионов (сульфаты – 1,9 ПДК), биогенных веществ (азот нитритный – 1,3 ПДК, железо общее – 1,1 ПДК), тяжелых металлов (медь (2+) – 2,0 ПДК, марганец (2+) – 1,8 ПДК). Кислородный режим в норме $(8,81 \text{ MrO}_2/\pi)$.

По реке Баянкол – с. Баянколь (Балхаш–Алакольский водохозяйственный бассейн) с территории КНР поступает вода, относящаяся по качеству к степени «умеренного уровня загрязнения», КИЗВ – 1,25. Превышения ПДК было зафиксировано по веществам из группы биогенных веществ (железо общее – 1,7 ПДК, фториды – 1,1 ПДК) и тяжелых металлов (медь (2+) – 1,1 ПДК). Кислородный режим в норме (11,0 мг O_2/π).

Отмечаются следующие изменения качества трансграничных рек по сравнению с 2016 годом (таблица 1):

- состояние качества трансграничных рек Есиль (с. Долматово), Иле (пр. Добын), р. Баянкол (с. Баянколь), Каркара (у выхода из гор), Коргас (с. Ынталы), Коргас (с. Баскуншы), Емель (п. Кызыл ту), Кара Ертис (с. Боран), Шу (с. Благовещенское), Талас (с. Жасоркен), Асса (жд. ст. Маймак), Аксу (с. Аксу), Токташ (п. Жаугаш Батыр), Сарыкау (на границе с Кыргызской Республикой), Елек (п. Шилик), р. Жайык (п. Январцево), Караозен (с. Жалпактал), Елек (п. Целинный), Ертис (с. Прииртышское), Айет (с. Варваринка), Обаган (с. Аксуат), Тобыл (п. Аккарга), Тогызак (ст. Тогызак), Уй (с. Уйское), Сарыозен (с. Бостандыкский), Орь (с. Богетсай), Шаронова (с. Гонюшкино) значительно не изменилось;
- Тобыл (с. Милютинка), Сырдария (с. Кокбулак), Карабалта (на границе с Кыргызской Республикой), р. Шаган п. Чувашинский (п. Каменный), Кигаш (с. Котяевка) **ухудшилось**;
- Желкуар (п. Чайковское), Текес (с.Текес), Улькен Кобда (п. Кобда) **улучшилось**;

На 6 трансграничных реках Республики Казахстан было отмечено 13 случаев высокого загрязнения (ВЗ) (таблица 2).

Таблица 1.1 Характеристика степени загрязненности поверхностных вод трансграничных рек

Наименование водного объекта	Комплексный индекс (КИЗВ) и класс	загрязненности воды качества воды	Содержание загряз	няющих вещес	тв за 2017 г.
(бассейн, река, гидрохимический створ)	2016 г.	2017 г.	Показатели качества воды	Средняя концентра- ция, мг/дм ³	Кратность превышен ия
	10,27 (нормативно чистая)	10,44 (нормативно чистая)	Растворенный кислород	10,44	-
р. Кара Ертис — с. Боран	1,78 (нормативно чистая)	1,85 (нормативно чистая)	БПК5	1,85	-
	2,0	2,10	тяжел	ные металлы	
	(умеренного уровня загрязнения)	(умеренного уровня загрязнения)	Медь (2+)	0,0021	2,1
	11,20 (нормативно чистая)	10,77 (нормативно чистая)	Растворенный кислород	10,77	-
р. Ертис – с. Прииртышское	1,83 (нормативно чистая)	1,83 (нормативно чистая)	БПК5	1,83	-
с. Прииртышское	1,6	1,60	тяжел	ые металлы	
	(умеренного уровня загрязнения)	(умеренного уровня загрязнения)	Медь (2+)	0,0016	1,6
E	11,77 (нормативно-чистая)	11,02 (нормативно-чистая)	Растворенный кислород	11,02	-
р. Есиль – с. Долматово	2,90 (нормативно-чистая)	2,09 (нормативно-чистая)	БПК5	2,09	-
	1,93	2,0	глаг	вные ионы	

	(умеренного уровня	(умеренного уровня	Сульфаты	114	1,1
	загрязнения)	(умеренного уровня загрязнения)			1,1
	загрязнения)	загрязнения)		ные вещества	1.6
			Железо общее	0,16	1,6
				ые металлы	
			Медь (2+)	0,0033	3,3
	7,59	9,11	Растворенный	9,11	_
	(нормативно-чистая)	(нормативно-чистая)	кислород	>,11	
	1,71	1,72	БПК5	1,72	_
	(нормативно-чистая)	(нормативно-чистая)	DIIICS	1,72	_
			глаг	зные ионы	
р. Тобыл –			Магний	43,3	1,1
с.Милютинка			Сульфаты	227,1	2,3
	2,35	3,23	• •	ные вещества	•
	(умеренного уровня	(высокого уровня	Железо общее	0,23	2,3
	загрязнения)	загрязнения)		ые металлы	_,_
	sur pastienna)	sur pristiental)	Медь (2+)	0,0041	4,1
			Никель (2+)	0,076	7,6
				0,076	5,4
	0.12	7.74	Марганец (2+)	0,034	3,4
	9,13	7,74	Растворенный	7,74	_
	(нормативно – чистая)	(нормативно чистая)	кислород	,	
	3,32	2,77			
	(умеренного уровня	(нормативно чистая)	БПК5	2,77	-
	загрязнения)	(пормативно инстал)			
			глаг	зные ионы	
T. 6			Магний	70,3	1,8
р. Тобыл -			Сульфаты	154,9	1,5
п. Аккарга				ные вещества	•
	4,47	3,39	Железо общее	0,44	4,4
	(высокого уровня	(высокого уровня	Аммоний солевой	1,62	3,2
	загрязнения)	загрязнения)		L	3,2
				ые металлы	5.7
			Медь (2+)	0,0057	5,7
			Никель (2+)	0,049	4,9
			Марганец (2+)	0,036	3,6
	7,88	9,15	Растворенный	9,15	_
	(нормативно-чистая)	(нормативно-чистая)	кислород	7,11	
	2,12	3,06			
	(нормативно-чистая)	(умеренного уровня	БПК5	3,06	-
	(пормативно-чистах)	загрязнения)			
			глаг	зные ионы	
			Сульфаты	192,4	1,9
р. Айет – с.Варваринка			Магний	51,9	1,3
			биоген	ные вещества	•
	3,15	3,31	Железо общее	0,28	2,8
	(высокого уровня	(высокого уровня	Азот нитритный	0,023	1,2
	загрязнения)	загрязнения)		ые металлы	-,-
			Медь (2+)	0,0034	3,4
				0,052	5,2
			Марганец (2+)		
	0.15	0.02	Никель (2+)	0,104	10,4
	9,15	9,93	Растворенный	9,93	-
	(нормативно-чистая)	(нормативно-чистая)	кислород	<u> </u>	
	2,54	3,35	PHI.		
	(нормативно-чистая)	(умеренного уровня	$Б\Pi K_5$	3,35	-
	(загрязнения)			
			глаг	вные ионы	
			Сульфаты	271,2	2,7
			Магний	62,4	1,6
р. Тогызак – ст. Тогузак				ные вещества	
	2,72	2,61	Железо общее	0,26	2,6
	(умеренного уровня	(умеренного уровня	·	ые металлы	-,~
	загрязнения)	загрязнения)	Медь (2+)	0,0043	4,3
	эш ризнении)	our phoneumn)	Цинк (2+)	0,0043	1,1
			Марганец (2+)	0,027	2,7
			Никель (2+)	0,099	10,0
			органич	еские вещества	
	·	· · · · · · · · · · · · · · · · · · ·			

	Т		Нафтанропунти	0,058	1,2	
	7.24	6.15	Нефтепродукты	0,038	1,2	
	7,34 (нормативно – чистая)	6,15 (нормативно-чистая)	Растворенный кислород	6,15	-	
	3,70 (умеренного уровня загрязнения)	2,46 (нормативно-чистая)	БПК5	2,46	-	
	•		гла	вные ионы		
	1		Сульфаты	684,7	6,8	
	1		Хлориды	822,2	2,7	
р. Обаган – с.Аксуат	· ·		Магний	173,9	4,3	
p. Godfaii C.7 Reyai	1			ные вещества	.,,,	
	3,14	3,71	Аммоний солевой	1,60	3,2	
	(высокого уровня	,	Железо общее	0,30	3,0	
	загрязнения)	(высокого уровня загрязнения)	· ·	· · · · · · · · · · · · · · · · · · ·	3,0	
	загрязнения)	загрязнения)	Медь (2+)	лые металлы 0,0057	57	
	1				5,7	
	· ·		Марганец (2+)	0,020	2,0	
	1		Никель (2+)	0,056	5,6	
	· ·			еские вещества		
			Нефтепродукты	0,137	2,7	
	9,25 (нормативно-чистая)	8,00 (нормативно-чистая)	Растворенный кислород	8,00	-	
	2,62	2,30 (нормативно-чистая)	БПК ₅	2,30	-	
	(нормативно-чистая)		DIII 10			
				вные ионы	2.1	
	· ·		Сульфаты	206,5	2,1	
р. Желкуар –	· ·		Магний	51,2	1,3	
п. Чайковское	· ·			ные вещества		
II. Idrikobekoe	4,20	2,32	Железо общее	0,13	1,3	
	(высокого уровня	(умеренного уровня		лые металлы		
	загрязнения)	загрязнения)	Медь (2+)	0,004	4,0	
	1		Марганец (2+)	0,047	4,7	
	1		Никель (2+)	0,062	6,2	
	· ·		органич	еские вещества		
	1		Нефтепродукты	0,065	1,3	
	11,8	10,80	Растворенный		•	
	(нормативно чистая)	(нормативно чистая)	кислород	10,80	-	
	1,56	1,37				
р. Каркара –	(нормативно чистая)	(нормативно чистая)	БПК ₅	1,37	_	
у выхода из гор		(тяже	лые металлы		
у выхода из гор	1,40	1,30	Медь (2+) 0,0014 1,4			
	(умеренного уровня	(умеренного уровня	- ' ' '	вные ионы	1,-	
	загрязнения)	загрязнения)	Сульфаты	115	1,2	
	11,95	7,54	Растворенный	113	1,2	
	· · · · · · · · · · · · · · · · · · ·	,	-	7,54	=	
	(нормативно-чистая)	(нормативно-чистая) 3,12	кислород	+		
	'					
	3,05 (нормативно чистая)	3,12 (умеренного уровня загрязнения)	БПК₅	3,12	-	
		(умеренного уровня		вные ионы	-	
		(умеренного уровня		вные ионы 220,1	2,2	
р. Уй – с.Уйское		(умеренного уровня	гла	вные ионы	2,2	
р. Уй – с.Уйское	(нормативно чистая)	(умеренного уровня загрязнения)	гла Сульфаты Магний	вные ионы 220,1		
р. Уй – с.Уйское	(нормативно чистая) 2,43	(умеренного уровня загрязнения) 2,68	гла Сульфаты Магний	вные ионы 220,1 43,3	1,2	
р. Уй – с.Уйское	(нормативно чистая) 2,43 (умеренного уровня	(умеренного уровня загрязнения) 2,68 (умеренного уровня	гла Сульфаты Магний биоген	вные ионы 220,1 43,3 ные вещества	1,2	
р. Уй – с.Уйское	(нормативно чистая) 2,43	(умеренного уровня загрязнения) 2,68	гла Сульфаты Магний биоген Фториды Железо общее	вные ионы 220,1 43,3 иые вещества 0,93 0,27	1,2	
р. Уй – с.Уйское	(нормативно чистая) 2,43 (умеренного уровня	(умеренного уровня загрязнения) 2,68 (умеренного уровня	гла Сульфаты Магний биоген Фториды Железо общее	вные ионы 220,1 43,3 ные вещества 0,93 0,27 пые металлы	1,2 1,2 2,7	
р. Уй – с.Уйское	(нормативно чистая) 2,43 (умеренного уровня	(умеренного уровня загрязнения) 2,68 (умеренного уровня	гла Сульфаты Магний биоген Фториды Железо общее тяжел	вные ионы	1,2 1,2 2,7 5,7	
р. Уй – с.Уйское	(нормативно чистая) 2,43 (умеренного уровня	(умеренного уровня загрязнения) 2,68 (умеренного уровня	гла Сульфаты Магний биоген Фториды Железо общее тяжел Медь (2+) Никель (2+)	вные ионы	1,2 1,2 2,7 5,7 5,6	
р. Уй – с.Уйское	2,43 (умеренного уровня загрязнения)	(умеренного уровня загрязнения) 2,68 (умеренного уровня загрязнения)	гла Сульфаты Магний биоген Фториды Железо общее тяжез Медь (2+) Никель (2+) Марганец (2+)	вные ионы	1,2 1,2 2,7 5,7	
р. Уй – с. Уйское	2,43 (умеренного уровня загрязнения) 9,87 (нормативно чистая)	(умеренного уровня загрязнения) 2,68 (умеренного уровня	гла Сульфаты Магний биоген Фториды Железо общее тяжел Медь (2+) Никель (2+)	вные ионы	1,2 1,2 2,7 5,7 5,6	
	(нормативно чистая) 2,43 (умеренного уровня загрязнения)	(умеренного уровня загрязнения) 2,68 (умеренного уровня загрязнения)	гла Сульфаты Магний биоген Фториды Железо общее тяжел Медь (2+) Никель (2+) Марганец (2+) Растворенный кислород	вные ионы 220,1 43,3 ные вещества 0,93 0,27 ные металлы 0,0057 0,056 0,02 10,08	1,2 1,2 2,7 5,7 5,6	
р. Уй – с. Уйскоер. Иле – пр. Добын	2,43 (умеренного уровня загрязнения) 9,87 (нормативно чистая) 0,7 (нормативно чистая)	(умеренного уровня загрязнения) 2,68 (умеренного уровня загрязнения) 10,08 (нормативно чистая) 0,66 (нормативно чистая)	гла Сульфаты Магний биоген Фториды Железо общее тяжез Медь (2+) Никель (2+) Марганец (2+) Растворенный	вные ионы 220,1 43,3 иые вещества 0,93 0,27 лые металлы 0,0057 0,056 0,02	1,2 1,2 2,7 5,7 5,6	
	2,43 (умеренного уровня загрязнения) 9,87 (нормативно чистая) 0,7 (нормативно чистая) 1,79	(умеренного уровня загрязнения) 2,68 (умеренного уровня загрязнения) 10,08 (нормативно чистая) 0,66	гла Сульфаты Магний биоген Фториды Железо общее тяжел Медь (2+) Никель (2+) Марганец (2+) Растворенный кислород БПК ₅	вные ионы 220,1 43,3 ные вещества 0,93 0,27 ные металлы 0,0057 0,056 0,02 10,08	1,2 1,2 2,7 5,7 5,6	
	2,43 (умеренного уровня загрязнения) 9,87 (нормативно чистая) 0,7 (нормативно чистая)	(умеренного уровня загрязнения) 2,68 (умеренного уровня загрязнения) 10,08 (нормативно чистая) 0,66 (нормативно чистая)	гла Сульфаты Магний биоген Фториды Железо общее тяжел Медь (2+) Никель (2+) Марганец (2+) Растворенный кислород БПК ₅	вные ионы 220,1 43,3 иые вещества 0,93 0,27 пые металлы 0,0057 0,056 0,02 10,08 0,66	1,2 1,2 2,7 5,7 5,6	
	2,43 (умеренного уровня загрязнения) 9,87 (нормативно чистая) 0,7 (нормативно чистая) 1,79	(умеренного уровня загрязнения) 2,68 (умеренного уровня загрязнения) 10,08 (нормативно чистая) 0,66 (нормативно чистая) 2,57	гла Сульфаты Магний биоген Фториды Железо общее тяжел Медь (2+) Никель (2+) Марганец (2+) Растворенный кислород БПК5	вные ионы 220,1 43,3 иые вещества 0,93 0,27 пые металлы 0,0057 0,056 0,02 10,08 0,66	1,2 1,2 2,7 5,7 5,6 2,0	

			биоген	ные вещества	
			Азот нитритный	0,06	3,0
			Железо общее	0,41	4,1
	10,3	10,7	Растворенный	0,41	7,1
	· ·	,	-	10,7	-
	(нормативно чистая) 1,98	(нормативно чистая) 1,29	кислород		
	, , , , , , , , , , , , , , , , , , ,	· · · · · · · · · · · · · · · · · · ·	БПК5	1,29	-
	(нормативно чистая)	(нормативно чистая)			
				тые металлы	
р. Текес – с. Текес			Медь (2+)	0,0026	2,6
	3,20	2,03	Марганец (2+)	0,037	3,7
	(высокого уровня	(умеренного уровня		ные вещества	
	загрязнения)	загрязнения)	Железо общее	0,25	2,5
	загрязнения)	загрязнения)	Азот нитритный	0,024	1,2
			гла	вные ионы	
			Сульфаты	108	1,1
	10,13	10,4	Растворенный	10.4	
	(нормативно чистая)	(нормативно чистая)	кислород	10,4	-
	1,80	1,42		1.42	
	(нормативно чистая)	(нормативно чистая)	БПK ₅	1,42	-
w Mannaga a Llymany	,	,	гяжел	тые металлы	
р. Коргас – с. Ынталы			Марганец (2+)	0,044	4,4
	4,90	3,80	Медь (2+)	0,0038	3,8
	(высокого уровня	(высокого уровня		ные вещества	3,0
	загрязнения)	загрязнения)	Железо общее	0,59	5,9
			Азот нитритный	0,022	1,1
	11,0	11,31	Растворенный	,	1,1
	(нормативно чистая)	(нормативно чистая)	кислород	11,31	-
	1,3	1,20	кислород		
р. Коргас-с.Баскуншы	(нормативно чистая)	(нормативно чистая)	БПК5	1,20	-
	(нормативно чистая) 1,65	1,50	биогои	ные вещества	
	(умеренного уровня	(умеренного уровня		ные вещества	
	(умеренного уровня загрязнения)	загрязнения)	Железо общее	0,15	1,5
	8,97	8,81	Растворенный		
	(нормативно чистая)	(нормативно чистая)	_	8,81	-
	1,40	1,73	кислород		
	(нормативно чистая)	(нормативно чистая)	БПК5	1,73	-
	(нормативно чистая)	(нормативно чистая)	EHO	DILL TO HOUSE	
			Сульфаты	вные ионы 187,7	1,9
р. Емель-п. Кызыл ту			• •	ные вещества	1,7
	1,94	1,67 (умеренного уровня загрязнения)	Азот нитритный	0,026	1,3
	(умеренного уровня		Железо общее		1,1
	загрязнения)		<u> </u>	0,11	1,1
				пые металлы	2.0
			Медь (2+)	0,002	2,0
	11 5	11 0	Марганец (2+)	0,018	1,8
	11,5	11,0	Растворенный	11,0	-
	(нормативно чистая)	(нормативно чистая)	кислород		
	1,4	1,72	БПК5	1,72	_
F	(нормативно чистая)	(нормативно чистая)		·	
р.Баянкол-с. Баянколь	1,4	1,25		пые металлы	1 1
	(умеренного уровня	(умеренного уровня	Медь (2+)	0,0011	1,1
	загрязнения)	загрязнения)		ные вещества	1.7
			Железо общее	0,17	1,7
	0.55	0.07	Фториды	0,80	1,1
	9,77	9,87	Растворенный	9,87	-
	(нормативно чистая)	(нормативно чистая)	кислород	<u> </u>	
	1,86	1,62	БПК5	1,62	-
	(нормативно чистая)	(нормативно чистая)		·	
р.Сырдария-с.				вные ионы	
Кокбулак			Сульфаты	453	4,5
	2,90	3,15		ные вещества	2.0
	(умеренного уровня	(высокого уровня	Азот нитритный	0,059	3,0
	загрязнения)	загрязнения)		тые металлы	
			Медь (2+)	0,0014	1,4
			органич	еские вещества	
		11			

			Фенолы	0,0037	3,7	
	9,51	9,61	Растворённый		3,7	
	(нормативно чистая)	(нормативно чистая)	кислород	9,61	-	
	3,49	3,59	кислород			
	(умеренного уровня	(умеренного уровня	БПК5	3,59	_	
	загрязнения)	загрязнения)	Diffes	3,37		
р. Шу –	sur prisirement)	sur prisiremini)	гл:	авные ионы		
с. Благовещенское			Сульфаты	139,5	1,4	
	1,88	1,83	* *	елые металлы	1,1	
	(умеренного уровня	(умеренного уровня	Медь (2+)	0,0024	2,4	
	загрязнения)	загрязнения)			-	
			органические вещества Фенолы 0,0017 1,7			
	9,80	10,0	Растворённый	· ·	1,7	
	(нормативно чистая)	(нормативно чистая)	кислород	10,0	-	
	3,77	3,06	Кистород			
р. Талас –	(умеренного уровня	(умеренного уровня	БПК5	3,06	-	
с. Жасоркен	загрязнения)	загрязнения)		2,55		
1	2,1	2,70	тяже	лые металлы		
	(умеренного уровня	(умеренного уровня				
	загрязнения)	загрязнения)	Медь (2+)	0,0027	2,7	
	9,17	9,83	Растворённый	0.02		
	(нормативно чистая)	(нормативно чистая)	кислород	9,83	-	
	2,13	1,95	_	1.05		
р. Асса – ст. Маймак	(нормативно чистая)	(нормативно чистая)	БПК₅	1,95	-	
	2,2	1,90	тяже	елые металлы		
	(умеренного уровня	(умеренного уровня	Медь (2+)	0,0019	1,9	
	загрязнения)	загрязнения)	IVIСДБ (∠+)	0,0019	1,9	
	9,69	10,3	Растворённый	10,3	_	
	(нормативно чистая)	(нормативно чистая)	кислород	10,5		
	3,50	3,76				
	(умеренного уровня	(умеренного уровня	БПК5	3,76	-	
	загрязнения)	загрязнения)				
				авные ионы		
			Магний	47,0	1,2	
р. Аксу – с. Аксу			~ 1			
p. Akcy – c. Akcy			Сульфаты	253,2	2,5	
p. Akcy – c. Akcy	2,03	1,99	биоге	нные вещества	,	
p. Akcy – c. Akcy	(умеренного уровня	(умеренного уровня	биоге Фториды	нные вещества 0,94	2,5	
p. Akcy – c. Akcy	•	,	биоге: Фториды тяже	нные вещества 0,94 глые металлы	1,3	
p. Akcy – c. Akcy	(умеренного уровня	(умеренного уровня	биоге Фториды тяже Медь (2+)	нные вещества	1,3	
p. Akcy – c. Akcy	(умеренного уровня	(умеренного уровня	биоге: Фториды тяже Медь (2+) органи	нные вещества	1,3	
p. Akcy – c. Akcy	(умеренного уровня загрязнения)	(умеренного уровня загрязнения)	Фториды тяже Медь (2+) Фенолы	нные вещества	1,3	
p. Akcy – c. Akcy	(умеренного уровня загрязнения)	(умеренного уровня загрязнения) 10,2	биоге Фториды тяже Медь (2+) органи Фенолы Растворённый	нные вещества 0,94 слые металлы 0,0031 ческие вещества 0,0017	1,3	
p. Akcy – c. Akcy	(умеренного уровня загрязнения) 9,55 (нормативно чистая)	(умеренного уровня загрязнения) 10,2 (нормативно чистая)	Фториды тяже Медь (2+) Фенолы	нные вещества	1,3	
p. Akey – c. Akey	(умеренного уровня загрязнения) 9,55 (нормативно чистая) 3,57	(умеренного уровня загрязнения) 10,2 (нормативно чистая) 3,25	биоге Фториды тяже Медь (2+) органи Фенолы Растворённый кислород	нные вещества 0,94 слые металлы 0,0031 ческие вещества 0,0017 10,2	1,3	
p. Akey – C. Akey	(умеренного уровня загрязнения) 9,55 (нормативно чистая) 3,57 (умеренного уровня	(умеренного уровня загрязнения) 10,2 (нормативно чистая) 3,25 (умеренного уровня	биоге Фториды ТЯЖЕ Медь (2+) Фенолы Растворённый	нные вещества 0,94 слые металлы 0,0031 ческие вещества 0,0017	1,3	
p. Akcy – c. Akcy	(умеренного уровня загрязнения) 9,55 (нормативно чистая) 3,57	(умеренного уровня загрязнения) 10,2 (нормативно чистая) 3,25	биоге Фториды ТЯЖЕ Медь (2+) органи Фенолы Растворённый кислород БПК5	0,94 0,0031 0,0031 0,0017 10,2 3,25	1,3	
	(умеренного уровня загрязнения) 9,55 (нормативно чистая) 3,57 (умеренного уровня	(умеренного уровня загрязнения) 10,2 (нормативно чистая) 3,25 (умеренного уровня	биоге Фториды тяже Медь (2+) органи Фенолы Растворённый кислород БПК₅	0,94 0,0031 0,0031 0,0017 10,2 3,25 авные ионы	1,3 3,1 1,7 -	
р. Токташ —	(умеренного уровня загрязнения) 9,55 (нормативно чистая) 3,57 (умеренного уровня	(умеренного уровня загрязнения) 10,2 (нормативно чистая) 3,25 (умеренного уровня	биоге Фториды ТЯЖЕ Медь (2+) органи Фенолы Растворённый кислород БПК5 Кагний	нные вещества	1,3 3,1 1,7 - -	
	(умеренного уровня загрязнения) 9,55 (нормативно чистая) 3,57 (умеренного уровня	(умеренного уровня загрязнения) 10,2 (нормативно чистая) 3,25 (умеренного уровня	биоге Фториды тяже Медь (2+) органи Фенолы Растворённый кислород БПК ₅ гла Магний Сульфаты	0,94 0,94 0,0031 0,0031 0,0017 10,2 3,25 1,25	1,3 3,1 1,7 -	
р. Токташ —	9,55 (нормативно чистая) 3,57 (умеренного уровня загрязнения)	(умеренного уровня загрязнения) 10,2 (нормативно чистая) 3,25 (умеренного уровня загрязнения)	биоге Фториды тяже Медь (2+) органи Фенолы Растворённый кислород БПК ₅ Гла Магний Сульфаты тяже	нные вещества 0,94 слые металлы 0,0031 ческие вещества 0,0017 10,2 3,25 авные ионы 57,4 373,6 слые металлы	1,3 3,1 1,7 - - 1,4 3,7	
р. Токташ —	9,55 (нормативно чистая) 3,57 (умеренного уровня загрязнения)	(умеренного уровня загрязнения) 10,2 (нормативно чистая) 3,25 (умеренного уровня загрязнения)	биоге Фториды тяже Медь (2+) органи Фенолы Растворённый кислород БПК₅ гла Магний Сульфаты тяже Медь (2+)	нные вещества 0,94 слые металлы 0,0031 ческие вещества 0,0017 10,2 3,25 авные ионы 57,4 373,6 слые металлы 0,0031	1,3 3,1 1,7 1,4 3,7 3,1	
р. Токташ —	9,55 (нормативно чистая) 3,57 (умеренного уровня загрязнения) 2,05 (умеренного уровня	(умеренного уровня загрязнения) 10,2 (нормативно чистая) 3,25 (умеренного уровня загрязнения) 2,28 (умеренного уровня	биоге Фториды тяже Медь (2+) органи Фенолы Растворённый кислород БПК₅ гла Магний Сульфаты тяже Медь (2+) Марганец (2+)	0,94 0,94 0,0031 0,0017 10,2 3,25 10,0031 57,4 373,6 2,16 0,0031 0,0031 0,0019 0,0019 0,0019	1,3 3,1 1,7 1,4 3,7 3,1 1,9	
р. Токташ —	9,55 (нормативно чистая) 3,57 (умеренного уровня загрязнения) 2,05 (умеренного уровня	(умеренного уровня загрязнения) 10,2 (нормативно чистая) 3,25 (умеренного уровня загрязнения) 2,28 (умеренного уровня	биоге Фториды тяже Медь (2+) органи Фенолы Растворённый кислород БПК₂ магний Сульфаты тяже Медь (2+) марганец (2+) органи	0,94 0,94 0,0031 0,0017 10,2 3,25 10,0031 0,0017 10,2 3,73,6 0,0031 0,0031 0,019 0,019 0,019 0,019 0,019 0,019 0,019 0,014 0,015 0,019 0,016	1,3 3,1 1,7 1,4 3,7 3,1 1,9	
р. Токташ —	9,55 (нормативно чистая) 3,57 (умеренного уровня загрязнения) 2,05 (умеренного уровня загрязнения)	(умеренного уровня загрязнения) 10,2 (нормативно чистая) 3,25 (умеренного уровня загрязнения) 2,28 (умеренного уровня загрязнения)	биоге Фториды тяже Медь (2+) органи Фенолы Растворённый кислород БПК₂ Магний Сульфаты тяже Медь (2+) Марганец (2+) органи Фенолы	0,94 0,94 0,0031 0,0017 10,2 3,25 10,0031 0,0031 0,0031 0,0019 0,0018	1,3 3,1 1,7 1,4 3,7 3,1 1,9	
р. Токташ —	9,55 (нормативно чистая) 3,57 (умеренного уровня загрязнения) 2,05 (умеренного уровня загрязнения)	(умеренного уровня загрязнения) 10,2 (нормативно чистая) 3,25 (умеренного уровня загрязнения) 2,28 (умеренного уровня загрязнения)	биоге Фториды тяже Медь (2+) органи Фенолы Растворённый кислород БПК ₅ гла Магний Сульфаты тяже Медь (2+) Марганец (2+) органи Фенолы Растворённый	0,94 0,94 0,0031 0,0017 10,2 3,25 10,0031 0,0017 10,2 3,73,6 0,0031 0,0031 0,019 0,019 0,019 0,019 0,019 0,019 0,019 0,014 0,015 0,019 0,016	1,3 3,1 1,7 1,4 3,7 3,1 1,9	
р. Токташ —	9,55 (нормативно чистая) 3,57 (умеренного уровня загрязнения) 2,05 (умеренного уровня загрязнения) 9,68 (нормативно чистая)	(умеренного уровня загрязнения) 10,2 (нормативно чистая) 3,25 (умеренного уровня загрязнения) 2,28 (умеренного уровня загрязнения)	биоге Фториды тяже Медь (2+) органи Фенолы Растворённый кислород БПК₂ Магний Сульфаты тяже Медь (2+) Марганец (2+) органи Фенолы	0,94 0,94 0,0031 0,0017 10,2 3,25 10,0031 0,0031 0,0031 0,0019 0,0018	1,3 3,1 1,7 1,4 3,7 3,1 1,9 1,8	
р. Токташ — п. Жаугаш Батыр	9,55 (нормативно чистая) 3,57 (умеренного уровня загрязнения) 2,05 (умеренного уровня загрязнения) 9,68 (нормативно чистая) 4,35	(умеренного уровня загрязнения) 10,2 (нормативно чистая) 3,25 (умеренного уровня загрязнения) 2,28 (умеренного уровня загрязнения) 10,7 (нормативно чистая) 3,63	биоге Фториды	нные вещества 0,94 слые металлы 0,0031 ческие вещества 0,0017 10,2 3,25 авные ионы 57,4 373,6 слые металлы 0,0031 0,019 ческие вещества 0,0018 10,7	1,3 3,1 1,7 1,4 3,7 3,1 1,9 1,8	
р. Токташ — п. Жаугаш Батыр р. Карабалта — на	9,55 (нормативно чистая) 3,57 (умеренного уровня загрязнения) 2,05 (умеренного уровня загрязнения) 9,68 (нормативно чистая) 4,35 (умеренного уровня	(умеренного уровня загрязнения) 10,2 (нормативно чистая) 3,25 (умеренного уровня загрязнения) 2,28 (умеренного уровня загрязнения) 10,7 (нормативно чистая) 3,63 (умеренного уровня	биоге Фториды тяже Медь (2+) органи Фенолы Растворённый кислород БПК ₅ гла Магний Сульфаты тяже Медь (2+) Марганец (2+) органи Фенолы Растворённый	0,94 0,94 0,0031 0,0017 10,2 3,25 10,0031 0,0031 0,0031 0,0019 0,0018	1,3 3,1 1,7 1,4 3,7 3,1 1,9 1,8	
р. Токташ — п. Жаугаш Батыр р. Карабалта — на границе с Кыргызской	9,55 (нормативно чистая) 3,57 (умеренного уровня загрязнения) 2,05 (умеренного уровня загрязнения) 9,68 (нормативно чистая) 4,35	(умеренного уровня загрязнения) 10,2 (нормативно чистая) 3,25 (умеренного уровня загрязнения) 2,28 (умеренного уровня загрязнения) 10,7 (нормативно чистая) 3,63	биоге Фториды тяже Медь (2+) органи Фенолы Растворённый кислород БПК₂ Магний Сульфаты тяже Медь (2+) Марганец (2+) органи Фенолы Растворённый кислород БПК₂	0,94 0,94 0,94 0,0031 0,0017 10,2 3,25 10,0031 0,0031 0,0031 0,0031 0,0019 0,0018 10,7 3,63 10,7 3,7	1,3 3,1 1,7 1,4 3,7 3,1 1,9 1,8	
р. Токташ — п. Жаугаш Батыр р. Карабалта — на	9,55 (нормативно чистая) 3,57 (умеренного уровня загрязнения) 2,05 (умеренного уровня загрязнения) 9,68 (нормативно чистая) 4,35 (умеренного уровня загрязнения)	(умеренного уровня загрязнения) 10,2 (нормативно чистая) 3,25 (умеренного уровня загрязнения) 2,28 (умеренного уровня загрязнения) 10,7 (нормативно чистая) 3,63 (умеренного уровня загрязнения)	биоге Фториды тяже Медь (2+) органи Фенолы Растворённый кислород БПК₂ магний Сульфаты тяже Медь (2+) марганец (2+) органи Фенолы Растворённый кислород БПК₂	0,94 0,94 0,94 0,0031 0,0017 10,2 3,25 10,0031 0,0031 0,0031 0,0031 0,0019 0,0018 10,7 3,63 10,7 3,63 10,7 3,63 10,7 3,63 10,7 3,63 10,7 3,63 10,7 3,63 10,7 10,7 3,63 10,7 10,	1,3 3,1 1,7 1,4 3,7 3,1 1,9 1,8	
р. Токташ — п. Жаугаш Батыр р. Карабалта — на границе с Кыргызской	9,55 (нормативно чистая) 3,57 (умеренного уровня загрязнения) 2,05 (умеренного уровня загрязнения) 9,68 (нормативно чистая) 4,35 (умеренного уровня загрязнения)	(умеренного уровня загрязнения) 10,2 (нормативно чистая) 3,25 (умеренного уровня загрязнения) 2,28 (умеренного уровня загрязнения) 10,7 (нормативно чистая) 3,63 (умеренного уровня загрязнения) 3,15	биоге Фториды тяже Медь (2+) органи Фенолы Растворённый кислород БПК ₅ Магний Сульфаты тяже Медь (2+) Марганец (2+) органи Фенолы Растворённый кислород БПК ₅ Кагний	нные вещества	1,3 3,1 1,7 1,4 3,7 3,1 1,9 1,8 1,9	
р. Токташ — п. Жаугаш Батыр р. Карабалта — на границе с Кыргызской	9,55 (нормативно чистая) 3,57 (умеренного уровня загрязнения) 2,05 (умеренного уровня загрязнения) 9,68 (нормативно чистая) 4,35 (умеренного уровня загрязнения) 2,13 (умеренного уровня	(умеренного уровня загрязнения) 10,2 (нормативно чистая) 3,25 (умеренного уровня загрязнения) 2,28 (умеренного уровня загрязнения) 10,7 (нормативно чистая) 3,63 (умеренного уровня загрязнения) 3,15 (высокого уровня	биоге Фториды тяже Медь (2+) органи Фенолы Растворённый Кислород БПК ₅ Кламаний Сульфаты тяже Медь (2+) органи Фенолы Растворённый Кислород БПК ₅ Кламаний Сульфаты Сульфаты	нные вещества 0,94 слые металлы 0,0031 ческие вещества 0,0017 10,2 3,25 авные ионы 57,4 373,6 слые металлы 0,0031 0,019 ческие вещества 0,0018 10,7 3,63 авные ионы 75,1 519,1	1,3 3,1 1,7 1,4 3,7 3,1 1,9 1,8	
р. Токташ — п. Жаугаш Батыр р. Карабалта — на границе с Кыргызской	9,55 (нормативно чистая) 3,57 (умеренного уровня загрязнения) 2,05 (умеренного уровня загрязнения) 9,68 (нормативно чистая) 4,35 (умеренного уровня загрязнения)	(умеренного уровня загрязнения) 10,2 (нормативно чистая) 3,25 (умеренного уровня загрязнения) 2,28 (умеренного уровня загрязнения) 10,7 (нормативно чистая) 3,63 (умеренного уровня загрязнения) 3,15	биоге Фториды тяже Медь (2+) органи Фенолы Растворённый Кислород БПК ₅ Кламаний Сульфаты тяже Медь (2+) органи Фенолы Растворённый Кислород БПК ₅ Кламаний Сульфаты Сульфаты	нные вещества	1,3 3,1 1,7 1,4 3,7 3,1 1,9 1,8 1,9	

			опганин	ACICHA DAIHACTDA	
			Фенолы	еские вещества 0,0025	2,5
	0.76	10.4		0,0025	2,3
	9,76	10,4	Растворённый	10,4	-
	(нормативно чистая)	(нормативно чистая)	кислород		
	3,58	6,54	DETA.	I	
	(умеренного уровня	(умеренного уровня	БПK ₅	6,54	-
	загрязнения)	загрязнения)			
				вные ионы	
- C			Магний	71,0	1,8
р. Сарыкау – на			Сульфаты	476,5	4,8
границе с Кыргызской			биоген	ные вещества	
Республикой	2,17	2,50	Фториды	1,15	1,5
	(умеренный уровень	(умеренный уровень	Железо общее	0,17	1,7
	загрязнения)	загрязнения)	'	ые металлы	
	1 /	1 /	Медь (2+)	0,0037	3,7
			Марганец (2+)	0,015	1,5
			•	еские вещества	
			Фенолы	0,0025	2,5
	10,60	9,99		0,0023	2,3
	,	,	Раствореоный	9,99	-
	(нормативно чистая)	(нормативно чистая)	кислород		
	2,66	1,91	БПК5	1,91	-
	(нормативно чистая)	(нормативно чистая)		,	
				ные вещества	
р.Елек – с. Целинный			Аммоний солевой	0,81	1,6
р.Елек с. целиния	3,11	3,08	Бор (3+)	0,086	5,1
	(высокого уровня	(высокого уровня	тяжел	ые металлы	
	загрязнения)	загрязнения)	Хром (6+)	0,077	3,8
	загрязнения)	загрязнения)	Хром (3+)	0,012	2,4
			Марганец (2+)	0,036	3,6
			Медь (2+)	0,0014	1,4
	11,08	10,28	Растворенный	10.20	,
	(нормативно чистая)	(нормативно чистая)	кислород	10,28	-
	1,55	2,98			
	(нормативно чистая)	(нормативно чистая)	БПК ₅	2,98	-
р.Елек – с. Шилик	, , , , , , , , , , , , , , , , , , ,		глаг	вные ионы	
p.Estek e. Estem	1,5	1,53	Хлориды	436,5	1,5
	(умеренного уровня	(умеренного уровня		ные вещества	
	загрязнения)	загрязнения)	Азот нитритный	0,035	1,8
	F	J F	Железо общее	0,13	1,3
	9,67	10,22	Растворенный	,	1,5
	(нормативно чистая)	(нормативно чистая)	кислород	10,22	-
	1,63	2,33	Кислород		
р. Жайык-с.	(нормативно чистая)	(нормативно чистая)	БПК5	2,33	-
Январцево	1,2	1,30	6.v.o.r.o.v.	W to power of the	
	(умеренного уровня	(умеренного уровня	Азот нитритный	ные вещества 0,024	1,2
	загрязнения)	загрязнения)	Железо общее	0,14	1,4
	9,23	9,35	Раствореоный	0,14	1,7
	· · · · · · · · · · · · · · · · · · ·		•	9,35	-
	(нормативно чистая)	(нормативно чистая)	кислород		
	3,83	2,59	гпи.	2.50	
	(умеренного уровня	(нормативно чистая)	БПК ₅	2,59	-
	загрязнения)	<u>, , , , , , , , , , , , , , , , , , , </u>			
р. Улькен Кобда –				зээ л	1 1
п. Кобда			Хлориды	323,7	1,1
	3,47	2,33		ные вещества	1 1
	(высокого уровня	(умеренного уровня	Аммоний солевой	0,53	1,1
	загрязнения)	загрязнения)		ые металлы	0.6
	- *		Медь (2+)	0,0086	8,6
			<u>Цинк (2+)</u>	0,012	1,2
			Марганец (2+)	0,046	4,6
	10,11	11,09	Раствореоный	11,09	_
	(нормативно чистая)	(нормативно чистая)	кислород		
р. Орь – с. Богетсай	2,92	2,49	БПК ₅	2,49	-
	(нормативно чистая)	(нормативно чистая)		·	
	4,62	3,65	биогені	ные вещества	

	(высокого уровня	(высокого уровня	Аммоний солевой	1,50	3,0	
	загрязнения)	загрязнения)		ые металлы	,	
	1	,	Медь (2+)	0,0058	5,8	
			Марганец (2+)	0,057	5,7	
				еские вещества		
			Фенолы	0,0022	2,2	
	11,28	10,75	Растворенный	,	2,2	
	(нормативно чистая)	(нормативно чистая)	кислород	10,75	-	
	1,36	2,60				
р. Шаган –	(нормативно чистая)	(нормативно чистая)	БПК5	2,60	-	
п. Чувашинский	(пормативно чистая)	(пормативно чистая)	FHOL			
п. тувашинский	0,0	1,15	Хлориды	з ные ионы 371,25	1,2	
	*	(умеренного уровня			1,2	
	(нормативно чистая)	загрязнения)		ные вещества	1.1	
	10.47	0.56	Железо общее	0,108	1,1	
	10,47	9,56	Растворенный	9,56		
	(нормативно чистая)	(нормативно чистая)	кислород	,		
	2,18	2,87	БПК5	2,87		
р.Караозен –	(нормативно чистая)	(нормативно чистая)		·		
с. Жалпактал				ные вещества		
	1,57	1,25	Азот нитритный	0,023	1,1	
	(умеренного уровня	(умеренного уровня	Железо общее	0,15	1,5	
	загрязнения)	загрязнения)	органиче	еские вещества		
			Фенолы	0,0012	1,2	
	10,76	9,68	Растворенный	9,68		
	(нормативно чистая)	(нормативно чистая)	кислород	9,00	-	
	2.10	3,08		2.09		
	2,19	(умеренного уровня	БПК5	3,08	-	
	(нормативно чистая)	загрязнения)				
C.			глан	вные ионы		
р.Сарыозен –			Магний 45,6 1,1			
с. Бостандыкский			биогенные вещества			
	1,8	1,12	Аммоний солевой	0,55	1,1	
	(умеренного уровня	(умеренного уровня	Азот нитритный	0,023	1,1	
	загрязнения)	загрязнения)	Железо общее	0,13	1,3	
			·	еские вещества		
			Фенолы	0,0011	1,1	
	10,7	9,49	Растворенный	,	1,1	
	(нормативно чистая)	(нормативно чистая)	кислород	9,49	-	
	3,39	3,1	кислород			
проток Шаронова –	,	,	гпν	2 1		
с. Гонюшкино	(умеренного уровня	(умеренного уровня	БПК ₅	3,1	-	
	загрязнения)	загрязнения)				
	0,00	0,0				
	(нормативно чистая)	(нормативно чистая)	D v			
	10,8	9,3	Растворенный	9,3	-	
	(нормативно чистая)	(нормативно чистая)	кислород	<u> </u>		
***	3,5	3,2	DET.			
р. Кигаш –	(умеренного уровня	(умеренного уровня	БПК ₅	3,2	-	
с. Котяевка	загрязнения)	загрязнения)				
o. Ito inobita	0,00	1,1	биоген	ные вещества		
	(нормативно чистая)	(умеренного уровня	Бор (3+)	0,018	1,1	

Сведения о случаях экстремально высокого (ЭВЗ) и высокого загрязнения (ВЗ) поверхностных вод за 2017 год

На 6 трансграничных реках Республики Казахстан было отмечено 13 случаев высокого загрязнения (ВЗ): река Елек (Актюбинская) — 1 случай ВЗ, река Тобыл (Костанайская) — 3 случая ВЗ, река Айет (Костанайская) — 4 случая ВЗ, река Тогызак (Костанайская) — 3 случая ВЗ, река Желкуар (Костанайская) — 1 случай ВЗ, река Коргас (Алматинская) — 1 случай ВЗ (таблица 2).

Таблица 2

		Число,	Число,	Загря	зняющее вец	цество
Наименование водного объекта, область, пункт наблюдения, створ	Кол-во случаев	месяц отбора проб воды	месяц проведения анализа	Наимено- вание	Концентра ция, мг/дм ³	Кратность превышения ПДК
река Елек, Актюбинская область, 1 км выше села Целинный	1 B3	17.04.17	18.04.17	Бор (3+)	0,206	12,1
река Тобыл, Костанайская область, с.	1 B3	01.03.17	02.03.17	Марганец (2+)	0,459	45,9
Милютинка, в черте села, в створе г/п	1 B3	01.03.17	03.03.17	Никель	0,126	12,6
река Тобыл, Костанайская область, п. Аккарга, 1 км к ЮВ от села в створе г/п	1 B3	17.04.17	18.04.17	Марганец (2+)	0,204	20,4
	1 B3	02.02.17	07.02.17	Никель	0,238	23,8
река Айет, Костанайская область, г/п	1 B3	01.03.17	02.03.17	Марганец (2+)	0,312	31,2
Варваринка, 0,2 км ниже села, в створе г/п	1 B3	01.03.17	03.03.17	Никель	0,199	19,9
1711	1 B3	17.04.17	18.04.17	Марганец (2+)	0,118	11,8
T	1 B3	16.02.17	17.02.17	Никель	0,286	28,6
река Тогызак, Костанайская область, 1,5 км СЗ Тогызак станции, в створе	1 B3	10.03.17	14.03.17	Никель	0,223	22,3
г/п	1 B3	17.04.17	18.04.17	Марганец (2+)	0,118	11,8
река Желкуар, Костанайская область, п. Чайковское, 0,5 км к ЮВ от села в створе г/п	1 B3	15.04.17	18.04.17	Марганец (2+)	0,105	10,5
река Коргас, Алматинская область, застав Ынталы	1 B3	21.06.17	29.06.17	Железо общее	3,74	37,4
Итого:			13 ВЗ на	1 6 в/о		

2. Результаты радионуклидного и макро-микроэлементного анализа компонентов окружающей среды за 2017 год

РГП «Институт ядерной физики» Министерства энергетики Республики Казахстан выполнил лабораторно-аналитические работы методами радионуклидного и элементного анализа, отобранных РГП «Казгидромет» Министерства энергетики Республики Казахстан, проб объектов окружающей среды весной и осенью 2017 г.

На рисунке 1 приведены контрольные пункты (КП) в бассейнах трансграничных рек Казахстана, на которых проводился отбор проб объектов окружающей среды.

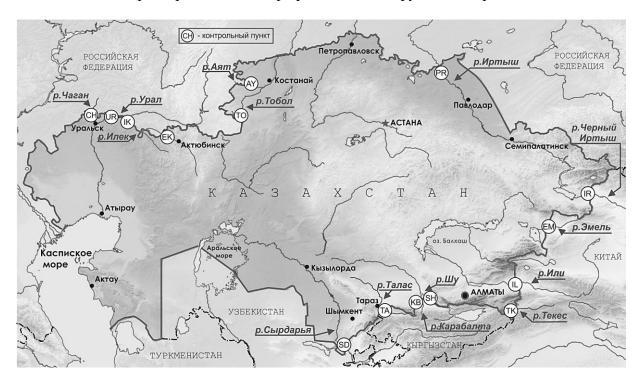


Рис. 1. Схема размещения контрольных пунктов на трансграничных реках Казахстана

Проведены работы по предварительной подготовке всех проб объектов окружающей среды, отобранных весной и осенью 2017 г. для исследования их радионуклидного и элементного состава следующими аналитическими методами:

- 1. Инструментальная гамма-спектрометрия (ИГС) для исследования радионуклидного состава образцов почвы, донных отложений, а также растворимых (WD) и нерастворимых (WS) компонентов воды.
- 2. Радиохимический анализ (РХА) для исследования радионуклидного состава растворимых (WD) компонентов воды.
- 3. Рентгенофлуоресцентный анализ (РФА) для исследования макро- и микроэлементного состава образцов почвы и донных отложений.
- 4. Нейтроноактивационный анализ (HAA) для исследования микроэлементного состава образцов почвы, донных отложений, растворимых (WD) и нерастворимых (WS) компонентов воды.
- 5. Масс-спектрометрия с индуктивно-связанной плазмой (МС-ИСП) для исследования микроэлементного состава растворимых (WD) компонентов воды.

В Приложениях 1 и 2 приведены результаты радионуклидного анализа методом ИГС проб почвы, отобранных на всех контрольных пунктах весной и осенью 2017 г., соответственно.

В Приложениях 3 и 4 приведены результаты радионуклидного анализа методом ИГС донных отложений, отобранных на всех контрольных пунктах весной и осенью $2017~\rm r.$, соответственно.

В Приложениях 5 и 6 приведены результаты элементного анализа методом Р Φ А проб почвы, отобранных на всех контрольных пунктах весной и осенью 2017 г., соответственно.

В Приложениях 7 и 8 приведены результаты элементного анализа методом РФА донных отложений, отобранных на всех контрольных пунктах весной и осенью 2017 г., соответственно.

В Приложении 9 и 10 приведены результаты элементного анализа методом НАА проб почвы, отобранных на всех контрольных пунктах весной и осенью 2017 г., соответственно.

В Приложении 11 и 12 приведены результаты элементного анализа методом НАА проб донных отложений, отобранных на всех контрольных пунктах весной и осенью 2017 г., соответственно.

В Приложениях 13 и 14 приведены результаты радионуклидного анализа методом ИГС растворимых компонентов проб воды (WD), отобранных на всех контрольных пунктах весной и осенью 2017 г., соответственно.

В Приложениях 15 и 16 приведены результаты радионуклидного анализа методом ИГС нерастворимых компонентов проб воды (WS), отобранных на всех контрольных пунктах весной и осенью 2017 г., соответственно.

В Приложении 17 и 18 приведены результаты элементного анализа методом НАА растворимых компонентов проб воды (WD), отобранных на всех контрольных пунктах весной и осенью 2017 г., соответственно.

В Приложении 19 и 20 приведены результаты элементного анализа методом НАА нерастворимых компонентов проб воды (WS), отобранных на всех контрольных пунктах весной и осенью 2017 г., соответственно.

В Приложениях 21 и 22 приведены результаты радионуклидного анализа методом РХА растворимых компонентов проб воды (WD), отобранных на всех контрольных пунктах весной и осенью 2017 г., соответственно.

В Приложениях 23 и 24 приведены результаты элементного анализа методом МС-ИСП растворимых компонентов проб воды (WD), отобранных на всех контрольных пунктах весной и осенью $2017 \, \Gamma$, соответственно.

В данном отчете рассматриваются некоторые особенности радионуклидного и элементного состава объектов окружающей среды, отобранных на всех контрольных пунктах (КП) в бассейнах трансграничных рек Казахстана в 2017 г.

На основе данных, полученных методом ИГС, построены графики, отражающие содержание отдельных радионуклидов в почве и донных отложениях на всех 15-ти мониторинговых КП весной и осенью 2017 г. (рисунки 2 и 3).

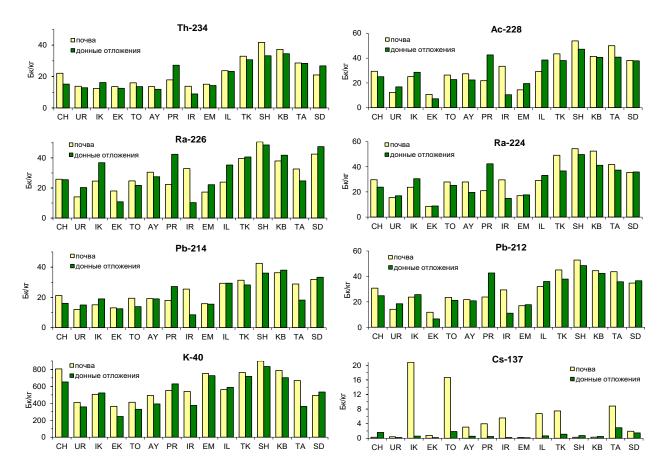


Рис.2. Содержание отдельных радионуклидов в почве и донных отложениях на контрольных пунктах трансграничных рек Казахстана

Приведенные в Приложениях (1-4) данные и представленные на рис. 2, 3 графики в значительной степени подтверждают выводы, сделанные на основе данных всех предыдущих экспедиций. Наибольшие значения концентрации ЕРН наблюдаются в прибрежной почве и донных отложениях рек Юго-Восточного и Южного Казахстана (Иле, Текес, Шу, Карабалта, Сырдария). Уровень концентрации радионуклидов в этих объектах рек Западного (Шаган, Жайык, Елек), Северо-Западного (Тобыл, Айет) и Восточного (Кара Ертис, Емел) Казахстана заметно ниже. Наименьшие значения концентрации всех ЕРН соответствуют реке Елек (ЕК, Актюбинская область). В весенний и осенний сезоны, кроме рек Южного и Юго-Восточного Казахстана, наблюдается повышенное содержание отдельных ЕРН (234Th, 228Ac, 224Ra, 212Pb и др.) в донных отложениях низовья реки Ертис (КП - PR) (рис. 2, 3). На этом КП концентрация в донных отложениях практически всех ЕРН семейств 238U и 232Th примерно в 2 раза больше, чем в верховье этой реки на контрольном пункте IR. Это означает, что р. Ертис загрязняется этими ЕРН на территории Казахстана. Необходимо выявить источник (или источники) этого загрязнения.

Наиболее высокие (но не опасные) значения концентрации искусственного радионуклида (ИРН) ¹³⁷Сѕ установлены в прибрежной почве рек Елек (ІК, 20.8 Бк/кг) и Тобыл (ТО, 16.7 Бк/кг) – в весенний сезон, а также Жайык (UR, 14.6 Бк/кг) – в осенний сезон. В донных отложениях большинства изученных рек уровень концентрации этого ИРН незначителен, в основном, в пределах 1.5 Бк/кг. Вместе с тем, можно отметить повышенное значение концентрации этого радионуклида в донных отложениях рек Талас (ТА, 2.9 Бк/кг) – в весенний сезон и Текес (ТК, 3.1 Бк/кг) – в осенний сезон.

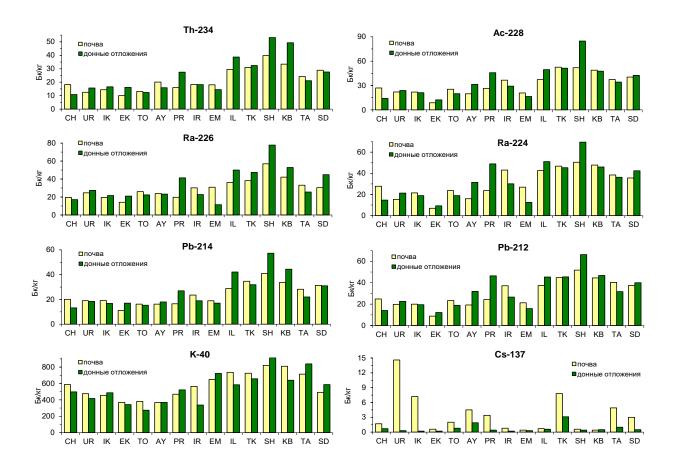


Рис. 3. Содержание отдельных радионуклидов в почве и донных отложениях на контрольных пунктах трансграничных рек Казахстана

На основе данных, полученных методами РФА и НАА, выполнены графические построения (рисунки 4-7), отражающие распределение отдельных элементов (Ca, Rb, Ba, Sr, Zn, Y, Th, U, Nb, Pb, Zr, Cr, As, Sb, Sc, Cs, La, Ce, Nd, Sm, Tb, Yb, Lu, Eu) в почве и донных отложениях, отобранных весной и осенью 2017 г. на мониторинговых контрольных пунктах всех трансграничных рек Казахстана. Из этих графиков и табличных данных, полученных методами РФА и НАА (Приложения 5-12), следует (как было установлено раньше), что наиболее высокие значения концентрации щелочных и щелочноземельных элементов (K, Ca, Rb, Cs, Sr, Ba) наблюдаются в почве и донных отложениях рек Юго-Восточного и Южного Казахстана. Эта особенность наглядно отражена на примере распределения бария и стронция. Видно, что наибольшие значения концентрации этих элементов соответствуют следующим рекам: Емел, Текес, Иле, Шу Карабалта, Талас и Сырдария. Кроме того, в донных отложениях этих рек присутствуют в значительных концентрациях такие элементы как Zn, Ga, Pb, Th, U и все редкоземельные металлы (РЗМ).

Следует обратить внимание на весьма значительное содержание (по данным НАА) осенью в донных отложениях р. Шаган сурьмы - 289 мкг/г (кларк для земной коры – 0.5 мкг/г) и р. Айет мышьяка – 57 мкг/г (кларк для земной коры – 5.0 мкг/г). Столь значительное содержание Sb в донных отложениях р. Шаган отмечено впервые. В период 2007-2016 гг. значения его содержания в донных отложениях этой реки было установлено в интервале (0.37-0.87) мкг/г. Повышенное содержание As в донных отложениях р. Айет не является исключением: весна 2013 г. – 73 мкг/г, осень 2013 г. – 20.4 мкг/г, осень 2016 г. – 24 мкг/г. Это означает, что в верховьях этой реки имеется источник ее загрязнения этим элементом. Кроме того, сравнение результатов элементного анализа проб донных отложений р. Ертис, отобранных на КП «IR» (вход реки на территорию Казахстана) и на КП «PR» (выход реки с территории Казахстана), показывает, что на этой протяженности реки содержание многих элементов (Ti, Cu, Zn, Ga, As, Rb, Y, Zr, Th, U, Sb, Co, Sc, Hf, Ta,

La, Ce, Nd, Sm, Eu, Tb, Yb, Lu) увеличивается в 2-4 раза, а содержание Рb повышается более, чем в 10 раз. Это означает, что река Ертис загрязняется на территории Казахстана не только радионуклидами, но и многими химическими элементами. Установленная особенность свидетельствует о необходимости проведения исследования, направленного на выявление источников и установление механизмов этого загрязнения.

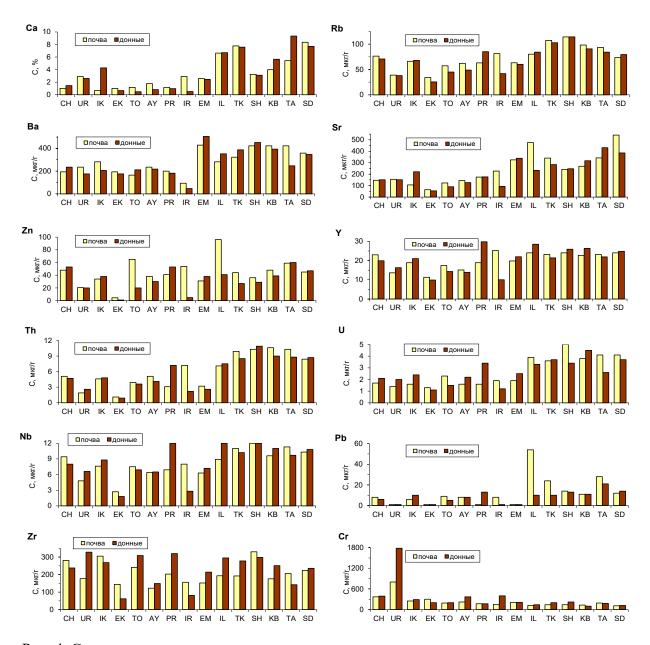


Рис. 4. Содержание отдельных элементов в почве и донных отложениях на контрольных пунктах трансграничных рек Казахстана (данные РФА)

В весенний период наибольшее содержание отдельных элементов установлено (по данным $P\Phi A$) в донных отложениях следующих рек:

- р. Жайык: Cr 1780 мкг/г, Ni 77 мкг/г;
- р. Елек (Западно-Казахстанская область): Mn 910 мкг/г;
- р. Айет: V 140 мкг/г;
- р. Ертис (Павлодарская область): Ti-0.44 %, Fe-3.19 %, Ga-12.5 мкг/г, Y-29.8 мкг/г, Zr-320 мкг/г, Nb-12 мкг/г;

• р. Кара Ертис: Ni − 77 мкг/г, Mo − 4.2 мкг/г;

• p. IIIy: K-2.39~%,~Rb-114~Mkr/r,~Nb-12~Mkr/r,~Ba-453~Mkr/r,

Th -10.9 мкг/г;

• р. Карабалта: $V-130~{\rm Mkr/r},~{\rm As}-10.9~{\rm Mkr/r},~{\rm Th}-9~{\rm Mkr/r},~{\rm U}-4.5~{\rm Mkr/r};$

• р. Талас: Ca - 9.35 %, Sr - 431 мкг/г, Cu - 33 мкг/г, Zn - 60 мкг/г, мкг/г,

Br – 32 Pb– 21 мкг/г;

• р. Сырдария: Ca – 7.71 %.

Рис. 5. Содержание отдельных элементов в почве и донных отложениях на контрольных пунктах трансграничных рек Казахстана (данные НАА)

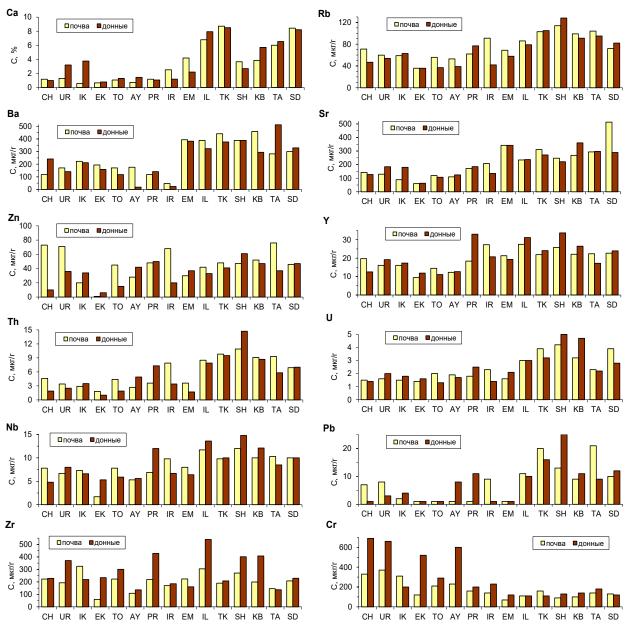


Рис. 6. Содержание отдельных элементов в почве и донных отложениях на контрольных пунктах трансграничных рек Казахстана (данные РФА)

В осенний период наибольшее содержание отдельных элементов установлено (по данным $P\Phi A$) в донных отложениях следующих рек:

- р. Шаган: Cr 690 мкг/г;
- р. Жайык: Cr 660 мкг/г, Ni 67 мкг/г;
- р. Айет: $Ti 0.47 \%, \ V 140 \ \text{мкг/г}, \ Cr 600 \ \text{мкг/г}, \ Mn 0.067 \%, \\ Cu 44 \ \text{мкг/г}, \ As 50 \ \text{мкг/г}, \ Br 10.9 \ \text{мкг/г};$
- **р**. Ертис (Павлодарская область): Ga 12 мкг/г; Y 33 мкг/г, Zr 428 мкг/г;
- p. Иле: Ca 7.93 %, Zr 540 мкг/г, Nb 13.6 мкг/г;
- p. Tekec: K 2.14 %, Ca 8.5 %, Br 10 мкг/г, Pb 16 мкг/г, U 3.2 мкг/г;
- p. IIIy: K-2.4 %, Fe -3.8 %, Zn -61 mkg/r, Ga -13.9 mkg/r, Rb -128 mkg/r, Y -33.7 mkg/r, Nb -14.8 mkg/r, Pb -25 mkg/r, Th -14.7 mkg/r, U -5.0 mkg/r;

- р. Карабалта: K 1.97 %, Ca 5.7 %, Mn– 0.07 %, Zn 47 мкг/г, Ga 12.2 мкг/г, As 21,8 мкг/г, Sr 360 мкг/г, U 4.7 мкг/г;
- р. Талас: K 1.99 %, Ca 6.5 %, Ba 512 мкг/г;
- р. Сырдария: Ca 8.2 %, Zn 47 мкг/г, Pb 12мкг/г.

Рис. 7. Содержание отдельных элементов в почве и донных отложениях на контрольных пунктах трансграничных рек Казахстана (данные НАА)

Из приведенных данных следует, что в отчетный период наиболее загрязненными химическими элементами являлись русла следующих рек: р. Ертис (PR, весенний сезон) — источником загрязнения, вероятнее всего, являются хранилища отходов промышленных предприятий Восточно-Казахстанской области; р. Айет (АҮ, осенний сезон) — источник загрязнения не известен; реки Шу, Карабалта (SH, KB, весенний и осенний сезоны) — источником загрязнения, наиболее вероятно, являются отходы промышленной переработки руды на месторождении Ак-Тюз и хранилище радиоактивных отходов на ГРК «Кара-Балта»; а также р. Талас (ТА, весенний сезон) — источник загрязнения не известен.

На рисунке 8 в виде графиков представлены значения концентрации изотопов урана U-238 и U-234 в водах всех контролируемых трансграничных рек Казахстана весной и осенью 2017 г.

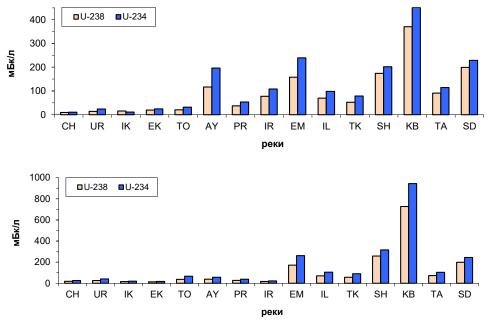


Рис. 8. Результаты радиохимического анализа проб воды, отобранных в бассейнах трансграничных рек Казахстана весной (вверху) и осенью (внизу) 2017 г.

Видно, что наибольшие значения концентрации этих радионуклидов соответствуют рекам Южного и Юго-Восточного Казахстана: р. Шу, р. Емел, р. Сырдария и, особенно, р. Карабалта. Тем не менее, необходимо отметить, что их содержание по радиационному признаку не представляет опасности для живых организмов и окружающей среды, поскольку наибольшее значение концентрации радионуклида U-234 в р. Карабалта весной (452 мБк/л) и осенью (944 мБк/л) 2017 г. составляют весьма незначительную долю (0.161 и 0.337, соответственно) от санитарного норматива РК «Уровень вмешательства» для этого радионуклида в воде (2.8 Бк/л). Вместе с тем, учитывая значительное количество радиоактивных отходов, наработанных специализированными предприятиями (Карабалта, Ак-Тюз, Востокредмет и др.), находящимися в бассейнах этих рек, необходим постоянный контроль радионуклидного и элементного состава их вод.

Результаты микроэлементного анализа методами МС-ИСП и НАА проб воды, отобранных весной и осенью 2017 г. на всех КП (Приложения 17,18, 23, 24), показали, что воды многих рек содержат в себе изученные элементы на уровне, соответствующем их естественной распространенности. Вместе с тем, можно отметить, что наибольшее содержание U (до 60 мкг/л), Мо (до 29 мкг/л) и Sr (до 5340 мкг/л) наблюдается в водах рек Южного и Юго-Восточного Казахстана: р. Емел, р. Шу, р. Карабалта, р. Сырдария (рисунки 9, 10).

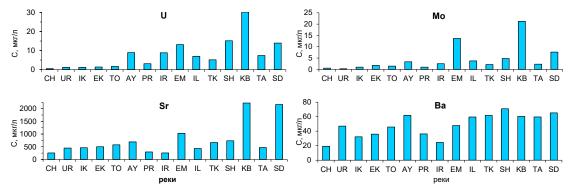


Рис. 9. Содержание U, Mo, Sr, Ba в водах трансграничных рек Казахстана весной 2017 г.

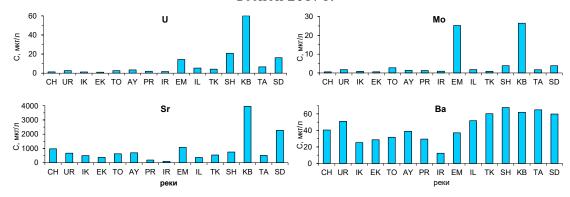


Рис. 10. Содержание U, Mo, Sr, Ba в водах трансграничных рек Казахстана осенью 2017 г.

По данным МС-ИСП установлено, что в весенний период воды следующих рек содержат в себе большие значения концентрации элементов — примесей, отдельные из которых сопоставимы со значениями ПДК_{РК} [Об утверждении Санитарных правил "Санитарно-эпидемиологические требования к водоисточникам, местам водозабора для хозяйственно-питьевых целей, хозяйственно-питьевому водоснабжению и местам культурно-бытового водопользования и безопасности водных объектов" Приказ Министра национальной экономики Республики Казахстан от 16 марта 2015 года №209. Зарегистрирован в Министерстве юстиции Республики Казахстан 22 апреля 2015 года №10774] и (или) ПДК_{ВОЗ} [Guidelines for Drinking Water Quality: incorporating first addendum, Third Edition, World Health Organization. Recommendations — Switzerland, 2013, 595 р.]:

- р. Шаган (СН): Со (ПДК $_{PK}$ = 100 мкг/л) 0.79 мкг/л, Си (ПДК $_{PK}$ = 1000 мкг/л, ПДК $_{BO3}$ = 2000 мкг/л) 7.26 мкг/л, Р (ПДК $_{PK}$, фосфор элементарный = 0.1 мкг/л) 175 мкг/л;
- р. Елек (ЕК): Cr (ПД K_{PK} , Cr⁶⁺ = 50 мкг/л, ПД K_{BO3} = 50 мкг/л) 24.7 мкг/л;
- р. Тобыл (ТО): Li (ПДК $_{PK}$, = 30 мкг/л) 22.8 мкг/л, Ni (ПДК $_{PK}$ = 100 мкг/л, ПДК $_{BO3}$ = 70 мкг/л) 8.35 мкг/л;
- р. Ертис (IR): Al (ПДК_{РК}, Al³⁺ = 500 мкг/л) 571 мкг/л;
- р. Емел (ЕМ):В (ПДК_{РК} = 500 мкг/л, ПДК_{ВОЗ} = 2400 мкг/л) 232 мкг/л,
 V (ПДК_{РК}, = 100 мкг/л) 4.33 мкг/л,
 Zn (ПДК_{РК}, Zn²⁺ = 5000 мкг/л, ПДК_{ВОЗ} = 10 мкг/л) 87.3мкг/л;
 д Ихо (И.):
- р. Иле (IL): Се (ПДК нет) 0,76 мкг/л, La (ПДК нет) 0,40 мкг/л, Nd (ПДК нет) 0,34 мкг/л, Y (ПДК нет) 0,29 мкг/л;

```
• p. Tekec (TK): Pb (\Pi \coprod K_{PK} = 30 \text{ мкг/л}, \Pi \coprod K_{BO3} = 10 \text{ мкг/л}) - 2.5 \text{ мкг/л};
```

• р. Шу (SH): Ва (ПД
$$K_{PK}$$
, Ва²⁺ = 100 мкг/л, ПД K_{BO3} = 700 мкг/л) – 70.9 мкг/л;

Мо (ПД
$$K_{PK} = 250 \text{ мкг/л}$$
, ПД $K_{BO3} = 70 \text{ мкг/л}$) — 21.2 мкг/л,

U (ПД
$$K_{BO3} = 30 \text{ мкг/л}) - 30.2 \text{ мкг/л};$$

• р. Сырдария (SD): As (ПД $K_{PK} = 50 \text{ мкг/л}$, ПД $K_{BO3} = 10 \text{ мкг/л}$) – 3.82 мкг/л.

В осенний период воды следующих рек содержат в себе отдельные элементыпримеси на уровне их концентраций, близких к значению ПДК:

• р. Шаган (CH): As
$$(\Pi \coprod K_{PK} = 50 \text{ мкг/л}, \Pi \coprod K_{BO3} = 10 \text{ мкг/л}) - 6.85 \text{ мкг/л},$$

Li (ПД
$$K_{PK} = 30 \text{ мкг/л}) - 24.4 \text{ мкг/л},$$

Р (ПДК
$$_{PK}$$
, фосфор элементарный = $0.1~{\rm Mkr}/{\rm л}$) – $194~{\rm Mkr}/{\rm л}$,

Zn (ПД
$$K_{PK}$$
, Zn²⁺ = 5000 мкг/л, ПД K_{BO3} = 10 мкг/л) – 26.4 мкг/л;

• р. Елек (IK): Sb (ПД
$$K_{PK}$$
= 50 мкг/л, ПД K_{BO3} = 20 мкг/л) – 1.06 мкг/л;

• р. Елек (ЕК):
$$Cr (\Pi \coprod K_{PK}, Cr^{6+} = 50 \text{ мкг/л}, \Pi \coprod K_{BO3} = 50 \text{ мкг/л}) - 16.7 \text{ мкг/л};$$

• р. Тобыл (ТО): As
$$-4.36$$
 мкг/л, $P - 173$ мкг/л, $Li - 18.1$ мкг/л;

• р. Айет (АҮ): Li
$$-16.0$$
 мкг/л, Mn (ПДК $_{PK} = 100$ мкг/л, ПДК $_{BO3} = 400$ мкг/л) -21 мкг/л;

• р. Емел (ЕМ): Al (ПД
$$K_{PK}$$
, Al³⁺ = 500 мкг/л) – 84мкг/л, As – 4.01 мкг/л,

В (ПД
$$K_{PK} = 500 \text{ мкг/л}$$
, ПД $K_{BO3} = 500 \text{ мкг/л}$) – 227 мкг/л,

$$Cr - 15,3$$
 мкг/л; $Mo - (\Pi \coprod K_{PK}) = 250$ мкг/л, $\Pi \coprod K_{BO3} = 70$ мкг/л)

$$-25.2 \text{ мкг/л}, \text{ U } (\Pi \coprod \text{K}_{\text{BO3}} = 30 \text{ мкг/л}) - 21.7 \text{ мкг/л};$$

• р. Иле (IL): Al
$$-145$$
 мкг/л, Ba (ПДК_{РК}, Ba²⁺ = 100 мкг/л, ПДК_{ВОЗ} = 700

мкг/л) – 51.7 мкг/л,
$$U - 5.3$$
 мкг/л;

• р. Шу (SH): Ag (ПД
$$K_{PK} = 50 \text{ мкг/л}, \Pi$$
Д $K_{BO3} = 20 \text{ мкг/л}) - 7.62 \text{ мкг/л},$

Ba
$$- 67.6$$
 мкг/л, U $- 20.8$ мкг/л;

Мо
$$-26.5$$
 мкг/л, Ni (ПДК_{РК} = 100 мкг/л, ПДК_{ВОЗ} = 70 мкг/л) -8.28 мкг/л, Pb (ПДК_{РК} = 30 мкг/л, ПДК_{ВОЗ} = 10 мкг/л) -0.91 мкг/л, Sr (ПДК_{РК}, Sr²⁺ = 7000 мкг/л) -3957 мкг/л, Zn -21.6

мкг/л,
$$U - 60.1$$
 мкг/л;

• р. Талас (TA): Ba
$$- 64.9$$
 мкг/л, U $- 6.63$ мкг/л;

• р. Сырдария (SD): Ba
$$-59.8$$
, Li -18.1 мкг/л, Ni -7.98 мкг/л,

$$Pb-1.39\ {
m Mkg/p},\ Sr-2277\ {
m Mkg/p},\ Zn-29.4\ {
m Mkg/p},$$

U - 16.2 мкг/л.

Наибольшее содержание рения установлено осенью в водах рек Сырдария (120 нг/л) и Емел (52 нг/л) по данным НАА (Приложение 18).

Считаем необходимым еще раз отметить следующее важное обстоятельство. В нормативных документах Республики Казахстан не приведено значение ПДК для урана

(как химического элемента) в воде. Вместе с тем, в соответствии с рекомендациями Всемирной организации здравоохранения (ВОЗ) по химической опасности уран отнесен к 1-му классу и для его содержания в питьевой воде установлено значение ПДК=30 мкг/л. Принимая во внимание этот норматив, следует отметить, что (по данным анализа методом МС-ИСП проб воды, Приложение 24) содержание урана в воде реки Карабалта (60,1 мкг/л) в 2 раза превышает значение ПДК=30 мкг/л.

В соответствии с Санитарными правилами РК вещества 1-го и 2-го классов опасности обладают свойством суммации, то есть при наличии нескольких веществ опасного класса вычисляется суммарный показатель загрязнения - лимитирующий показатель вредности

$$K_{JIIIB} = \sum_{i=1}^{n} C_i / \prod J K_i$$

для которого сумма отношений обнаруженных концентраций элементов 1-го и 2-го класса опасности к значению их ПДК в воде не должна быть более 1.0. Следуя этому требованию, нами рассчитаны значения $K_{\Pi\Pi B}$ для вод, отобранных весной и осенью во всех изученных источниках. При этом во внимание принимался ограниченный список элементов 2-го класса опасности: Al, As, Sr, Mo, Ba, Pb, Sb, Li, B, V. Результаты приведены в таблицах 2.1 и 2.2.

Таблица 2.1. Значения $K_{ЛЛВ}$ вод трансграничных рек Казахстана по нормативам Республики Казахстан (данные МС-ИСП)

Код пробы	Al C/ПДК	As C/ПДК	Sr C/ПДК	Мо С/ПДК	Ва С/ПДК	Рь С/ПДК	Sb С/ПДК	Li С/ПДК	В С/ПДК	V С/ПДК	К _{ЛПВ} (РК)
CH-WD-21	0,460	0,029	0,037	0,0022	0,19	0,070		0,193	0,084	0,024	1,09
UR-WD-21	0,147	0,026	0,064		0,47	0,027	0,029	0,145	0,083	0,039	1,03
IK-WD-21	0,156	0,037	0,066	0,0040	0,32	0,014		0,324	0,131	0,035	1,09
EK-WD-21	0,080	0,030	0,071	0,0071	0,36	0,057		0,343	0,184	0,043	1,18
TO-WD-21	0,065	0,038	0,082	0,0059	0,46	0,010		0,759	0,244	0,038	1,70
AY-WD-21	0,014	0,028	0,098	0,0133	0,62	0,021		0,315	0,161	0,024	1,29
PR-WD-21	0,009	0,027	0,042	0,0040	0,36	0,049		0,114	0,060	0,009	0,68
IR-WD-21	1,142	0,027	0,037	0,0100	0,24	0,048		0,150	0,076	0,041	1,77
EM-WD-21	0,223	0,075	0,147	0,0548	0,48	0,044	0,010	0,233	0,464	0,043	1,77
IL-WD-21	0,785	0,039	0,062	0,0151	0,59	0,071		0,179	0,092	0,022	1,86
TK-WD-21	0,296	0,023	0,095	0,0085	0,62	0,083		0,201	0,052	0,011	1,39
SH-WD-21	0,620	0,050	0,105	0,0193	0,71	0,014		0,241	0,127	0,025	1,91
KB-WD-21	0,067	0,059	0,317	0,0846	0,60	0,003	0,024	0,599	0,216	0,020	1,99
TA-WD-21	0,120	0,017	0,067	0,0093	0,60	0,003		0,130	0,058	0,007	1,01
SD-WD-21	0,046	0,076	0,309	0,0305	0,65	0,007	0,013	0,590	0,328	0,027	2,08
ПДК, мкг/л	500	50	7000	250	100	30	50	30	500	100	

Таблица 2.2. Значения $K_{_{ЛПВ}}$ вод трансграничных рек Казахстана по нормативам Республики Казахстан (данные МС-ИСП)

Код пробы	Al, С/ПД К	As, С/ПД К	Sr, C/ПД К	Мо, С/ПДК	Ва, С/ПДК	Рь, С/ПДК	Sb, С/ПДК	Li, С/ПДК	В, С/ПДК	V, C/ПДК	К _{ЛПВ} (РК)
CH-WD-22	0,021	0,137	0,139	0,0024	0,405	0,018	0,010	0,813	0,191	0,052	1,79
UR-WD-22	0,029	0,038	0,096	0,0072	0,509	0,010		0,264	0,120	0,038	1,11
IK-WD-22	0,021	0,053	0,071	0,0033	0,252		0,021	0,313	0,118	0,033	0,89
EK-WD-22	0,049	0,044	0,054	0,0025	0,287			0,262	0,113	0,036	0,85

TO-WD-22	0,014	0,087	0,089	0,0110	0,318			0,602	0,176	0,026	1,32
AY-WD-22	0,013	0,041	0,099	0,0057	0,388			0,535	0,155	0,006	1,24
PR-WD-22	0,039	0,030	0,027	0,0053	0,295	0,006		0,095	0,044	0,019	0,56
IR-WD-22	0,011	0,014	0,014	0,0038	0,123		0,015	0,074	0,020	0,016	0,29
EM-WD-22	0,168	0,080	0,154	0,1010	0,370	0,019		0,459	0,454	0,029	1,83
IL-WD-22	0,289	0,040	0,053	0,0073	0,517	0,016		0,148	0,051	0,019	1,14
TK-WD-22	0,237	0,020	0,077	0,0034	0,602	0,015		0,197	0,027	0,011	1,19
SH-WD-22	0,055	0,041	0,107	0,0155	0,676			0,215	0,134	0,022	1,27
KB-WD-22	0,057	0,090	0,565	0,1059	0,618	0,030	0,010	1,137	0,310	0,042	2,96
TA-WD-22	0,038	0,023	0,074	0,0069	0,649			0,172	0,054	0,013	1,03
SD-WD-22	0,034	0,051	0,325	0,0155	0,598	0,046		0,602	0,197	0,026	1,89
ПДК, мкг/л	500	50	7000	250	100	30	50	30	500	100	

Для сравнения такие же расчеты выполнены по значениям ПД K_{BO3} для следующих элементов 1-го и 2-го класса опасности: B, Pb, U, Sb, As, Mo, B (таблицы 2.3 и 2.4).

Таблица 2.3. Значения $K_{_{ЛПВ}}$ вод трансграничных рек Казахстана по нормативам ВОЗ (данные МС-ИСП)

Код пробы	Ba	Pb	U	Sb	As	Mo	В	Клпв
	С/ПДК	С/ПДК	С/ПДК	С/ПДК	С/ПДК	С/ПДК	С/ПДК	(BO3)
CH-WD-21	0,027	0,210	0,015		0,146	0,0079	0,017	0,42
UR-WD-21	0,067	0,080	0,040	0,072	0,130		0,017	0,41
IK-WD-21	0,046	0,043	0,041		0,184	0,0143	0,027	0,35
EK-WD-21	0,051	0,172	0,046		0,152	0,0252	0,038	0,48
TO-WD-21	0,065	0,030	0,057		0,189	0,0210	0,051	0,41
AY-WD-21	0,088	0,064	0,296		0,142	0,0477	0,034	0,67
PR-WD-21	0,052	0,146	0,103		0,136	0,0143	0,013	0,46
IR-WD-21	0,035	0,145	0,294		0,133	0,0357	0,016	0,66
EM-WD-21	0,068	0,131	0,437	0,025	0,377	0,1958	0,097	1,33
IL-WD-21	0,085	0,214	0,231		0,193	0,0539	0,019	0,80
TK-WD-21	0,088	0,250	0,172		0,115	0,0305	0,011	0,67
SH-WD-21	0,101	0,042	0,502		0,250	0,0689	0,026	0,99
KB-WD-21	0,086	0,010	1,007	0,061	0,294	0,3022	0,045	1,81
TA-WD-21	0,085	0,008	0,245		0,083	0,0330	0,012	0,47
SD-WD-21	0,093	0,022	0,462	0,032	0,382	0,1090	0,068	1,17
ПДК, мкг/л	700	10	30	20	10	70	2400	

Таблица 2.4. Значения $K_{_{ЛІІВ}}$ вод трансграничных рек Казахстана по нормативам ВОЗ (данные МС-ИСП)

Код пробы	Ва, С/ПДК	Рь, С/ПДК	U, С/ПДК	Sb, С/ПДК	As, C/ПДК	Мо, С/ПДК	В, С/ПДК	К _{ЛПВ} (ВОЗ)
CH-WD-22	0,058	0,055	0,046	0,026	0,685	0,0086	0,040	0,92
UR-WD-22	0,073	0,029	0,090		0,189	0,0256	0,025	0,43
IK-WD-22	0,036		0,042	0,053	0,265	0,0117	0,025	0,43
EK-WD-22	0,041		0,034		0,218	0,0089	0,024	0,33
TO-WD-22	0,045		0,089		0,436	0,0393	0,037	0,65
AY-WD-22	0,055		0,115		0,203	0,0204	0,032	0,43
PR-WD-22	0,042	0,018	0,065		0,152	0,0190	0,009	0,31
IR-WD-22	0,018		0,055	0,037	0,072	0,0136	0,004	0,20
EM-WD-22	0,053	0,058	0,722		0,401	0,3606	0,095	1,69
IL-WD-22	0,074	0,049	0,177		0,200	0,0259	0,011	0,54
TK-WD-22	0,086	0,044	0,142		0,102	0,0121	0,006	0,39
SH-WD-22	0,097		0,694		0,206	0,0552	0,028	1,08

KB-WD-22	0,088	0,091	2,004	0,026	0,448	0,3784	0,065	3,10
TA-WD-22	0,093		0,221		0,117	0,0247	0,011	0,47
SD-WD-22	0,085	0,139	0,540		0,253	0,0554	0,041	1,11
ПДК, мкг/л	700	10	30	20	10	70	2400	

Результаты, представленные в Таблицах 2.1-2.4, свидетельствуют о том, что по показателю $K_{\it ЛПВ}$ воды трансграничных рек РК находятся в критическом состоянии. По нормативам РК показатель $K_{\it ЛПВ}$ для вод этих рек весной на 14-ти контрольных пунктах (КП) и осенью — на 11-ти КП из 15-ти превышает санитарное значение 1.0. По нормам ВОЗ превышение показателя $K_{\it ЛПВ}$ наблюдается весной на 3-х КП и осенью на 4-х КП трансграничных рек Казахстана. При этом существенный вклад в показатель $K_{\it ЛПВ}$ вносит уран. Существенное различие в показателях $K_{\it ЛПВ}$ ВОЗ и РК объясняется введением ВОЗ новых временных нормативов ПДК для U (30 мкг/л, вместо 15 мкг/л) и В (2400 мкг/л, вместо 500 мкг/л).

К изложенному следует добавить, что в отчетный период, по взаимной договоренности заказчика (РГП «Казгидромет») и исполнителя (РГП «ИЯФ»), весной на 9-ти КП (СН, UR, IK, EK, TO, AY, PR, IR, EM) и осенью на 6-ти КП (IL, TK, SH, KB, TA, SD) дополнительно были отобраны и доставлены в ИЯФ для аналитических исследований 90 проб прибрежной почвы. На каждом КП пробы почвы были отобраны послойно из следующих 6-ти горизонтов, см: 0-5, 5-10, 10-20, 20-30, 30-40, 40-50. Выполнены работы по изучению радионуклидного и элементного составов всех этих проб методом ИГС и РФА. Результаты представлены в Приложениях 25-28, соответственно.

На основе полученных данных рассчитаны значения концентрации всех радионуклидов и химических элементов в следующих двух слоях почвы: (0-10) см и (10-50) см. Путем сравнения (с учетом ошибок анализов) полученных значений установлено, что во многих случаях они совпадают. Вместе с тем, выявлено заметное превышение концентрации отдельных радионуклидов и элементов в верхнем слое (0-10 см) над нижним (10-50 см) на следующих КП (в скобках приведено значение этого превышения в %):

- p. Шаган (CH) K (6.0 %), Zn (5.9%), As (97 %), ⁴⁰K(7.6 %);
- р. Жайык (UR) Ba (50 %);
- р. Елек (IK) Ni (10 %), Pb (54 %), ²²⁸Ac (5.9 %);
- р. Тобыл (TO) Ca (35 %), Mn (15 %), ²³⁴Th (5.5 %);
- р. Айет (AY) Rb (4.5 %);
- р. Ертис (PR) Ca (18 %), Cu (28 %), Zn (52 %), Br (22 %), Rb (2.3 %), Sr (6.0 %);
- р. Емел (EM) Ca (26 %);
- р. Иле (IL) Zr (17 %), Ba (17 %);
- p. Tekec (TK) Cr (42 %), Ni (12%), Zn (12 %), Ba (12 %);
- р. Талас (TA) Zn (16 %);
- р. Сырдария (SD) Br (87 %), Ba (17 %), Pb (35 %).

Таким образом, выполненный эксперимент позволил обнаружить значительное загрязнение поверхности почвы отдельными элементами на следующих КП: СН – мышьяком, UR – барием, IK – свинцом, PR – цинком, медью и бромом, TO и EM – кальцием, TK – хромом, SD – бромом и свинцом.

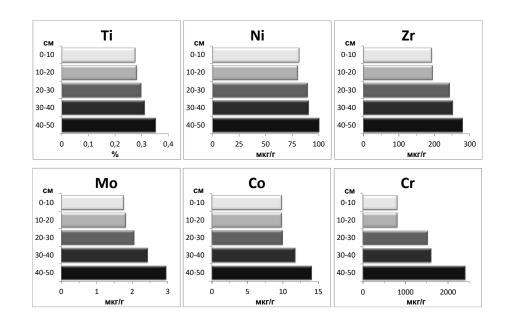


Рис. 11. Распределение отдельных элементов по глубине почвы на побережье р. Урал весной 2017 г. (данные РФА)

Таким образом (следуя рис. 11), по данным элементного анализа, полученным методом РФА, послойных проб почвы, была установлена тенденция увеличения концентрации отдельных элементов по мере продвижения в глубину почвы на побережье р. Жайык (UR). В связи с этим, по согласованию заказчика и исполнителя, было принято решение о необходимости более детального изучения характера их распределения (как по глубине, так и по площади) на берегу этой реки. Для этого, в процессе осеннего отбора, были заложены 4 шурфа глубиной до 1 м, из которых были отобраны пробы почвы по следующим 11 слоям, см: 0-5, 5-10, 10-20, 20-30, 30-40, 40-50, 50-60, 60-70, 70-80, 80-90, 90-100. При этом основной шурф «А» было запланировано заложить на месте отбора проб почвы в период проведения весенней экспедиции. Второй шурф «В» разместить на расстоянии ~ 50 м от шурфа «А» выше по течению и вдоль р. Жайык, третий шурф «С» — также на расстоянии 50 м от шурфа «А» вдоль р. Жайык, но ниже по течению. Четвертый шурф «D» было запланировано заложить на расстоянии 50 м от шурфа «А» в направлении, противоположном р. Жайык.

Методом РФА изучен элементный состав 44 проб почвы, отобранных методом шурфа на берегу р. Жайык (Приложение 29). На основе полученных данных были рассчитаны средние значения концентрации всех элементов для слоев почвы 0-10 см, 0-50 см и 0-100 см (для каждого шурфа в отдельности). Сравнение полученных результатов с результатами 21-ой экспедиции свидетельствует о существенной разнице, как по содержанию, так и по распределению изученных элементов в почве на этой территории в весенний и осенний сезоны. Наиболее контрастно это различие проявляется для хрома (таблица 2.5, рисунки 12, 13).

Таблица 2.5. Содержание хрома в различных слоях почвы на побережье р. Жайык (данные РФА)

Слой почвы, см	Шурф А	Шурф В	Шурф С	Шурф D	Среднее	весна
0 – 10	370	290	420	395	369	790
0 - 50	334	490	472	493	447	1418
0 - 100	379	452	480	522	458	

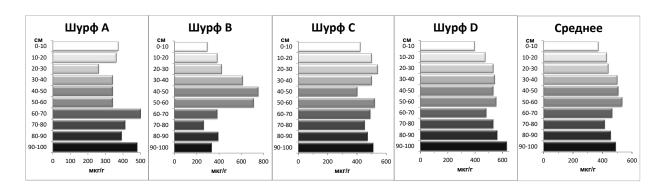


Рис. 12. Распределение хрома по глубине почвы на побережье р. Урал осенью 2017 г. (данные РФА)

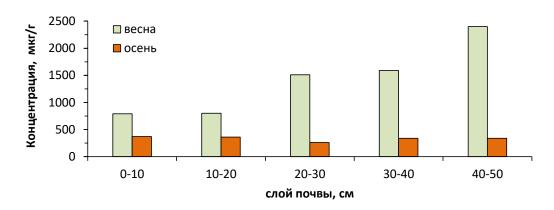


Рис. 13. Распределение хрома по глубине почвы на побережье р. Урал (шурф A) весной и осенью 2017 г. (данные РФА)

Полученные результаты не дают однозначного ответа на вопрос относительно источника и механизма загрязнения побережья р. Урал хромом, а также о степени опасности этого загрязнения для окружающей среды и живых организмов. Для выяснения этих вопросов необходимо выполнить более детальное обследование этой территории.

Основные результаты и выводы

- 1. Методом инструментальной гамма-спектрометрии (ИГС) выполнен радионуклидный анализ образцов почвы, донных отложений, а также растворимых и нерастворимых компонентов образцов воды, отобранных на 15-ти КП в бассейнах трансграничных рек Казахстана весной и осенью 2017 г.
- 2. Методом рентгенофлуоресцентного анализа (РФА) выполнено определение элементного состава образцов почвы и донных отложений, отобранных на 15-ти КП в бассейнах трансграничных рек Казахстана весной и осенью 2017 г.
- 3. Методом нейтроноактивационного анализа (НАА) выполнено определение элементного состава образцов почвы и донных отложений, а также растворимых (WD) и нерастворимых (WS) компонентов образцов воды, отобранных на 15-ти КП в бассейнах трансграничных рек Казахстана весной и осенью 2017 г.
- 4. Методом радиохимического анализа (РХА) определены концентрации радионуклидов U-234, U-238 и Ra-226 в растворимых компонентах (WD) образцов воды, отобранных на 15-ти КП в бассейнах трансграничных рек Казахстана весной и осенью 2017 г.
- 5. Методом масс-спектрометрии с индуктивно-связанной плазмой (МС-ИСП) выполнен элементный анализ растворимых (WD) компонентов образцов воды, отобранных на 15-ти КП в бассейнах трансграничных рек Казахстана весной и осенью 2017 г.
- 6. На основе новых данных, полученных методом ИГС, подтвержден ранее сделанный вывод о том, что среди мониторинговых КП наибольшие значения концентрации естественных радионуклидов соответствуют почвам и донным отложениям рек Южного и Юго-Восточного Казахстана: Текес, Иле, Шу, Карабалта, Талас, Сырдария. Кроме того, значительное содержание ЕРН обнаружено в донных отложениях р. Ертис (PR) близ границы с Россией.. На этом КП содержание в донных отложениях практически всех ЕРН семейств ²³⁸U и ²³²Th примерно в 2 раза больше, чем в верховье этой реки на контрольном пункте IR. Это означает, что р. Ертис загрязняется этими ЕРН на территории Казахстана.
- 7. На основе новых данных, полученных методами РФА и НАА, подтвержден ранее наибольшее сделанный вывод o TOM, ОТР содержание щелочноземельных элементов (K, Ca, Rb, Cs, Sr, Ba) наблюдается в почве и донных отложениях рек Южного и Юго-Восточного Казахстана. Кроме того, в донных отложениях, отобранных в осенний сезон на р. Айет, обнаружено весьма значительное содержание мышьяка. В донных отложениях, отобранных в р. Ертис на контрольном пункте PR, обнаружено наличие в повышенных (в 2-4 раза больше, чем на контрольном пункте IR) концентрациях более 20-ти элементов, включая РЗМ и такие токсичные элементы, как As, Zn, Sb, U. Показано также, что наиболее загрязненными химическими элементами являются русла рек Ертис (Павлодарская область), Айет, Шу, Карабалта и Талас. Для выявления источников и выяснения механизмов загрязнения всех этих рек необходимо проведение специальных дополнительных исследований.
- 8. На основе новых данных, полученных методом радиохимического анализа (РХА), подтвержден ранее сделанный вывод о том, что наибольшее значение содержания изотопов урана U-234 и U-238 соответствует водам рек Южного, Восточного и Юго-Восточного Казахстана: р. Карабалта, р. Шу, р. Емел, р. Сырдария. Вместе с тем, показано, что по радиационному признаку это загрязнение не представляет опасности для живых организмов и окружающей среды.

- 9. На основе новых данных, полученных методами НАА и МС-ИСП, подтвержден ранее сделанный вывод о том, что водам рек Южного и Юго-Восточного Казахстана (Емел, Шу, Карабалта и Сырдария) соответствуют наиболее высокие значения содержания таких токсичных элементов, как Sr, Мо и U. Установлено также, что в соответствии с нормативами РК показатель суммарной токсичности речных вод на многих контрольных пунктах (от 14 до 15), превышает нормативное значение, предусмотренное Санитарными правилами РК. Такие воды не могут быть использованы для питья без согласования с соответствующими надзорными органами РК.
- 10. На основе новых данных, полученных методами ИГС и РФА, изучено содержание и распределение многих радионуклидов и химических элементов по глубине почвы на всех 15-ти контрольных пунктах, предусмотренных системой мониторинга. Выполненный эксперимент, несомненно, оказался полезным, поскольку позволил получить новую информацию о радионуклидной и химической загрязненности поверхности почвы на отдельных контрольных пунктах мониторинга трансграничных рек Казахстана.

В целом, все полученные результаты свидетельствуют о необходимости продолжения работ по радиационному и гидрохимическому мониторингу трансграничных рек Казахстана, а также о целесообразности постановки дополнительных специальных исследований, направленных на изучение уровня, а также источников и механизмов выявленных загрязнений отдельных участков этих рек, характеризующихся повышенным содержанием ЕРН и токсичных элементов.

Результаты гамма-спектрометрического анализа проб почвы, отобранных в бассейнах трансграничных рек Казахстана весной 2017 г.

Образец	Th-234, Бк/кг	Ra-226, Бк/кг	Pb-214, Бк/кг	Ві-214, Бк/кг	Pb-210, Бк/кг	Ас-228, Бк/кг	Ra-224, Бк/кг	Pb-212, Бк/кг	Ві-212, Бк/кг	Tl-208, Бк/кг
CH-S21	$22,1 \pm 2,3$	$25,8 \pm 3,6$	$21,2 \pm 2,0$	$19,4 \pm 1,9$	$21,6 \pm 3,0$	$29,4 \pm 2,7$	$29,7 \pm 3,5$	$30,8 \pm 2,6$	$28,9 \pm 3,1$	$29,2 \pm 2,3$
UR-S21	$13,8 \pm 1,8$	$14,1 \pm 2,7$	$12,0 \pm 1,8$	$11,2 \pm 1,7$	$27,9 \pm 3,1$	$12,3 \pm 2,2$	$15,5 \pm 2,7$	$14,1 \pm 1,4$	$16,8 \pm 2,5$	$14,1 \pm 2,0$
IK-S21	$12,4 \pm 2,5$	$24,6 \pm 4,6$	$15,1 \pm 1,1$	$15,1 \pm 1,9$	$87,9 \pm 6,3$	$25,1 \pm 1,7$	$23,7 \pm 3,9$	$23,7 \pm 1,6$	$22,3 \pm 3,7$	24.8 ± 2.6
EK-S21	$13,6 \pm 1,9$	$18,0\pm2,9$	$13,1\pm1,8$	$13,5 \pm 1,7$	$40,2 \pm 3,6$	$10,7\pm2,1$	$8,5 \pm 3,7$	$11,8 \pm 1,4$	$15,3 \pm 2,3$	$10,0 \pm 1,8$
TO-S21	$16,0 \pm 2,6$	$24,7 \pm 5,0$	$19,4 \pm 1,2$	$16,0 \pm 1,9$	$52,4 \pm 5,5$	$26,3 \pm 1,8$	$27,9 \pm 4,3$	$23,5 \pm 1,6$	$29,7 \pm 4,1$	$26,4 \pm 2,7$
AY-S21	$13,6 \pm 2,5$	$30,5 \pm 4,6$	$19,2 \pm 1,1$	$18,4 \pm 1,9$	$46,5 \pm 5,4$	$27,4 \pm 1,7$	$27,9 \pm 3,9$	$21,8 \pm 1,6$	$23,0 \pm 3,5$	$27,2 \pm 2,6$
PR-S21	$17,9 \pm 2,2$	$22,3 \pm 3,0$	$18,0\pm2,0$	$15,4 \pm 1,8$	$34,9 \pm 3,3$	$21,8 \pm 2,5$	$21,0 \pm 2,4$	$23,8 \pm 2,5$	$19,2 \pm 2,7$	$22,3 \pm 2,2$
IR-S21	$13,8 \pm 2,7$	$32,9 \pm 5,2$	$25,5 \pm 1,3$	$24,1 \pm 1,1$	$58,6 \pm 5,8$	$33,\!4\pm2,\!0$	$29,6 \pm 4,5$	$29,4 \pm 1,7$	$24,1\pm4,0$	$31,6 \pm 2,8$
EM-S21	$15,1 \pm 1,9$	$17,3 \pm 3,1$	$15,8 \pm 1,9$	$14,4 \pm 1,8$	$28,7 \pm 3,2$	$14,4 \pm 2,3$	$17,0 \pm 2,2$	$17,0\pm1,4$	$20,6 \pm 2,7$	$15,3 \pm 2,0$
IL-S21	$23,7 \pm 2,8$	$23,9 \pm 4,9$	$29,3 \pm 1,3$	$25,2 \pm 1,0$	$94,2 \pm 6,3$	$29,2 \pm 1,8$	$29,0 \pm 4,4$	$32,0 \pm 1,7$	$34,8 \pm 4,1$	$36,2 \pm 2,8$
TK-S21	$32,9 \pm 2,5$	$39,6 \pm 3,9$	$31,3 \pm 2,2$	$29,6 \pm 2,0$	$45,1 \pm 3,5$	$43,5\pm4,0$	$49,2 \pm 5,0$	$45,1 \pm 4,6$	$45,6 \pm 3,5$	$43,1 \pm 3,5$
SH-S21	$41,7 \pm 3,0$	$50,7 \pm 4,0$	$42,5\pm3,4$	$40,3 \pm 3,2$	$53,2 \pm 4,0$	$53,9 \pm 4,2$	$54,4 \pm 5,8$	$52,9 \pm 5,7$	$47,4 \pm 3,7$	$52,2 \pm 5,7$
KB-S21	$37,3 \pm 2,8$	$38,0 \pm 3,7$	$36,3 \pm 3,3$	$34,8 \pm 2,1$	$45,6 \pm 3,7$	$41,\!4\pm3,\!9$	$52,5 \pm 5,1$	$44,5\pm4,6$	$46,1 \pm 3,5$	$39,4 \pm 3,5$
TA-S21	$28,6 \pm 3,3$	$32,6 \pm 5,9$	$28,8\pm1,5$	$30,8 \pm 1,3$	$55,5 \pm 6,4$	$50,0 \pm 2,6$	$41,8 \pm 5,4$	$43,7\pm1,9$	$53,5 \pm 5,2$	$46,6 \pm 2,4$
SD-S21	$21,0 \pm 2,7$	$42,5\pm5,0$	$31,9\pm1,3$	$28,\!4\pm1,\!0$	$80,6\pm6,0$	$38,1\pm1,9$	$35,5 \pm 4,2$	$34,8 \pm 1,7$	$30,8\pm3,8$	$37,9 \pm 2,8$

Образец	U-235, Бк/кг	ТН-227, Бк/кг	К-40, Бк/кг	Cs-137, Бк/кг
CH-S21	$1,04 \pm 0,22$	< 1,10	806 ± 18	< 0,28
UR-S21	$0,66 \pm 0,16$	< 0,91	409 ± 13	$0,42 \pm 0,16$
IK-S21	$0,60 \pm 0,28$	< 1,50	506 ± 17	$20,84 \pm 0,65$
EK-S21	$0,64 \pm 0,17$	$1,20 \pm 0,63$	364 ± 12	$0,80 \pm 0,16$
TO-S21	$0,74 \pm 0,30$	< 1,56	413 ± 17	$16,66 \pm 0,61$
AY-S21	$0,65 \pm 0,27$	< 1,40	492 ± 16	$3,08 \pm 0,33$
PR-S21	$0,\!84\pm0,\!18$	< 1,00	552 ± 15	$3,\!97 \pm 0,\!27$
IR-S21	$0,66 \pm 0,31$	$1{,}79 \pm 0{,}98$	540 ± 19	$5,58 \pm 0,42$
EM-S21	$0,75\pm0,19$	< 0,95	752 ± 17	< 0,24
IL-S21	$1,13 \pm 0,30$	< 1,49	562 ± 18	$6,78 \pm 0,43$
TK-S21	$1,\!46\pm0,\!23$	$1,93\pm0,68$	764 ± 17	$7,\!50 \pm 0,\!34$
SH-S21	$1,88 \pm 0,24$	$2,60 \pm 0,75$	900 ± 18	< 0,29
KB-S21	$1{,}73 \pm 0{,}22$	$1{,}58 \pm 0{,}69$	788 ± 17	$0,\!31\pm0,\!18$
TA-S21	$1,\!30\pm0,\!36$	$2,\!69\pm1,\!19$	669 ± 22	$8,\!85 \pm 0,\!56$
SD-S21	$0,96 \pm 0,29$	$1,89 \pm 0,91$	493 ± 16	$1,92 \pm 0,29$

Результаты гамма-спектрометрического анализа проб почвы, отобранных в бассейнах трансграничных рек Казахстана осенью 2017 г.

Образец	Th-234, Бк/кг	Ra-226, Бк/кг	Pb-214, Бк/кг	Ві-214, Бк/кг	Pb-210, Бк/кг	Ас-228, Бк/кг	Ra-224, Бк/кг	Pb-212, Бк/кг	Ві-212, Бк/кг	T1-208, Бк/кг	U-235, Бк/кг
CH-S22	$18,2 \pm 1,6$	$19,5 \pm 2,7$	$20,1 \pm 2,0$	$19,4 \pm 0,9$	$81,0 \pm 7,3$	$27,0 \pm 2,6$	$27,8 \pm 2,8$	$24,8 \pm 0,5$	$33,2 \pm 6,4$	$25,5 \pm 3,0$	0.85 ± 0.16
UR-S22	$12,5 \pm 2,2$	$24,7 \pm 3,9$	$19,0 \pm 1,7$	$17,1 \pm 1,2$	122 ± 10	$22,1 \pm 2,1$	$15,4 \pm 3,5$	$19,8 \pm 0,6$	$29,1 \pm 5,4$	$19,2 \pm 2,3$	$0,58 \pm 0,22$
IK-S22	$14,4 \pm 1,9$	$19,5 \pm 1,9$	$19,1 \pm 1,6$	$17,0 \pm 1,5$	$62,4 \pm 5,7$	$22,0 \pm 1,9$	$21,5 \pm 2,7$	$20,0 \pm 0,3$	$26,0 \pm 5,1$	$18,3 \pm 2,6$	$0,68 \pm 0,11$
EK-S22	$10,0 \pm 1,5$	$14,2 \pm 2,8$	$11,1 \pm 1,9$	$11,2 \pm 1,8$	$17,2 \pm 2,5$	$8,8 \pm 1,2$	$6,9 \pm 2,1$	$8,8 \pm 1,3$	$13,6 \pm 3,4$	$9,2 \pm 1,9$	$0,45 \pm 0,16$
TO-S22	$13,1 \pm 2,1$	$26,0\pm4,1$	$16,2 \pm 1,3$	$14,6 \pm 1,1$	$32,3 \pm 3,5$	$25,4 \pm 2,2$	$23,6 \pm 3,5$	$23,4 \pm 2,7$	$23,3 \pm 5,4$	$24,1 \pm 2,4$	$0,59 \pm 0,23$
AY-S22	$20,1 \pm 2,7$	$23,9 \pm 4,0$	$16,2 \pm 1,3$	$16,1 \pm 1,2$	$23,5 \pm 3,4$	$19,8\pm2,0$	$16,0 \pm 3,2$	$19,2 \pm 1,6$	$24,9 \pm 4,3$	$17,3 \pm 1,3$	$0,92 \pm 0,24$
PR-S22	$16,0 \pm 2,5$	$19,7 \pm 4,1$	$16,5 \pm 1,4$	$15,3 \pm 1,2$	$29,0 \pm 3,9$	$26,5 \pm 2,4$	$23,6 \pm 3,6$	$24,3 \pm 2,7$	$26,5 \pm 5,6$	$24,5 \pm 2,5$	$0,\!77 \pm 0,\!24$
IR-S22	$18,3 \pm 2,7$	$30,2 \pm 4,7$	$23,5 \pm 2,6$	$23,7\pm2,4$	$44,7 \pm 4,4$	$36,6 \pm 3,8$	$43,1 \pm 4,3$	$37,2 \pm 3,9$	$53,9 \pm 7,0$	$37,7 \pm 3,2$	$0,\!86 \pm 0,\!27$
EM-S22	$18,1 \pm 2,5$	$30,9 \pm 4,4$	$18,9\pm2,4$	$18,1 \pm 1,3$	$23,4 \pm 3,6$	$20,8\pm2,8$	$26,9 \pm 3,6$	$21,2 \pm 2,7$	$25,1 \pm 5,2$	$19,8 \pm 1,4$	0.83 ± 0.25
IL-S22	$29,5 \pm 3,2$	$36,2 \pm 5,1$	$28,8 \pm 2,7$	$27,4 \pm 2,5$	$45,9 \pm 4,7$	$37,3 \pm 3,9$	$42,6 \pm 4,6$	$37,4 \pm 3,9$	$43,8 \pm 5,8$	$35,3 \pm 3,9$	$1,35 \pm 0,30$
TK-S22	$31,0 \pm 3,1$	$38,2 \pm 5,2$	$34,7 \pm 3,8$	$31,4 \pm 2,6$	$57,8 \pm 5,9$	$52,6 \pm 5,2$	$46,8 \pm 4,6$	$44,7 \pm 3,9$	$53,6 \pm 7,5$	$41,6 \pm 4,3$	$1,48 \pm 0,30$
SH-S22	$39,8 \pm 3,9$	$57,0 \pm 5,4$	$41,0\pm4,1$	$38,0\pm3,0$	$53,6 \pm 4,7$	$51,9 \pm 4,8$	$50,5 \pm 5,6$	$51,8 \pm 4,5$	$55,2 \pm 4,9$	$48,5 \pm 4,4$	$1,\!86\pm0,\!20$
KB-S22	$33,4\pm3,3$	$42,1 \pm 5,0$	$33,7\pm3,8$	$36,3 \pm 3,7$	$36,9 \pm 4,2$	$48,9 \pm 4,0$	$47,8 \pm 4,6$	$44,5\pm3,9$	$49,3 \pm 6,5$	$46,4\pm4,4$	$1,53 \pm 0,29$
TA-S22	$24,2 \pm 2,5$	$33,2 \pm 3,7$	$28,2\pm2,5$	$26,9\pm2,3$	$71,7 \pm 6,6$	$37,\!4\pm3,\!1$	$38,\!4\pm3,\!9$	$40,3\pm3,8$	$44,1\pm5,8$	$37,3 \pm 4,0$	$1{,}15\pm0{,}22$
SD-S22	$28,9\pm3,0$	$30,\!4\pm4,\!7$	$31,3 \pm 3,7$	$29,1 \pm 2,5$	$61,4 \pm 5,8$	$40,4\pm3,8$	$35,6 \pm 4,2$	$37,5 \pm 3,8$	$56,4 \pm 6,8$	$35,9 \pm 3,2$	$1,36 \pm 0,28$

Ognanari	Th-227,	K-40,	Cs-137,
Образец	Бк/кг	Бк/кг	Бк/кг
CH-S22	< 1,0	587 ± 41	$1,7 \pm 0,2$
UR-S22	< 1,3	475 ± 45	$14,6 \pm 1,6$
IK-S22	< 1,2	455 ± 47	$7,2 \pm 0,2$
EK-S22	< 0,9	369 ± 33	0.6 ± 0.2
TO-S22	< 1,4	381 ± 34	$2,0 \pm 0,3$
AY-S22	< 1,4	368 ± 34	$4,5\pm0,4$
PR-S22	< 1,4	469 ± 46	$3,4 \pm 0,4$
IR-S22	$2,1 \pm 0,9$	564 ± 51	0.8 ± 0.3
EM-S22	< 1,4	649 ± 61	$0,4 \pm 0,3$
IL-S22	$2,2 \pm 1,0$	736 ± 63	0.7 ± 0.3
TK-S22	$3,2 \pm 1,0$	724 ± 72	7.8 ± 0.5
SH-S22	$1,7 \pm 0,5$	821 ± 73	0.6 ± 0.2
KB-S22	< 1,6	810 ± 73	< 0,4
TA-S22	$1,5 \pm 0,9$	714 ± 60	$4,9\pm0,4$
SD-S22	< 1,5	492 ± 49	$3,0 \pm 0,4$
			· · · · · · · · · · · · · · · · · · ·

Результаты гамма-спектрометрического анализа проб донных отложений, отобранных в бассейнах трансграничных рек Казахстана весной 2017 г.

Образец	Th-234, Бк/кг	Ra-226, Бк∕кг	Pb-214, Бк/кг	Ві-214, Бк/кг	Рb-210, Бк∕кг	Ас-228, Бк/кг	Ra-224, Бк∕кг	Рb-212, Бк∕кг	Ві-212, Бк/кг	ТІ-208, Бк/кг
CH-B21	$15,2 \pm 1,5$	$25,5 \pm 2,5$	$16,1 \pm 1,7$	$16,8 \pm 1,6$	$73,5 \pm 3,0$	$25,0 \pm 2,1$	$23,8 \pm 2,3$	24.8 ± 1.4	$26,2 \pm 2,1$	$24,3 \pm 1,9$
UR-B21	$12,9 \pm 1,2$	$20,3 \pm 1,9$	$15,0 \pm 1,6$	$14,5 \pm 1,5$	$23,5 \pm 2,0$	$16,8 \pm 1,9$	$16,9 \pm 1,9$	$18,5 \pm 1,3$	$17,4 \pm 1,6$	$17,9 \pm 1,7$
IK-B21	$16,2 \pm 1,7$	$36,8 \pm 3,2$	$19,0 \pm 1,7$	$17,9 \pm 1,6$	$54,3 \pm 3,6$	$28,6 \pm 1,2$	$30,5 \pm 2,7$	$25,7 \pm 1,4$	$27,8 \pm 2,4$	$28,5 \pm 2,1$
EK-B21	$12,5 \pm 1,2$	$10,8\pm1,8$	$12,5 \pm 1,6$	$11,2 \pm 1,4$	$14,5 \pm 1,8$	$7,2 \pm 1,1$	$8,8 \pm 1,6$	$6,6 \pm 1,2$	$10,2 \pm 1,4$	$6,1 \pm 1,5$
TO-B21	$13,6 \pm 1,7$	$21,7 \pm 3,1$	$13,9 \pm 1,7$	$13,1 \pm 1,6$	$27,0 \pm 3,3$	$22,7 \pm 1,1$	$25,2 \pm 2,7$	$21,2 \pm 1,4$	$20,3 \pm 2,5$	$21,9 \pm 2,0$
AY-B21	$11,9 \pm 1,7$	$27,5 \pm 3,1$	$19,0 \pm 1,7$	$17,3 \pm 1,6$	$32,4 \pm 3,4$	$22,4 \pm 1,1$	$19,7 \pm 2,5$	$20,8 \pm 1,4$	$20,7 \pm 2,3$	$22,0\pm2,0$
PR-B21	$27,2 \pm 1,6$	$42,4 \pm 2,5$	$27,2 \pm 1,8$	$24,8 \pm 1,7$	$46,8 \pm 2,5$	$42,6\pm4,4$	$42,\!4\pm4,\!0$	$42,7\pm4,4$	$44,5 \pm 2,4$	$40,2\pm4,1$
IR-B21	$8,9 \pm 1,5$	$10,3 \pm 2,5$	$8,5 \pm 1,6$	$7,0 \pm 1,4$	$17,9 \pm 2,8$	$10,5\pm0,8$	$14,9 \pm 2,1$	$11,1 \pm 1,3$	$12,9 \pm 2,0$	$12,2 \pm 1,8$
EM-B21	$14,3 \pm 1,3$	$22,2 \pm 2,1$	$15,5 \pm 1,6$	$15,6 \pm 1,5$	$22,6 \pm 2,1$	$19,5 \pm 1,9$	$17,7 \pm 1,5$	$17,8 \pm 1,3$	$17,3 \pm 1,7$	$17,6 \pm 1,7$
IL-B21	$23,3 \pm 1,6$	$35,3 \pm 2,9$	$29,4 \pm 1,7$	$27,6 \pm 1,6$	$42,5 \pm 3,1$	$38,5 \pm 1,1$	$33,2 \pm 2,5$	$36,0 \pm 1,4$	$36,2 \pm 2,4$	40.8 ± 2.1
TK-B21	$30,7 \pm 1,5$	$40,6 \pm 2,2$	$28,2 \pm 1,7$	$26,2 \pm 1,6$	$46,3 \pm 2,1$	$38,0 \pm 3,1$	$36,7 \pm 3,6$	$37,9 \pm 3,3$	$39,6 \pm 1,9$	$34,0 \pm 2,8$
SH-B21	$33,2 \pm 1,8$	$48,6\pm2,6$	$36,0 \pm 2,9$	$34,9 \pm 2,8$	$49,3 \pm 2,7$	$47,2 \pm 3,4$	$49,8\pm4,5$	$48,5\pm4,5$	$53,1 \pm 2,5$	$44,6 \pm 4,1$
KB-B21	$34,5 \pm 1,8$	$41,8 \pm 2,5$	$38,0 \pm 2,9$	$35,2 \pm 2,8$	$42,4\pm2,5$	$40,6\pm4,3$	$41,2\pm4,0$	$42,\!4\pm4,\!4$	$41,0 \pm 2,3$	$39,9 \pm 4,1$
TA-B21	$28,\!4\pm1,\!9$	$24,7\pm3,3$	$18,2\pm1,8$	$17,1 \pm 1,6$	$79,6 \pm 4,2$	$40,8\pm1,4$	$37,4 \pm 2,9$	$35,8 \pm 1,5$	$31,4 \pm 2,7$	$39,6 \pm 3,3$
SD-B21	$26,8 \pm 1,9$	$47,5\pm3,6$	$33,3 \pm 1,9$	$29,8\pm1,7$	$80,3\pm4,2$	$37,8\pm1,3$	$35{,}9\pm3{,}0$	$36,6 \pm 1,5$	$40,6\pm2,9$	$40,5\pm3,3$

Образец	U-235, Бк/кг	ТН-227, Бк/кг	К-40, Бк/кг	Cs-137, Бк/кг
CH-B21	0.69 ± 0.14	$1,73 \pm 0,50$	652 ± 12	$1,59 \pm 0,15$
UR-B21	0.63 ± 0.11	$1,07 \pm 0,39$	358 ± 8	$0,22 \pm 0,10$
IK-B21	0.73 ± 0.19	$1,35 \pm 0,57$	523 ± 11	$0,60 \pm 0,16$
EK-B21	0.61 ± 0.11	< 0,57	244 ± 7	0.19 ± 0.09
TO-B21	$0,60 \pm 0,18$	< 0,97	330 ± 10	$1,85 \pm 0,20$
AY-B21	$0,57 \pm 0,18$	$1,12 \pm 0,59$	393 ± 10	$0,57 \pm 0,17$
PR-B21	$1,27 \pm 0,15$	$1,06 \pm 0,46$	629 ± 11	$0,49 \pm 0,13$
IR-B21	$0,49 \pm 0,15$	< 0,85	375 ± 10	< 0,21
EM-B21	$0,71\pm0,12$	$1,\!37 \pm 0,\!40$	726 ± 11	< 0,16
IL-B21	$1{,}11\pm0{,}17$	$1,50 \pm 0,54$	588 ± 10	$0,66 \pm 0,15$
TK-B21	$1,\!43\pm0,\!13$	$1,\!42\pm0,\!38$	718 ± 9	$1,11\pm0,12$
SH-B21	$1,\!54\pm0,\!15$	$2,\!49 \pm 0,\!49$	834 ± 12	$0,73 \pm 0,14$
KB-B21	$1,\!65\pm0,\!15$	$2,\!27 \pm 0,\!48$	703 ± 11	$0,\!48\pm0,\!13$
TA-B21	$1,\!33\pm0,\!20$	< 0,99	363 ± 10	$2,\!90 \pm 0,\!22$
SD-B21	$1,26 \pm 0,21$	$1,18 \pm 0,63$	534 ± 12	$1,48 \pm 0,20$

Результаты гамма-спектрометрического анализа проб донных отложений, отобранных в бассейнах трансграничных рек Казахстана осенью 2017 г.

Образец	Th-234, Бк/кг	Ra-226, Бк∕кг	Рb-214, Бк/кг	Ві-214, Бк/кг	Pb-210, Бк/кг	Ас-228, Бк/кг	Ra-224, Бк/кг	Pb-212, Бк/кг	Ві-212, Бк/кг	Т1-208, Бк/кг	U-235, Бк/кг
CH-B22	$10,8 \pm 1,3$	$17,1 \pm 2,5$	$13,2 \pm 1,8$	$14,1 \pm 1,7$	$20,9 \pm 2,2$	$14,1 \pm 1,2$	$14,7 \pm 2,0$	$14,0 \pm 1,4$	$17,5 \pm 2,9$	$12,3 \pm 1,8$	$0,50 \pm 0,15$
UR-B22	$15,7 \pm 1,8$	$27,4 \pm 3,2$	$18,4 \pm 2,0$	$16,6 \pm 1,9$	$26,5 \pm 2,7$	$23,9 \pm 2,7$	$21,3 \pm 2,6$	$22,6 \pm 2,5$	$31,9 \pm 4,3$	$24,2 \pm 2,1$	$0,72\pm0,18$
IK-B22	$16,6 \pm 1,4$	$21,6 \pm 2,4$	$16,8 \pm 1,8$	$14,8 \pm 1,7$	$33,5 \pm 3,2$	$21,2 \pm 2,3$	$18,9 \pm 2,0$	$19,5 \pm 1,4$	$20,5 \pm 2,9$	$20,3 \pm 1,8$	$0,78 \pm 0,14$
EK-B22	$16,2 \pm 1,4$	$21,0 \pm 2,4$	$17,0 \pm 1,8$	$15,5 \pm 1,7$	$21,1 \pm 2,0$	$12,3 \pm 1,1$	$9,3 \pm 1,7$	$12,2 \pm 1,3$	$14,5 \pm 2,6$	$11,3 \pm 1,8$	$0,74\pm0,14$
TO-B22	$12,4 \pm 1,3$	$22,3 \pm 2,5$	$15,3 \pm 1,8$	$14,4 \pm 1,7$	$35,4 \pm 3,3$	$19,9 \pm 1,3$	$18,9 \pm 2,0$	$18,9 \pm 1,4$	$22,5 \pm 3,2$	$16,5 \pm 1,8$	$0,58 \pm 0,14$
AY-B22	$15,9 \pm 1,6$	$23,3 \pm 2,8$	$18,0 \pm 1,9$	$16,2 \pm 1,8$	$42,5 \pm 3,7$	$31,4 \pm 2,6$	$31,5 \pm 2,5$	$31,8 \pm 3,5$	$42,3 \pm 4,0$	$31,9 \pm 3,1$	$0,75 \pm 0,16$
PR-B22	$27,5 \pm 2,6$	$41,3 \pm 4,3$	$27,0\pm2,4$	$27,6 \pm 2,3$	$48,5\pm4,1$	$45,8 \pm 4,6$	$48,9 \pm 4,9$	$46,4 \pm 4,8$	$57,7 \pm 5,2$	$46,9\pm4,7$	$1,\!26\pm0,\!25$
IR-B22	$18,2 \pm 1,5$	$22,7 \pm 2,4$	$18,9 \pm 2,8$	$17,5 \pm 1,7$	$24,6 \pm 2,1$	$29,2 \pm 2,4$	$30,1 \pm 3,2$	$26,6 \pm 2,4$	$42,6 \pm 3,6$	$24,8 \pm 2,1$	0.85 ± 0.14
EM-B22	$14,5 \pm 2,0$	$11,4 \pm 3,2$	$17,0 \pm 2,2$	$11,9 \pm 1,9$	$17,9 \pm 2,7$	$16,5 \pm 1,7$	$12,5 \pm 2,7$	$15,8 \pm 1,5$	$22,9 \pm 4,4$	$14,4 \pm 1,3$	$0,\!69 \pm 0,\!20$
IL-B22	$38,7 \pm 3,0$	$50,0 \pm 5,1$	$42,1\pm4,1$	$38,5 \pm 4,0$	$51,7\pm4,8$	$49,6\pm4,8$	$51,1 \pm 4,7$	$45,3 \pm 4,5$	$53,5 \pm 5,0$	$44,3\pm4,1$	$1{,}78 \pm 0{,}18$
TK-B22	$32,4 \pm 2,8$	$47,4 \pm 5,0$	$31,9 \pm 3,0$	$31,1 \pm 2,9$	$53,5 \pm 4,7$	$51,3 \pm 4,8$	$45,3 \pm 3,6$	$45,4\pm4,5$	$47,5\pm4,8$	$45,0\pm4,1$	$1,52 \pm 0,17$
SH-B22	$53,2 \pm 5,3$	$77,8 \pm 7,7$	$57,3 \pm 5,3$	$52,9 \pm 4,9$	$73,2 \pm 7,2$	$84,8 \pm 8,3$	$69,5 \pm 7,1$	$66,3 \pm 6,6$	$71,2 \pm 7,6$	$65,5 \pm 6,7$	$2,50 \pm 0,21$
KB-B22	$49,3\pm4,1$	$52,8 \pm 5,0$	$44,4\pm4,1$	$38{,}7\pm4{,}0$	$52,1\pm4,7$	$47,7 \pm 4,7$	$46,0\pm4,6$	$46,8\pm4,5$	$49,8\pm4,8$	$44,2\pm4,3$	$2,\!33\pm0,\!18$
TA-B22	$21,1 \pm 1,6$	$25,6 \pm 2,7$	$22,0 \pm 2,9$	$20,2 \pm 1,8$	$31,4 \pm 3,3$	$34,2 \pm 3,6$	$36,3 \pm 3,4$	$31,7 \pm 3,5$	$39,0 \pm 3,8$	$33,3 \pm 3,3$	$1,\!00\pm0,\!16$
SD-B22	$27,6 \pm 3,1$	$44,9 \pm 5,0$	$31,0 \pm 2,7$	$29,6 \pm 2,5$	$42,0\pm4,3$	$42,5 \pm 3,9$	$42,\!4\pm4,\!2$	$40,0 \pm 3,9$	$54,0 \pm 6,6$	$37,7\pm3,2$	$1,25 \pm 0,29$

Образец	ТН-227, Бк/кг	К-40, Бк/кг	Cs-137, Бк/кг
		Dit iti	21010
CH-B22	< 0,8	497 ± 51	$0,7 \pm 0,2$
UR-B22	$1,6\pm0,6$	417 ± 41	< 0,3
IK-B22	$2,1\pm0,5$	486 ± 49	< 0,2
EK-B22	$1,1\pm0,5$	342 ± 40	< 0,2
TO-B22	< 0,8	274 ± 28	0.8 ± 0.2
AY-B22	$1,4 \pm 0,6$	369 ± 39	$1,9 \pm 0,2$
PR-B22	$1,6\pm0,8$	522 ± 54	< 0,4
IR-B22	< 0,8	337 ± 40	< 0,2
EM-B22	< 1,2	722 ± 68	< 0,3
IL-B22	$2,7 \pm 0,6$	584 ± 50	0.6 ± 0.2
TK-B22	$2,6 \pm 0,6$	657 ± 60	$3,1 \pm 0,2$
SH-B22	$3,4 \pm 0,6$	914 ± 84	$0,4 \pm 0,2$
KB-B22	$2,3 \pm 0,5$	639 ± 62	$0,5 \pm 0,2$
TA-B22	$1,1\pm0,5$	839 ± 83	$1,0 \pm 0,2$
SD-B22	$3,6 \pm 1,0$	586 ± 50	< 0,5
		-	

Результаты определения методом РФА элементного состава образцов почвы, отобранных в бассейнах трансграничных рек Казахстана весной 2017 г.

Образец	K %	Ca %	Ti %	V, мкг/г	Cr,	Mn %	Fe %	Co,	Ni,	Cu,	Zn,	Ga,	As,
					мкг/г			мкг/г	мкг/г	мкг/г	мкг/г	мкг/г	мкг/г
CH-S21	$2,36\pm0,23$	$1,01\pm0,22$	$0,406\pm0,036$	130±12	370 ± 33	$0,0846\pm0,0099$	$3,367\pm0,150$	$11,0\pm3,0$	61±6	26 ± 2	48 ± 6	$11,3\pm0,8$	$6,5\pm0,9$
UR-S21	$1,34\pm0,23$	$2,9\pm0,29$	$0,253\pm0,034$	80 ± 12	800 ± 45	$0,0458\pm0,0087$	$1,890\pm0,082$	$9,7\pm2,5$	84 ± 10	15 ± 2	$20,6\pm 5,0$	$3,8\pm0,7$	< 1
IK-S21	$1,86\pm0,23$	$0,68\pm0,21$	$0,360\pm0,034$	50±12	250 ± 20	$0,0595\pm0,0084$	$2,103\pm0,092$	< 4	37±4	20±2	34 ± 5	$5,9\pm0,7$	< 1
EK-S21	$1,24\pm0,23$	$1\pm0,23$	$0,179\pm0,030$	< 14	300 ± 30	$0,0339\pm0,0071$	$1,108\pm0,052$	$7,0\pm1,7$	33±4	8±1	$4,5\pm1,3$	$1,5\pm0,6$	< 1
TO-S21	$1,68\pm0,22$	$1,17\pm0,22$	$0,394\pm0,034$	90±12	190 ± 17	$0,079\pm0,009$	$2,530\pm0,110$	< 4	35±4	24 ± 2	65 ± 10	$6,7\pm0,7$	< 1
AY-S21	$1,92\pm0,23$	$1,76\pm0,24$	$0,346\pm0,034$	110 ± 12	220 ± 18	$0,0834\pm0,0093$	$2,697\pm0,114$	$12,0\pm2,9$	44±5	24 ± 2	38±6	$6,5\pm0,7$	< 1
PR-S21	$1,75\pm0,25$	$1,16\pm0,24$	$0,271\pm0,023$	70 ± 12	170 ± 17	$0,0366\pm0,0079$	$1,696\pm0,078$	< 4	24 ± 3	15 ± 2	41±5	$6,9\pm0,7$	$2,1\pm0,4$
IR-S21	$1,85\pm0,23$	$2,91\pm0,25$	$0,370\pm0,025$	100 ± 13	150 ± 16	$0,0581\pm0,0093$	$3,352\pm0,148$	$8,8\pm2,3$	45±5	36 ± 3	54±7	$11,1\pm0,8$	< 1
EM-S21	$2,05\pm0,24$	$2,58\pm0,29$	$0,296\pm0,024$	100 ± 13	210 ± 17	$0,0444\pm0,0086$	$2,539\pm0,110$	< 4	40±4	18 ± 2	31±6	$10,5\pm0,8$	$3,5\pm0,7$
IL-S21	$1,86\pm0,22$	$6,63\pm0,34$	$0,300\pm0,025$	100 ± 15	120 ± 13	$0,0585\pm0,0097$	$2,572\pm0,108$	< 4	30 ± 3	35±3	96 ± 15	$9,3\pm0,8$	$3,0\pm0,6$
TK-S21	$2,23\pm0,22$	$7,78\pm0,37$	$0,310\pm0,026$	100 ± 16	140 ± 13	$0,06\pm0,01$	$2,802\pm0,114$	< 4	27 ± 3	24 ± 2	44 ± 7	$10,0\pm0,9$	< 1
SH-S21	$2,33\pm0,25$	$3,25\pm0,27$	$0,357\pm0,026$	100 ± 14	140 ± 13	$0,0508\pm0,0092$	$2,898\pm0,128$	$10,0\pm2,6$	24 ± 3	17 ± 2	36±6	$11,7\pm0,8$	< 1
KB-S21	$2,14\pm0,24$	$3,98\pm0,29$	$0,381\pm0,026$	140 ± 15	130 ± 13	$0,07\pm0,01$	$3,644\pm0,158$	$9,7\pm2,6$	35 ± 3	23 ± 2	48 ± 7	$12,3\pm0,8$	$12,0\pm1,7$
TA-S21	$2,01\pm0,22$	$5,43\pm0,31$	$0,373\pm0,026$	140 ± 15	190 ± 17	$0,07\pm0,01$	$3,250\pm0,136$	< 4	54±5	30±3	59±8	13±1	$3,0\pm0,6$
SD-S21	$1,66\pm0,22$	$8,35\pm0,4$	$0,333\pm0,038$	140±14	110±12	$0,0524\pm0,0091$	$2,521\pm0,096$	< 4	29±3	21±2	45±6	$8,4\pm0,8$	5,8±0,9

Образец	Br, мкг/г	Rb, мкг/г	Sr, мкг/г	Υ, мкг/г	Zr, mkγ/γ	Nb, мкг/г	Мо, мкг/г	Pd мкг/г	Сф мкг/г	Ва, мкг/г	Pb, _{мкг} /г	Th мкг/г	U мкг/г
CH-S21	$10,8\pm1,8$	$76,4\pm4,3$	146 ± 10	$23,0\pm1,5$	281±14	$9,4\pm0,9$	$2,1\pm0,3$	$0,5\pm0,2$	$3,5\pm0,4$	194±18	$8,0\pm1,1$	$5,1\pm0,7$	$1,7\pm0,4$
UR-S21	$3,1\pm0,7$	$38,9\pm3,2$	155±10	$13,6\pm1,2$	177 ± 12	$4,8\pm0,8$	$1,7\pm0,2$	< 0,2	$2,7\pm0,4$	235 ± 18	< 1	$1,9\pm0,7$	$1,4\pm0,4$
IK-S21	$4,0\pm0,8$	$66,3\pm3,8$	106±8	$18,9\pm1,4$	305 ± 14	$7,6\pm0,8$	$2,0\pm0,3$	$0,5\pm0,2$	$3,4\pm0,4$	282 ± 17	$6,0\pm1,0$	$4,6\pm0,7$	$1,6\pm0,4$
EK-S21	$2,4\pm0,5$	$34,1\pm2,8$	64±6	$11,3\pm1,1$	144 ± 10	$2,7\pm0,6$	$1,3\pm0,2$	$0,5\pm0,2$	$2,9\pm0,4$	194±16	< 1	$1,1\pm0,6$	$1,3\pm0,3$
TO-S21	$9,9{\pm}1,7$	$57,2\pm3,6$	123±8	$17,4\pm1,3$	241 ± 12	$7,5\pm0,8$	$1,6\pm0,3$	$0,5\pm0,2$	$3,4\pm0,4$	165±17	$9,0\pm1,0$	$3,9\pm0,7$	$2,3\pm0,4$
AY-S21	$9,8\pm1,7$	$62,1\pm3,8$	144 ± 10	$15,1\pm1,3$	122 ± 10	$6,4\pm0,8$	$1,7\pm0,2$	$0,5\pm0,2$	$3,4\pm0,4$	235 ± 18	$8,0\pm1,0$	$5,1\pm0,6$	$1,6\pm0,4$
PR-S21	$4,8\pm0,9$	63±4	174±12	$18,9\pm1,4$	203±12	$6,9\pm0,8$	$1,7\pm0,3$	$0,5\pm0,2$	$3,2\pm0,4$	200±18	< 1	$3,1\pm0,7$	$1,6\pm0,4$
IR-S21	$9,3\pm1,8$	$81,3\pm4,7$	227±14	$25,2\pm1,6$	156±12	$8,0\pm0,9$	$1,3\pm0,3$	$0,8\pm0,2$	$3,6\pm0,4$	94±19	$8,0\pm1,1$	$7,2\pm0,7$	$1,9\pm0,4$
EM-S21	$2,7\pm0,6$	$63,3\pm4,2$	325±16	$19,8\pm1,5$	152±12	$6,3\pm0,8$	$2,4\pm0,2$	< 0,2	$2,3\pm0,4$	429±19	< 1	$3,2\pm0,8$	$1,9\pm0,4$
IL-S21	$14,1\pm2,4$	$80,2\pm 5,1$	476 ± 22	$24,0\pm1,7$	193±14	$8,9{\pm}1,0$	$3,3\pm0,3$	$0,2\pm0,2$	$2,9\pm0,5$	282±19	$54,0\pm1,4$	$7,1\pm0,9$	$3,9\pm0,5$
TK-S21	$13,4\pm2,9$	$107,3\pm 5,7$	340 ± 18	$23,2\pm1,8$	192±14	11±1	$2,2\pm0,3$	< 0,2	$3,1\pm0,5$	323±21	$24,0\pm1,3$	$9,9\pm0,9$	$3,6\pm0,5$
SH-S21	$6,5\pm1,2$	$114,2\pm 5,5$	241 ± 14	24 ± 1.8	330±16	12±1	$2,3\pm0,3$	< 0,2	$2,6\pm0,4$	423 ± 20	$14,0\pm1,2$	$10,3\pm0,9$	$5,0\pm0,5$
KB-S21	$3,7\pm0,8$	$98,3\pm 5,2$	269 ± 16	$22,7\pm1,7$	176 ± 12	$9,6\pm1,0$	$2,1\pm0,3$	$0,3\pm0,2$	$3,2\pm0,4$	423±21	$11,0\pm1,2$	$10,6\pm0,8$	$3,8\pm0,4$
TA-S21	$13,7\pm2,4$	$93,6\pm5,2$	342 ± 18	$23,2\pm1,7$	206±14	$11,3\pm1,0$	$2,4\pm0,3$	< 0,2	$2,8\pm0,4$	423 ± 20	$28,0\pm1,3$	$10,3\pm0,9$	$4,1\pm0,5$
SD-S21	$9,6\pm1,8$	$73,8\pm4,7$	541±22	$24 \pm 1,6$	224±14	$10,3\pm1,0$	$2,0\pm0,3$	< 0,2	$3,3\pm0,4$	359±19	$12,0\pm1,2$	$8,4{\pm}1,0$	4,1±0,4

Результаты определения методом РФА элементного состава образцов почвы, отобранных в бассейнах трансграничных рек Казахстана осенью 2017 г.

Образец	K %	Ca %	Ti %	V, μκγ/γ	Cr,	Mn %	Fe %	Co,	Ni,	Cu,	Zn, мкг/г	Ga, мкг/г	As, мкг/г
				.,	мкг/г			мкг/г	мкг/г	мкг/г			
CH-S22	$2,10\pm0,47$	$1,18\pm0,24$	$0,382\pm0,048$	90±22	330 ± 12	$0,0810\pm0,0097$	$3,103\pm0,068$	10 ± 12	43±3	25 ± 2	73±12	$9,1\pm0,8$	$3,9\pm0,8$
UR-S22	$1,81\pm0,46$	$1,29\pm0,02$	$0,321\pm0,046$	90 ± 22	370 ± 13	$0,0600\pm0,0089$	$2,820\pm0,065$	< 4	72 ± 27	28 ± 16	71±13	$7,9\pm0,7$	< 1
IK-S22	$1,66\pm0,49$	$0,56\pm0,22$	$0,324\pm0,047$	90 ± 22	310 ± 12	$0,0447\pm0,0082$	$1,765\pm0,041$	< 4	37 ± 3	17 ± 2	20±10	$6,1\pm0,7$	$8,8{\pm}0,8$
EK-S22	$1,28\pm0,5$	$0,66\pm0,24$	$0,065\pm0,037$	< 20	120 ± 11	$0,0189\pm0,0065$	$0,69\pm0,02$	10±6	14 ± 2	5±1	< 1	< 1	< 1
TO-S22	$1,66\pm0,47$	$1,06\pm0,24$	$0,375\pm0,048$	80 ± 22	210 ± 12	$0,0678\pm0,0091$	$2,374\pm0,053$	< 4	35 ± 3	21 ± 2	45±11	$6,4\pm0,7$	$5,1\pm0,8$
AY-S22	$1,61\pm0,46$	$0,71\pm0,21$	$0,346\pm0,047$	120 ± 22	230 ± 12	$0,111\pm0,011$	$3,222\pm0,075$	20 ± 12	36 ± 3	26 ± 2	28±11	$7,2\pm0,7$	$11,0\pm0,8$
PR-S22	$1,76\pm0,5$	$1,17\pm0,25$	$0,246\pm0,045$	70 ± 22	160 ± 12	$0,0384\pm0,0078$	$1,66\pm0,04$	< 4	21 ± 3	17 ± 2	48 ± 11	$7,6\pm0,7$	$1,5\pm0,8$
IR-S22	$1,99\pm0,47$	$2,51\pm0,25$	$0,422\pm0,053$	120 ± 24	140 ± 13	$0,0588 \pm 0,0096$	$4,063\pm0,094$	10 ± 14	51 ± 3	41 ± 2	68±14	$14,4\pm0,9$	$8,8\pm0,9$
EM-S22	$1,84\pm0,48$	$4,19\pm0,33$	$0,34\pm0,05$	80 ± 24	70 ± 12	$0,0475\pm0,0087$	$2,404\pm0,052$	10 ± 11	13±3	14 ± 2	30 ± 11	$10,9\pm0,8$	$7,8\pm0,9$
IL-S22	$1,85\pm0,47$	$6,78\pm0,39$	$0,338\pm0,053$	90±25	110 ± 13	$0,0512\pm0,0093$	$2,683\pm0,056$	10 ± 12	25±3	14 ± 2	42±12	$9,9\pm0,9$	$8,9\pm0,9$
TK-S22	$2,04\pm0,42$	$8,71\pm0,39$	$0,271\pm0,051$	40±25	160 ± 13	$0,0572\pm0,0095$	$2,48\pm0,05$	10 ± 12	28 ± 3	22 ± 2	48±13	$11,1\pm0,9$	$4,9\pm1,0$
SH-S22	$2,25\pm0,49$	$3,66\pm0,32$	$0,330\pm0,051$	90±24	90±13	$0,0504\pm0,0091$	$2,751\pm0,061$	< 4	23 ± 3	16 ± 2	47±12	$11,3\pm0,8$	< 1
KB-S22	$2,15\pm0,47$	$3,86\pm0,29$	$0,377 \pm 0,052$	180 ± 25	100 ± 13	$0,0678\pm0,0099$	$3,620\pm0,081$	10 ± 14	30±3	24 ± 2	52±12	$12,9\pm0,8$	$14,1\pm0,9$
TA-S22	$2,14\pm0,47$	$6,00\pm0,33$	$0,341\pm0,051$	150 ± 25	140 ± 13	$0,084\pm0,011$	$3,417\pm0,071$	10 ± 13	41 ± 3	29 ± 2	76±13	$10,5\pm0,9$	$11,7\pm1$
SD-S22	$1,67\pm0,43$	$8,43\pm0,39$	$0,324\pm0,053$	90±26	130±13	$0,0503\pm0,0094$	$2,518\pm0,051$	10±12	32±3	21±2	46±13	$9,3\pm0,8$	$8,6\pm1,0$

Образец	Br, мкг/г	Rb, мкг/г	Sr, мкг/г	Υ, мкг/г	Zr, _{ΜΚΓ} /Γ	Nb, мкг/г	Мо, мкг/г	Pd мкг/г	Cd мкг/г	Ва, мкг/г	Рь, мкг/г	Th мкг/г	U мкг/г
CH-S22	12,0±3,6	71±4	142±5	19,7±2,9	223±6	7,8±1,7	1,6±0,3	$0,7\pm0,2$	4,2±0,4	118±17	$7,0\pm1,1$	4,6±0,8	1,5±0,4
UR-S22	$7,7\pm3,4$	$59,9\pm3,9$	129±5	$16,1\pm2,7$	193±6	$6,7\pm1,6$	$1,4\pm0,3$	$0,6\pm0,2$	$3,7\pm0,4$	171 ± 17	$8,0\pm1,1$	$3,4\pm0,7$	$1,6\pm0,4$
IK-S22	$4,2\pm 3,1$	59±4	89±4	$16,1\pm2,7$	325 ± 8	$7,3\pm1,6$	$2,1\pm0,3$	$0,8\pm0,2$	$3,5\pm0,4$	223 ± 17	2±1	$2,9\pm0,8$	$1,5\pm0,4$
EK-S22	$2,3\pm2,8$	36±3	60±3	$9,4\pm 2,1$	60 ± 3	$1,7\pm1,2$	< 1	$0,8\pm0,2$	$3,5\pm0,4$	194±16	< 1	$1,8\pm0,5$	$1,4\pm0,3$
TO-S22	$11,2\pm3,5$	56±4	119±5	$14,5\pm2,6$	223 ± 6	$7,8\pm1,6$	$1,7\pm0,3$	$0,3\pm0,2$	$3,0\pm0,4$	171 ± 17	< 1	$4,4\pm0,7$	$2,0\pm0,4$
AY-S22	$7,5\pm3,4$	53±4	110±4	$12,3\pm2,5$	109 ± 4	$5,3\pm1,5$	$1,5\pm0,2$	$0,3\pm0,2$	$3,0\pm0,4$	176 ± 18	< 1	$2,7\pm0,6$	$1,9\pm0,4$
PR-S22	$4,4\pm3,2$	62±4	171±6	$18,4\pm2,7$	219 ± 6	$6,9\pm1,6$	$1,4\pm0,3$	$0,4\pm0,2$	$3,8\pm0,4$	118 ± 18	< 1	$3,6\pm0,8$	$1,8\pm0,4$
IR-S22	$10,7\pm3,9$	91±5	208 ± 7	$27,3\pm3,5$	170 ± 6	$9,8\pm1,9$	< 1	$0,6\pm0,2$	$2,7\pm0,5$	47 ± 20	$9,0\pm1,2$	$7,9\pm0,8$	$2,3\pm0,4$
EM-S22	$3,4\pm3,5$	69±5	342 ± 9	$21,3\pm3,1$	224 ± 7	$8 \pm 1,8$	$1,9\pm0,3$	$0,4\pm0,2$	$3,2\pm0,4$	394 ± 19	< 1	$3,6\pm0,9$	$1,6\pm0,4$
IL-S22	$3,7\pm3,7$	86±5	234 ± 7	$27,5\pm3,5$	305 ± 8	$11,7\pm2,1$	$1,8\pm0,3$	$0,7\pm0,2$	$3,8\pm0,5$	388 ± 19	$11,0\pm1,2$	$8,5\pm1,0$	$3,0\pm0,5$
TK-S22	$12,1\pm 4,1$	103±6	311±8	$21,9\pm3,4$	190±7	$9,8\pm1,9$	$1,6\pm0,3$	$0,4\pm0,2$	$3,1\pm0,5$	441 ± 19	$20,0\pm1,3$	$9,8\pm0,9$	$3,9\pm0,5$
SH-S22	$7,7\pm3,8$	114±6	247 ± 7	$25,8\pm3,5$	271 ± 7	12±2	$1,9\pm0,3$	$1,2\pm0,2$	$3,8\pm0,5$	388 ± 19	$13,0\pm1,2$	$10,9\pm0,9$	$4,2\pm0,5$
KB-S22	$3,5\pm3,6$	99±5	268 ± 8	$22,1\pm3,4$	199±7	$10\pm1,9$	$2,4\pm0,3$	$0,4\pm0,2$	$2,7\pm0,5$	459 ± 21	$9,0\pm1,2$	$9,1\pm0,9$	$3,2\pm0,5$
TA-S22	$12,1\pm 4,1$	104 ± 6	294 ± 8	$22,4\pm3,4$	146 ± 6	$10,3\pm1,9$	$1,4\pm0,3$	$0,2\pm0,2$	$3,3\pm0,5$	282 ± 19	$21,0\pm1,3$	$9,3\pm0,9$	$2,3\pm0,4$
SD-S22	$14,2\pm 4,3$	72±5	513±11	$22,7\pm3,3$	208 ± 8	10±2	$2,0\pm0,3$	$0,5\pm0,2$	$2,8\pm0,5$	300 ± 19	$10,0\pm1,3$	$6,9\pm1,0$	$3,9\pm0,5$

Результаты определения методом РФА элементного состава образцов донных отложений, отобранных в бассейнах трансграничных рек Казахстана весной 2017 г.

Образец	K %	Ca %	Ti %	V, MK Γ/Γ	Сr, мкг/г	Mn %	Fe %	Со, мкг/г	Ni, мкг/г	Си, мкг/г	Zn, мкг/г	Ga, мкг/г	As, мкг/г	Br, мкг/г
	207.000	1 17 0 22	0.000.000	110 11	200 20	0.004.000	207.012							
CH-B21	$2,07\pm0,22$	$1,45\pm0,22$	$0,369\pm0,033$	110 ± 11	390±28	$0,081\pm0,009$	$2,97\pm0,12$	$10,0\pm 2,4$	50±6	22±1	53±10	$9,0\pm0,9$	$4,1\pm0,8$	$9,7\pm1,1$
UR-B21	$1,20\pm0,22$	$2,6\pm0,26$	$0,362\pm0,035$	80±12	1780 ± 85	$0,0511\pm0,0092$	$2,131\pm0,084$	$5,0\pm1,3$	77±8	16 ± 2	20±5	$4,8\pm0,7$	< 1	$3,0\pm0,6$
IK-B21	$1,71\pm0,21$	$4,28\pm0,3$	$0,368\pm0,035$	110 ± 12	290 ± 27	$0,0910\pm0,0097$	$2,775\pm0,110$	$10,0\pm 2,4$	56±6	21 ± 2	38±7	$8,3\pm0,7$	$2,1\pm0,8$	$8,2\pm0,9$
EK-B21	$1,01\pm0,22$	$0,66\pm0,2$	$0,077\pm0,026$	< 14	200 ± 17	$0,019\pm0,006$	$0,87\pm0,04$	$8,0\pm1,8$	24±3	6±1	< 1	< 1	< 1	$2,5\pm0,5$
TO-B21	$1,36\pm0,22$	$0,47\pm0,19$	$0,394\pm0,033$	100 ± 11	200 ± 17	$0,035\pm0,007$	$1,975\pm0,082$	< 4	32±3	13 ± 1	20±5	$5,1\pm0,6$	< 1	$7,5\pm0,9$
AY-B21	$1,46\pm0,21$	$0,81\pm0,2$	$0,377\pm0,033$	140 ± 11	370 ± 24	$0,0482\pm0,0079$	$3,058\pm0,128$	$10,0\pm 2,5$	52±6	22 ± 1	$30,1\pm6,0$	$6,7\pm0,7$	$3,2\pm0,8$	$6,1\pm0,9$
PR-B21	$1,82\pm0,24$	$0,97\pm0,23$	$0,441\pm0,026$	80 ± 14	170±16	$0,0709\pm0,0097$	$3,189\pm0,150$	$10,0\pm 2,5$	37±4	22 ± 2	53±10	$12,5\pm1,2$	$7,0\pm0,9$	$3,9\pm0,7$
IR-B21	$1,24\pm0,25$	$0,51\pm0,21$	$0,12\pm0,02$	< 14	400 ± 30	$0,0221\pm0,0071$	$1,173\pm0,058$	$8,0\pm1,8$	77±8	10 ± 1	$4,7\pm1,4$	$3,9\pm0,6$	< 1	$2,9\pm0,6$
EM-B21	$1,94\pm0,24$	$2,46\pm0,29$	$0,392\pm0,026$	120 ± 14	210±18	$0,0526\pm0,0092$	$2,995\pm0,134$	$10,0\pm 2,5$	36±4	23 ± 2	38±7	$11,0\pm0,9$	$1,2\pm0,9$	$2,5\pm0,5$
IL-B21	$1,84\pm0,23$	$6,7\pm0,38$	$0,379\pm0,027$	90±15	140 ± 13	$0,0546\pm0,0095$	$2,773\pm0,114$	< 4	28±3	15 ± 2	41±7	$9,7\pm0,8$	$4,7\pm0,9$	$3,5\pm0,7$
TK-B21	$2,13\pm0,24$	$7,57\pm0,4$	$0,281\pm0,025$	90±15	200±17	$0,044\pm0,009$	$2,210\pm0,090$	< 4	35±4	15 ± 2	27±6	$9,0\pm0,8$	< 1	$6,7\pm0,9$
SH-B21	$2,39\pm0,25$	$3,11\pm0,3$	$0,329\pm0,025$	110 ± 14	220±18	$0,048\pm0,009$	$2,71\pm0,12$	< 4	46±5	15 ± 2	29±6	11±1	$5,8\pm0,9$	$8,0\pm1,0$
KB-B21	$1,99\pm0,23$	$5,65\pm0,36$	$0,393\pm0,027$	130 ± 15	100 ± 10	$0,0602\pm0,0097$	$3,110\pm0,128$	< 4	25±3	25 ± 2	39±7	$11,6\pm1,1$	$10,9\pm0,9$	$5,1\pm0,8$
TA-B21	$1,81\pm0,22$	$9,35\pm0,44$	$0,297\pm0,038$	120 ± 15	180 ± 17	$0,059\pm0,01$	$3,156\pm0,124$	< 4	50±6	33 ± 2	60±10	$8,7\pm0,9$	< 1	$31,9\pm0,5$
SD-B21	$1,76\pm0,21$	$7,71\pm0,37$	$0,349\pm0,036$	60±13	120±13	$0,0567\pm0,0088$	$2,69\pm0,10$	$10,0\pm2,4$	26±3	23±2	47±8	$9,0\pm0,8$	$6,4\pm0,9$	$6,3\pm0,9$

Образец	Rb, мкг/г	Sr, мкг/г	Ү, мкг/г	Zr, мкг/г	Nb, мкг/г	Мо, мкг/г	Pd мкг/г	Cd мкг/г	Ва, мкг/г	Pb, _{мкг/г}	Th мкг/г	U мкг/г
CH-B21	$70,8\pm3,9$	151±10	$19,9\pm1,4$	238±12	$8\pm0,8$	$1,9\pm0,3$	<0,2	$2,5\pm0,4$	235±16	6±1	$4,7\pm0,7$	2,1±0,4
UR-B21	$38,1\pm3,1$	151±10	$16,3\pm1,3$	328 ± 14	$6,6\pm0,8$	$2,0\pm0,3$	$0,6\pm0,2$	$3,2\pm0,4$	176 ± 18	< 1	$2,6\pm0,8$	$2,0\pm0,4$
IK-B21	68±4	221±12	$21\pm1,4$	268 ± 14	$8,8\pm0,9$	$2,0\pm0,3$	$0,4\pm0,2$	$3,4\pm0,4$	206 ± 17	10±1	$4,8\pm0,8$	$2,4\pm0,4$
EK-B21	$25,6\pm2,4$	54±6	$9,9\pm0,9$	62±6	$1,8\pm0,6$	$1,4\pm0,2$	$0,7\pm0,2$	$3,5\pm0,4$	176 ± 15	< 1	$0,9\pm0,4$	$1,1\pm0,3$
TO-B21	45±3	90±8	$14,3\pm1,2$	309 ± 14	$6,9\pm0,7$	$1,5\pm0,3$	< 0,2	$2,5\pm0,4$	212 ± 16	$5,0\pm0,9$	$3,6\pm0,7$	$1,5\pm0,4$
AY-B21	$48,9\pm3,3$	126±8	$13,9\pm1,2$	149 ± 10	$6,5\pm0,7$	$1,5\pm0,2$	$0,4\pm0,2$	$3,3\pm0,4$	218 ± 17	8±1	$4,1\pm0,6$	$2,2\pm0,4$
PR-B21	$85,1\pm4,7$	176±12	$29,8\pm1,7$	320±16	12±1	$1,6\pm0,3$	< 0,2	$2,6\pm0,4$	182 ± 19	$13,0\pm1,1$	$7,2\pm0,8$	$3,4\pm0,5$
IR-B21	$41,8\pm3,2$	93±8	$10,0\pm1,1$	81±8	$2,8\pm0,7$	$4,2\pm0,2$	$0,6\pm0,2$	$3,7\pm0,4$	47 ± 17	< 1	$2,2\pm0,5$	$1,2\pm0,4$
EM-B21	$60,3\pm4,2$	339±18	$22,0\pm1,5$	214±14	$7,2\pm0,9$	$3,1\pm0,3$	$0,3\pm0,2$	$3,0\pm0,4$	506 ± 20	$1,0\pm 1,1$	$2,6\pm0,9$	$2,5\pm0,5$
IL-B21	$84,3\pm 4,9$	233±14	$28,5\pm1,8$	295±16	12±1	$1,8\pm0,3$	$0,2\pm0,2$	$2,8\pm0,4$	353 ± 20	$10,0\pm1,2$	$7,5\pm0,9$	$3,3\pm0,5$
TK-B21	$102,9\pm5,3$	284±16	$21,4\pm1,7$	278±16	$10,2\pm1,0$	$2,1\pm0,3$	$0,6\pm0,2$	$2,7\pm0,4$	388 ± 19	$10,0\pm1,2$	$8,5\pm1,0$	$3,7\pm0,5$
SH-B21	$114,3\pm 5,5$	247±14	$25,9\pm1,7$	298±16	12±1	$2,7\pm0,3$	$0,9\pm0,2$	$3,4\pm0,5$	453 ± 20	$13,0\pm1,2$	$10,9\pm0,9$	$3,4\pm0,5$
KB-B21	$90,7\pm 5,1$	317±16	$26,3\pm1,7$	251 ± 14	11±1	$2,2\pm0,3$	$0,2\pm0,2$	$2,9\pm0,4$	394 ± 20	$11,0\pm1,2$	$9,0\pm0,9$	$4,5\pm0,5$
TA-B21	$84,3\pm 5,3$	431±20	$21,9\pm1,7$	142 ± 12	$9,7\pm1,0$	$2,6\pm0,3$	$0,5\pm0,2$	$3,5\pm0,5$	247 ± 19	$21,0\pm1,3$	$8,8\pm1,0$	$2,6\pm0,5$
SD-B21	79,5±4,5	385±16	$24,8\pm1,6$	236±14	$10,8\pm0,9$	$1,8\pm0,3$	$0,6\pm0,2$	$3,2\pm0,4$	347 ± 18	$14,0\pm 1,1$	$8,7\pm0,9$	$3,7\pm0,4$

Результаты определения методом РФА элементного состава образцов донных отложений, отобранных в бассейнах трансграничных рек Казахстана осенью 2017 г.

Образец	K %	Ca %	Ti %	V, мкг/г	Сг, мкг/г	Mn %	Fe %	Со, мкг/г	Ni, мкг/г	Си, мкг/г	Zn, мкг/г	Ga, мкг/г	As, мкг/г
CH-B22	1,64±0,5	1,00±0,24	0,264±0,045	40±22	690±14	0,0260±0,0076	1,364±0,032	< 4	28±3	7±1	10±10	4,4±0,7	4,2±0,7
UR-B22	1,44±0,47	$3,2\pm0,3$	$0,392\pm0,051$	100 ± 24	660±15	$0,0650\pm0,0096$	$2,364\pm0,052$	10±11	67±3	18±2	36±11	$6,6\pm0,8$	$4,5\pm0,8$
IK-B22	$1,58\pm0,47$	$3,76\pm0,31$	$0,305\pm0,048$	80±23	200±12	$0,055\pm0,009$	$2,156\pm0,047$	< 4	41±3	17±2	34±11	$6,4\pm0,7$	$4,0\pm0,8$
EK-B22	$1,22\pm0,51$	$0,79\pm0,24$	$0,200\pm0,043$	20 ± 21	520±13	$0,0251\pm0,0074$	$0,980\pm0,026$	< 4	23±3	5±1	6±9	$1,6\pm0,7$	$2,7\pm0,7$
TO-B22	$1,15\pm0,48$	$1,29\pm0,24$	$0,328\pm0,047$	70 ± 22	290±12	$0,0371\pm0,0078$	$1,629\pm0,038$	< 4	32±3	10 ± 1	15 ± 10	$3,6\pm0,7$	$1,1\pm0,8$
AY-B22	$1,33\pm0,45$	$1,44\pm0,24$	$0,470\pm0,052$	140 ± 24	600±14	$0,0673\pm0,0097$	$3,730\pm0,088$	10±13	43±3	44 ± 2	42 ± 12	$6,1\pm0,8$	50±1
PR-B22	$1,78\pm0,48$	$1,06\pm0,24$	$0,452\pm0,052$	100 ± 24	200±13	$0,0646\pm0,0094$	$2,914\pm0,071$	< 4	29±3	20 ± 2	50±12	$12\pm0,8$	$3,5\pm0,9$
IR-B22	$1,24\pm0,47$	$1,19\pm0,24$	$0,38\pm0,05$	70 ± 23	230±12	$0,0503\pm0,0087$	$2,681\pm0,063$	10 ± 11	40±3	16 ± 2	20 ± 11	$7,4\pm0,7$	$6,0\pm0,8$
EM-B22	$1,90\pm0,48$	$2,20\pm0,28$	$0,394\pm0,052$	70±24	120 ± 12	$0,0548\pm0,0091$	$3,226\pm0,073$	10 ± 13	20 ± 3	21 ± 2	37 ± 12	$12\pm0,8$	$6,5\pm0,9$
IL-B22	$1,75\pm0,45$	$7,93\pm0,41$	$0,431\pm0,055$	80±26	110 ± 13	$0,0507\pm0,0094$	$2,824\pm0,057$	10±13	17±3	11 ± 2	33 ± 12	$10,5\pm0,9$	< 1
TK-B22	$2,14\pm0,42$	$8,50\pm0,38$	$0,291\pm0,051$	50±25	110 ± 13	$0,0590\pm0,0097$	$2,505\pm0,049$	10±12	24 ± 3	24 ± 2	41 ± 13	$10,2\pm0,8$	$8,7\pm1,0$
SH-B22	$2,40\pm0,49$	$2,69\pm0,29$	$0,431\pm0,054$	130 ± 25	130±13	$0,0585\pm0,0097$	$3,828\pm0,088$	10±14	28 ± 3	26 ± 2	61±14	$13,9\pm0,9$	$8,8\pm1,0$
KB-B22	$1,97\pm0,47$	$5,7\pm0,33$	$0,423\pm0,055$	110 ± 25	140 ± 13	$0,07\pm0,01$	$3,376\pm0,073$	< 4	29±3	24 ± 2	47 ± 13	$12,2\pm0,9$	$21,8\pm0,9$
TA-B22	$1,99\pm0,46$	$6,54\pm0,34$	$0,29\pm0,05$	70 ± 24	180 ± 13	$0,0488\pm0,0091$	$2,647\pm0,053$	< 4	42±3	17 ± 2	37 ± 12	$9,9{\pm}0,8$	$8,2\pm0,9$
SD-B22	$1,78\pm0,42$	$8,21\pm0,38$	$0,345\pm0,053$	130±25	120±13	$0,0556\pm0,0095$	2,616±0,053	< 4	31±3	24±2	47±13	$9,9\pm0,8$	4,4±1,0

Образец	Br, мкг/г	Rb, мкг/г	Sr, мкг/г	Υ, мкг/г	Zr, мкг/г	Nb, мкг/г	Мо, мкг/г	Pd мкг/г	Сd мкг/г	Ва, мкг/г	Рb, мкг/г	Th мкг/г	U мкг/г
CH-B22	4,0±3,1	47±3	127±5	12,5±2,5	228±6	4,8±1,4	1,4±0,3	$0,5\pm0,2$	$3,7\pm0,4$	241±17	< 1	1,9±0,7	1,4±0,4
UR-B22	$4,5\pm3,4$	54±4	184±6	$19,2\pm2,9$	371 ± 9	$8,0\pm1,8$	$1,3\pm0,3$	$0,8\pm0,2$	$4,5\pm0,5$	141 ± 19	$3,0\pm1,1$	$2,5\pm0,9$	$2,0\pm0,5$
IK-B22	$6,3\pm3,5$	63±4	180±6	$17,3\pm2,8$	219±6	$6,6\pm1,6$	$1,2\pm0,3$	$0,4\pm0,2$	$3,9\pm0,4$	212 ± 18	$4,0\pm1,1$	$3,5\pm0,8$	$1,8\pm0,4$
EK-B22	$2,4\pm2,9$	36±3	63 ± 3	$11,9\pm2,4$	234 ± 7	$5,3\pm1,5$	$1,4\pm0,3$	$0,3\pm0,2$	$3,1\pm0,4$	159 ± 17	< 1	$1,0\pm0,7$	$1,6\pm0,4$
TO-B22	$9,4\pm3,4$	37±3	107±4	$11,1\pm2,4$	301 ± 8	$5,9\pm1,5$	$2,0\pm0,3$	$0,3\pm0,2$	$3,7\pm0,4$	118 ± 17	< 1	$1,9\pm0,8$	$1,3\pm0,4$
AY-B22	$10,9\pm4,1$	39±4	124±5	$12,7\pm2,5$	136±5	$5,6\pm1,6$	$2,2\pm0,2$	< 0,1	$3,9\pm0,4$	18 ± 18	$8,0\pm1,1$	$4,9\pm0,7$	$1,7\pm0,4$
PR-B22	$3,1\pm3,4$	77±5	185±6	$33,0\pm3,5$	428±10	12±2	$1,5\pm0,4$	$0,9\pm0,2$	$3,6\pm0,4$	141 ± 19	$11,0\pm 1,1$	$7,3\pm1,0$	$2,5\pm0,5$
IR-B22	$2,7\pm3,2$	42±4	135±5	$20,7\pm2,7$	185±6	$6,7\pm1,7$	$1,6\pm0,3$	< 0,1	$2,4\pm0,4$	24 ± 18	< 1	$3,4\pm0,7$	$1,4\pm0,4$
EM-B22	$2,2\pm 3,4$	58±4	342±9	$19,3\pm2,9$	161±6	$6,4\pm1,7$	$1,8\pm0,3$	$0,5\pm0,2$	$4,2\pm0,5$	382 ± 20	< 1	$1,7\pm0,8$	$2,1\pm0,4$
IL-B22	$2,3\pm3,7$	79±5	237±7	$31,2\pm3,7$	540±11	$13,6\pm2,3$	$2,0\pm0,4$	< 0,1	$2,9\pm0,5$	323 ± 20	$10,0\pm1,2$	$7,9\pm1,1$	$3,0\pm0,6$
TK-B22	10±4	105±6	271 ± 8	$24,1\pm3,4$	208 ± 7	10±2	$1,8\pm0,3$	$0,4\pm0,2$	$2,9\pm0,5$	376 ± 19	$16,0\pm1,3$	$9,5\pm0,9$	$3,2\pm0,5$
SH-B22	$4,3\pm3,7$	128±6	221±7	$33,7\pm3,9$	401±9	$14,8\pm2,2$	$2,6\pm0,4$	$0,2\pm0,2$	$3,5\pm0,5$	388 ± 20	$25,0\pm1,3$	$14,7\pm1,0$	$5,0\pm0,5$
KB-B22	$4,8\pm3,9$	91±5	360±9	$26,5\pm3,6$	408 ± 10	$12,1\pm2,1$	$2,5\pm0,4$	$0,3\pm0,2$	$3,5\pm0,5$	294±21	$11,0\pm1,3$	$8,7\pm1,1$	$4,7\pm0,5$
TA-B22	$5,4\pm3,6$	95±5	297±8	$17,2\pm 3,1$	137±6	$8,5\pm1,8$	$1,7\pm0,2$	$0,2\pm0,2$	$3,5\pm0,4$	512±19	$9,0\pm1,2$	$5,8\pm0,8$	$2,2\pm0,4$
SD-B22	$3,7\pm3,7$	82±5	289±8	$23,9\pm3,4$	229±7	10±2	$1,0\pm0,3$	$0,6\pm0,2$	$4,2\pm0,5$	329±19	$12,0\pm1,2$	$7,0\pm0,9$	$2,8\pm0,5$

Результаты определения методом НАА элементного состава образцов почвы, отобранных в бассейнах трансграничных рек Казахстана весной 2017 г.

Sample	Sb,	As,	Ni,	Cr,	Co,	Zn,	U,	Th,	La,	Ce,	Ca,	Fe,	Na,	Ba,	Sr,	Zr,	Rb,
code	$MK\Gamma/\Gamma$	%	%	%	$MK\Gamma/\Gamma$	$MK\Gamma/\Gamma$	$MK\Gamma/\Gamma$	мкг/г									
CH-S21	0,73	13	75	298	17	63	1,8	8,3	28	68	0,79	3,4	1,0	416	150	250	80
UR-S21	0,60	5,4	117	660	12	34	1,3	4,2	16	37	2,5	2,0	1,2	298	169	219	37
IK-S21	0,67	5,7	58	198	9,5	45	1,4	7,1	22	54	0,72	1,9	0,71	435	72	272	64
EK-S21	0,41	3,3	38	347	5,0	18	1,1	3,2	17	34	0,63	0,98	0,51	264	64	159	33
TO-S21	0,73	6,9	72	144	13	71	1,6	6,0	20	47	1,2	2,3	0,60	376	148	244	57
AY-S21	0,77	7,6	51	133	16	49	2,2	7,0	21	47	2,4	2,5	0,92	387	159	188	62
PR-S21	0,74	5,1	38	110	6,7	73	1,3	6,2	20	46	< 1	1,8	1,7	411	216	244	70
IR-S21	0,82	4,7	39	91	12	81	1,1	6,7	21	46	2,8	2,9	1,3	335	181	132	65
EM-S21	1,1	11	54	133	7,4	58	1,0	4,5	17	37	2,4	2,6	3,0	671	368	180	73
IL-S21	1,9	8,7	37	86	8,5	115	2,3	8,8	26	54	7,8	2,5	2,0	531	500	170	81
TK-S21	1,2	10	30	92	9,1	77	3,0	12	32	67	7,6	2,7	1,7	646	301	149	115
SH-S21	1,4	11	42	89	9,9	72	4,0	14	36	74	3,1	3,0	2,5	681	242	353	132
KB-S21	2,4	15	< 2	83	15	80	2,8	12	31	66	3,2	3,9	2,2	769	263	181	106
TA-S21	2,0	11	61	140	14	96	3,0	15	42	85	4,3	3,3	1,9	812	397	258	107
SD-S21	1,2	7,9	57	69	9,3	55	2,9	9,3	27	61	7,9	2,4	1,3	504	547	254	69

Sample code	Sc, мкг/г	Сs, мкг/г	Нf, мкг/г	Та, мкг/г	Мо, мкг/г	Br, мкг/г	Nd, мкг/г	Sm, мкг/г	Yb, мкг/г	Тb, мкг/г	Lu, мкг/г	Eu, мкг/г
CH-S21	11	3,9	7,8	0,92	0,75	6,3	33	5,4	2,6	0,80	0,40	1,2
UR-S21	7,0	1,3	6,3	0,52	0,87	0,74	23	3,3	1,6	0,43	0,21	0,74
IK-S21	6,8	2,7	8,8	0,71	0,81	1,2	24	4,0	2,1	0,55	0,29	0,73
EK-S21	2,7	0,98	4,9	0,31	1,0	0,73	19	2,9	1,2	0,37	0,19	0,55
TO-S21	8,2	2,8	8,3	0,68	< 1	6,2	18	3,8	1,9	0,50	0,25	0,78
AY-S21	8,3	2,7	3,8	0,77	0,14	6,4	24	4,3	2,0	0,56	0,27	0,85
PR-S21	6,8	2,5	7,1	0,74	0,78	2,2	23	4,0	2,1	0,53	0,28	0,86
IR-S21	12	4,0	4,8	0,61	0,50	4,1	25	4,3	2,5	0,55	0,28	0,94
EM-S21	9,1	2,0	4,0	0,53	< 1	< 0,2	22	4,0	2,0	0,55	0,32	0,98
IL-S21	9,1	3,9	6,1	0,79	1,6	8,5	32	4,8	2,5	0,70	0,36	0,86
TK-S21	9,2	5,6	5,6	0,81	< 1	8,3	36	5,5	2,4	0,67	0,35	0,89
SH-S21	10	4,6	12	1,2	1,0	3,8	41	6,0	3,4	0,75	0,46	1,1
KB-S21	14	4,8	6,0	0,73	< 1	0,75	36	5,5	2,2	0,64	0,34	1,2
TA-S21	11	4,5	7,1	1,1	1,1	8,7	53	6,6	2,7	0,77	0,34	1,2
SD-S21	8,6	4,0	7,0	0,89	< 1	5,2	32	4,9	2,4	0,71	0,32	0,95

Результаты определения методом НАА элементного состава образцов почвы, отобранных в бассейнах трансграничных рек Казахстана осенью 2017 г.

Sample	Sb,	As,	Ni,	Cr,	Co,	Zn,	U,	Th,	La,	Ce,	Ca,	Fe,	Na,	Ba,	Au,	Sr,	Zr,
code	мкг/г	%	%	%	мкг/г	нг/г	мкг/г	мкг/г									
CH-S22	3,9	8,3	55	229	12	90	1,9	7,6	27	49	0,85	2,9	0,91	263	< 1	162	183
UR-S22	1,1	4,6	65	313	9,9	87	1,5	5,7	18	36	1,1	2,4	0,64	302	7,1	117	169
IK-S22	1,5	6,2	62	245	8,0	44	1,9	6,0	18	36	0,97	1,9	0,65	389	10	89	296
EK-S22	0,48	3,2	29	240	3,8	13	0,92	3,9	12	23	< 1	0,81	0,36	290	5,8	53	68
TO-S22	3,1	7,8	< 2	153	11	63	1,8	6,7	22	45	0,91	2,3	0,58	377	< 1	143	216
AY-S22	0,57	9,3	41	100	14	44	1,7	10	50	90	< 1	2,7	0,77	351	11	107	149
PR-S22	1,3	5,2	41	104	6,2	75	1,6	6,7	20	40	1,5	1,9	1,6	346	8,6	191	145
IR-S22	1,0	6,0	48	92	16	86	2,0	8,4	26	60	2,9	3,9	1,3	386	6,6	247	195
EM-S22	0,85	7,9	< 2	40	6,4	42	1,5	4,6	18	38	3,7	2,3	2,3	494	6,5	283	172
IL-S22	1,5	10	< 2	88	7,9	57	3,1	11	33	57	6,4	2,8	2,2	503	8,3	250	261
TK-S22	6,2	8,7	< 2	103	7,3	68	3,5	13	33	58	9,5	2,5	1,8	688	< 1	342	215
SH-S22	1,4	9,2	43	71	9,3	66	4,6	11	35	69	3,3	2,7	2,4	586	< 1	251	248
KB-S22	1,6	12	43	74	12	64	3,5	10	27	56	3,0	3,3	2,0	603	< 1	239	169
TA-S22	1,5	10	30	89	13	81	2,7	11	33	74	6,0	3,2	1,2	612	7,8	305	131
SD-S22	1,3	8,9	33	79	9,5	64	3,0	8,9	26	60	8,7	2,5	1,5	552	9,9	566	235

Sample code	Rb, мкг/г	Sc, мкг/г	Cs, мкг/г	Нf, мкг/г	Та, мкг/г	Мо, _{мкг/г}	Br, мкг/г	Nd, мкг/г	Sm, мкг/г	Υb, мкг/г	Тb, мкг/г	Lu, мкг/г	Eu, мкг/г
CH-S22	76	9,6	3,5	6,6	0,80	1,1	7,1	19	4,9	2,4	0,78	0,32	1,0
UR-S22	64	8,4	2,7	5,3	0,57	0,69	3,7	18	3,5	1,8	0,53	0,25	0,74
IK-S22	72	6,2	2,9	11	0,86	0,77	1,8	14	3,6	2,2	0,53	0,29	0,78
EK-S22	42	2,0	0,90	2,2	0,18	< 1	0,32	11	2,4	1,4	0,41	0,21	0,48
TO-S22	62	8,0	2,9	8,0	0,77	< 1	7,2	22	4,0	1,9	0,47	0,28	0,80
AY-S22	58	7,4	2,0	4,4	0,50	< 1	3,5	28	3,9	1,3	0,27	0,19	0,61
PR-S22	75	6,9	2,7	5,7	0,83	< 1	1,9	17	4,1	1,8	0,55	0,23	0,95
IR-S22	88	15	5,8	5,1	0,83	< 1	6,1	33	5,5	3,5	0,76	0,40	1,3
EM-S22	62	8,5	2,1	5,0	0,63	< 1	1,2	17	3,7	2,6	0,51	0,33	0,90
IL-S22	94	10	4,6	9,6	1,4	< 1	1,3	25	6,3	3,4	0,99	0,38	1,1
TK-S22	121	8,3	5,8	6,5	0,93	< 1	7,9	23	5,6	2,5	0,72	0,35	0,96
SH-S22	113	9,5	4,3	7,8	1,1	< 1	4,9	32	5,9	3,2	0,60	0,35	1,0
KB-S22	97	12	4,0	5,0	0,72	1,3	0,86	27	4,8	2,5	0,47	0,35	0,95
TA-S22	109	11	5,5	4,4	0,75	< 1	6,7	37	5,0	2,4	0,66	0,35	0,95
SD-S22	80	8,9	4,2	6,0	0,86	0,53	9,5	27	4,7	2,4	0,63	0,32	0,88

Результаты определения методом НАА элементного состава образцов донных отложений, отобранных в бассейнах трансграничных рек Казахстана весной 2017 г

Sample	Sb,	As,	Ni,	Cr,	Co,	Zn,	U,	Th,	La,	Ce,	Ca,	Fe,	Na,	Ba,	Sr,	Zr,	Rb,	Sc,
code	$MK\Gamma/\Gamma$	%	%	%	$MK\Gamma/\Gamma$	$MK\Gamma/\Gamma$	$MK\Gamma/\Gamma$	$MK\Gamma/\Gamma$	$MK\Gamma/\Gamma$									
CH-B21	0,80	8,4	53	339	13	64	1,7	6,7	23	56	1,1	2,8	0,95	380	157	304	75	9,3
UR-B21	0,52	6,8	101	1558	13	39	1,5	4,6	17	37	2,4	2,3	1,1	295	159	445	37	7,7
IK-B21	0,69	7,7	84	235	14	52	2,0	7,4	24	60	4,6	2,8	0,97	417	234	301	67	9,5
EK-B21	0,33	3,2	44	127	3,7	12	1,0	1,8	14	24	0,58	0,84	0,34	224	67	53	25	2,0
TO-B21	0,67	6,2	61	183	10	34	1,5	6,8	21	46	< 1	1,9	0,59	323	101	403	46	6,5
AY-B21	1,1	9,4	54	336	17	42	1,3	4,9	21	50	< 1	2,8	1,0	325	112	154	45	7,8
PR-B21	1,2	9,1	44	129	13	85	2,6	12	33	74	< 1	3,2	1,7	436	172	328	90	12
IR-B21	0,38	2,6	104	332	4,4	20	0,68	3,2	11	23	< 1	1,2	1,1	192	93	70	39	3,5
EM-B21	1,1	11	55	159	8,9	64	1,3	4,8	19	42	2,4	3,3	3,0	713	415	196	68	11
IL-B21	1,8	12	44	98	8,4	66	2,8	11	34	69	7,1	2,8	2,3	660	244	254	93	10
TK-B21	0,90	6,1	36	129	6,8	55	3,4	12	31	61	7,3	2,2	2,0	673	282	236	110	7,4
SH-B21	1,4	7,4	53	168	9,5	68	3,3	15	34	72	2,9	2,8	2,6	730	228	296	133	9,6
KB-B21	1,5	13	34	70	12	78	3,3	13	34	72	5,6	3,2	2,0	628	329	216	97	12
TA-B21	1,5	9,5	40	132	11	85	3,6	10	29	61	9,6	3,0	1,1	603	423	105	92	10
SD-B21	1,3	8,7	43	80	10	65	2,9	9,7	29	69	7,5	2,6	1,2	523	361	250	80	9,8

Sample	Cs,	Hf,	Ta,	Mo,	Br,	Nd,	Sm,	Yb,	Tb,	Lu,	Eu,	Hg,
code	мкг/г											
CH-B21	3,4	8,3	0,78		5,5	26	4,5	2,3	0,57	0,36	0,99	< 0,3
UR-B21	1,5	13	0,64	0,24	0,63	23	3,4	2,2	0,56	0,27	0,75	< 0,3
IK-B21	3,5	8,9	0,86	0,78	4,7	30	4,8	2,8	0,73	0,41	1,0	< 0,3
EK-B21	0,75	1,5	0,21	0,44	0,54	16	2,3	1,0	0,32	0,14	0,45	< 0,3
TO-B21	2,2	12	1,0	0,57	4,3	21	3,7	1,9	0,47	0,28	0,73	< 0,3
AY-B21	1,7	4,8	0,53	2,0	2,9	24	4,0	1,8	0,59	0,26	0,88	< 0,3
PR-B21	5,2	10	1,1	0,84	1,6	41	6,8	3,4	1,0	0,46	1,3	< 0,3
IR-B21	1,4	2,5	0,30	2,1	0,57	10	5,2	1,2	0,30	0,13	0,53	< 0,3
EM-B21	1,9	6,5	0,65	0,4	< 0,2	29	4,4	2,9	0,69	0,42	1,1	< 0,3
IL-B21	4,1	9,2	1,2	< 1	0,87	33	6,3	3,3	0,84	0,46	1,1	< 0,3
TK-B21	4,4	8,4	1,1	1,9	3,4	35	5,2	2,5	0,66	0,35	0,85	< 0,3
SH-B21	3,9	9,8	1,1	0,3	3,2	38	5,9	2,9	0,77	0,44	0,96	5,8
KB-B21	4,6	7,4	1,1	0,3	2,2	40	6,1	2,7	0,77	0,39	1,1	< 0,3
TA-B21	4,8	4,2	0,74	0,4	23	35	4,9	2,3	0,61	0,29	0,91	< 0,3
SD-B21	4,2	7,4	0,94	0,98	2,7	35	5,4	2,8	0,74	0,33	1,0	< 0,3

Результаты определения методом НАА элементного состава образцов донных отложений, отобранных в бассейнах трансграничных рек Казахстана осенью $2017\ r.$

Sample	Sb,	As,	Ni,	Cr,	Co,	Zn,	U,	Th,	La,	Ce,	Ca,	Fe,	Na,	Ba,	Au,	Sr,	Zr,
code	$MK\Gamma/\Gamma$	%	%	%	$MK\Gamma/\Gamma$	$H\Gamma/\Gamma$	$MK\Gamma/\Gamma$	$MK\Gamma/\Gamma$									
CH-B22	289	3,3	< 2	438	5,5	16	1,1	2,9	14	24	< 1	1,3	0,96	239	< 1	< 50	260
UR-B22	0,55	6,4	66	546	12	40	2,1	7,2	23	43	2,6	2,5	1,2	384	9,3	186	326
IK-B22	8,9	6,5	< 2	170	9,0	43	1,6	5,8	18	37	2,8	2,2	0,78	382	< 1	166	224
EK-B22	0,59	4,2	29	1162	5,9	30	1,6	3,3	14	25	0,70	1,3	0,43	311	4,1	84	224
TO-B22	1,6	5,1	33	239	7,5	35	1,3	6,4	19	35	0,83	1,6	0,53	300	< 1	114	263
AY-B22	3,5	57	< 2	794	15	80	2,0	4,5	13	27	1,2	4,3	0,80	292	26	89	163
PR-B22	0,88	7,7	53	114	9,9	69	3,2	13	37	70	1,4	3,0	1,6	345	14	207	388
IR-B22	0,65	6,1	58	150	9,1	47	1,8	4,7	16	39	1,3	2,9	1,2	173	< 1	157	204
EM-B22	1,1	11	30	64	9,4	61	1,2	3,8	18	38	2,4	3,4	3,0	558	< 1	358	208
IL-B22	2,8	9,4	< 2	67	6,7	50	3,7	14	39	68	6,8	3,0	2,0	434	19	226	500
TK-B22	1,2	9,4	< 2	68	6,6	61	3,0	12	30	56	7,5	2,4	1,6	481	9,8	256	181
SH-B22	1,4	11	33	91	12	72	6,3	21	46	94	2,4	3,6	2,0	585	9,6	201	435
KB-B22	1,4	12	< 2	94	12	59	5,2	12	39	81	5,0	3,5	2,0	638	< 1	347	350
TA-B22	0,95	6,9	32	105	8,9	55	2,1	7,2	25	56	5,0	2,6	1,6	648	< 1	320	104
SD-B22	0,92	6,8	< 2	84	8,9	57	3,0	8,2	26	58	7,0	2,3	1,0	508	16	244	210

Sample	Rb,	Sc,	Cs,	Hf,	Ta,	Mo,	Br,	Nd,	Sm,	Yb,	Tb,	Lu,	Eu,
code	мкг/г	мкг/г	мкг/г	мкг/г	мкг/г	мкг/г	ы, мкг∕г	мкг/г	мкг/г	мкг/г	мкг/г	мкг/г	∠а, мкг/г
CH-B22	42	3,6	1,2	9,2	0,23	< 1	0,95	10	2,8	1,6	0,34	0,19	0,52
UR-B22	58	8,8	2,4	11	0,75	< 1	1,8	16	4,5	2,5	0,72	0,38	0,77
IK-B22	70	6,8	2,8	7,3	0,70	< 1	3,2	16	3,7	2,1	0,65	0,26	0,83
EK-B22	45	2,9	0,93	8,1	0,53	< 1	0,60	15	2,7	1,5	0,45	0,23	0,61
TO-B22	45	4,9	1,5	9,0	0,94	< 1	5,8	13	3,0	1,4	0,39	0,22	0,52
AY-B22	41	11	1,3	5,8	0,82	1,3	6,5	17	3,2	1,4	0,43	0,21	0,66
PR-B22	75	12	4,3	14	1,2	< 1	0,87	30	7,2	3,6	0,96	0,47	1,2
IR-B22	46	9,0	1,8	5,6	0,69	< 1	0,69	19	3,7	2,9	0,53	0,32	0,80
EM-B22	64	11	1,4	5,2	0,60	0,45	< 0,2	24	4,0	2,8	0,56	0,32	1,1
IL-B22	78	9,9	3,1	19	1,6	< 1	< 0,2	32	6,9	4,0	1,0	0,51	1,1
TK-B22	110	8,0	5,7	6,8	0,96	< 1	5,4	20	5,2	2,5	0,72	0,31	0,94
SH-B22	125	12	5,8	12	1,5	0,40	1,5	36	7,5	3,9	0,88	0,47	1,2
KB-B22	100	12	4,8	11	1,0	< 1	2,2	40	6,8	3,2	0,72	0,46	1,2
TA-B22	103	8,3	3,5	3,9	0,74	< 1	2,1	23	4,1	2,0	0,52	0,26	0,95
SD-B22	77	8,2	3,6	5,9	0,79	0,50	1,0	25	4,3	2,3	0,53	0,29	0,87

Результаты гамма-спектрометрического анализа растворимых компонентов (WD) проб воды, отобранных в бассейнах трансграничных рек Казахстана весной 2017 г.

Образец	Масса, г	Th-234, мБк/л	Рb-214, мБк/л	Ві-214, мБк/л	Рb-210, мБк/л	Ас-228, мБк/л	Ra-224, мБк/л	Рb-212, мБк/л	Ві-212, мБк/л
CH-WD21	2,34	$8 \pm 1,7$	9 ± 1,3	6 ± 1	$10,3 \pm 2,1$	$3,1 \pm 1,6$	< 6,7	$0,66 \pm 0,37$	$10,3 \pm 4,5$
UR-WD21	2,803	$17,6 \pm 2$	$12,9 \pm 1,2$	$11,3 \pm 1,1$	< 3,1	$3,4 \pm 1,5$	< 5,7	$0,\!97 \pm 0,\!36$	$8,6\pm4,4$
IK-WD21	4,344	< 3,9	$12,3 \pm 2,6$	< 3,1	$7,8 \pm 3,9$	< 4,6	< 10	$4,1\pm0,73$	$14,8 \pm 8,6$
EK-WD21	3,243	< 3,8	$4,1 \pm 2$	$3,1 \pm 1,7$	$8,4 \pm 3,3$	$5,2 \pm 2,5$	< 10	$2,14 \pm 0,62$	< 12
TO-WD21	7,367	$15,7 \pm 3,8$	$9 \pm 2,3$	$6,3 \pm 1,7$	< 6,4	< 4,3	< 9,9	< 1,1	$17,2 \pm 8$
AY-WD21	6,008	$41,1 \pm 4,3$	$16,3 \pm 2,2$	$21,5 \pm 2$	$6,4 \pm 3,6$	< 4	< 11	$1,38 \pm 0,61$	< 11
PR-WD21	1,9	$15 \pm 1,6$	$10,1 \pm 1$	$8,8 \pm 1$	< 2,8	$3,7 \pm 1,4$	< 5,1	$0,\!98 \pm 0,\!33$	$17,3 \pm 4,1$
IR-WD21	2,57	$40,9 \pm 2,3$	$27 \pm 1,5$	$28,5 \pm 1,4$	$8,6 \pm 2,2$	$7,2 \pm 1,7$	$13 \pm 3,9$	$3,58 \pm 0,42$	$21,9 \pm 5,1$
EM-WD21	6,309	$69,7 \pm 7,3$	$20,5 \pm 1,6$	$18,\!4\pm1,\!4$	< 4,4	$7,8 \pm 1,9$	< 8	$1,72 \pm 0,46$	$22,2 \pm 5,7$
IL-WD21	4,182	$28,1 \pm 1,6$	11 ± 0.9	$9,9\pm0,8$	$11,1 \pm 1,7$	9.8 ± 1.3	< 4,5	$1,\!39\pm0,\!3$	$18,7 \pm 3,6$
TK-WD21	3,88	19.8 ± 2.9	< 2,9	< 2,2	$9,5 \pm 3,2$	$8,8 \pm 2,5$	< 8,2	$3,\!03\pm0,\!58$	$21,5 \pm 7$
SH-WD21	3,862	$55,2 \pm 6,5$	$2,3 \pm 0,9$	2 ± 0.9	$3,5 \pm 1,9$	$10,4 \pm 1,6$	$7,4 \pm 3,3$	$2,15 \pm 0,36$	< 6,6
KB-WD21	11,005	$254,6 \pm 20,3$	$5,2 \pm 2,2$	< 3,2	< 8,4	$11,1 \pm 3,2$	< 11,3	$1,\!35\pm0,\!75$	$23,7\pm 9,5$
TA-WD21	3,501	$53,3\pm5,6$	$4,9 \pm 1,5$	$3,1\pm1,4$	$5,1\pm2,9$	$6,2 \pm 2,2$	< 8,2	< 0,8	< 11
SD-WD21	10,62	$114,1 \pm 17,4$	< 2,8	< 2,8	< 7,8	$5,1 \pm 3$	< 11,1	$2,\!41\pm0,\!75$	$20,6 \pm 9,4$

Образец	T1-208,	TH-227,	K-40,	Cs-137,
Образец	мБк/л	Бк/л	Бк/л	Бк/л
CH-WD21	< 1,7	< 1,9	130 ± 23	< 0,6
UR-WD21	< 1,6	$2,9 \pm 1,2$	119 ± 22	< 0,5
IK-WD21	< 3,1	$4,6 \pm 2,2$	102 ± 41	< 0,9
EK-WD21	< 2,8	$3,3 \pm 1,9$	166 ± 36	$0,97 \pm 0,57$
TO-WD21	< 2,8	< 3,3	248 ± 40	< 1
AY-WD21	< 2,6	< 3,1	126 ± 36	< 0,8
PR-WD21	< 1,5	< 1,7	< 32	< 0,5
IR-WD21	$5,1 \pm 1,2$	< 2	270 ± 24	< 0,6
EM-WD21	$4 \pm 1,3$	< 2,3	81 ± 26	< 0,7
IL-WD21	< 1,3	< 1,5	< 28	< 0,4
TK-WD21	< 2,5	< 2,7	< 52	< 0,8
SH-WD21	< 1,6	< 1,8	44 ± 20	< 0,5
KB-WD21	< 3,2	< 3,7	199 ± 44	$1,\!61\pm0,\!69$
TA-WD21	< 2,3	< 2,7	81 ± 31	< 0,8
SD-WD21	< 3,2	< 3,7	146 ± 43	< 1,1

Результаты гамма-спектрометрического анализа растворимых компонентов (WD) проб воды, отобранных в бассейнах трансграничных рек Казахстана осенью 2017 г.

Образец	Масса, г	Th-234, мБк/л	Рb-214, мБк/л	Ві-214, мБк/л	Pb-210, мБк/л	Ас-228, мБк/л	Ra-224, мБк/л	Рb-212, мБк/л	Ві-212, мБк/л	Т1-208, мБк/л
CH-WD22	12,253	< 5,8	$8,8 \pm 1,8$	< 2,5	< 6,6	< 4,9	< 9,4	< 1,2	< 14	< 3,2
UR-WD22	6,27	$17,1 \pm 3,4$	< 3,2	< 2,7	< 7,1	$6,0 \pm 2,9$	< 9,9	< 1,3	< 12	< 3,6
IK-WD22	7,177	< 4,3	$9,9 \pm 1,9$	$6,9 \pm 1,6$	< 5,4	< 4,5	< 9,2	< 1,0	< 15	< 3,1
EK-WD22	4,452	< 4,9	$9,0 \pm 1,8$	$7,4 \pm 1,5$	< 5,0	< 5,2	< 9,7	< 2,0	< 14	< 2,8
TO-WD22	7,348	$11,2 \pm 3,1$	$11,9 \pm 1,9$	$11,6 \pm 1,7$	< 5,7	< 4,6	< 9,6	< 2,6	$16,8 \pm 9,5$	< 3,1
AY-WD22	8,818	$15,6 \pm 2,9$	$6,4 \pm 1,6$	$5,4 \pm 1,4$	< 5,1	< 4,2	< 9,6	< 0,9	$19,9\pm9,1$	< 2,7
PR-WD22	1,204	$5,5 \pm 1,2$	$10,7 \pm 1,2$	$9,3 \pm 0,9$	< 2,1	< 4,2	< 9,2	< 0,9	< 11	< 1,4
IR-WD22	0,814	$4,5 \pm 2,1$	$10,6 \pm 1,6$	$14,7 \pm 1,5$	< 3,7	$8,4 \pm 2,5$	$10,7 \pm 4,3$	< 2,3	$21,1 \pm 7,8$	< 2,7
EM-WD22	9,31	112 ± 16	$39,5 \pm 3,4$	$68,6 \pm 7,1$	< 7,4	$64,7 \pm 5,8$	< 8,9	$23,7 \pm 1,5$	$39,1 \pm 15,6$	$51,9 \pm 4,1$
IL-WD22	3,198	$10,1 \pm 3,3$	< 5,1	< 4,3	< 6,5	$10,8 \pm 4,7$	< 9,1	< 2,2	< 14	< 5,7
TK-WD22	2,957	$10,0 \pm 5,3$	< 5,0	< 4,2	< 6,5	< 4,7	< 9,1	< 2,2	< 18	< 5,7
SH-WD22	4,68	96 ± 11	< 3,4	< 3,1	< 6,3	$17 \pm 4,2$	< 9,6	< 1,5	$30 \pm 11,9$	< 4,1
KB-WD22	20,05	244 ± 28	$14,8\pm2,2$	$25,5\pm2,1$	< 6,1	$13,1\pm3,4$	< 11,1	< 2,4	< 15	< 3,8
TA-WD22	2,906	$24,3\pm4,7$	< 4,3	< 3,6	< 6,2	< 4,7	< 9,3	< 1,9	< 17	< 5
SD-WD22	10,46	101 ± 16	$6,7 \pm 3,2$	$5,7\pm2,8$	< 7,1	$13,3 \pm 5,9$	< 9,3	< 2,2	< 17	< 6,1

Образец	TH-227,	K-40,	Cs-137,
	мБк/л	мБк/л	мБк/л
CH-WD22	< 3,7	82 ± 35	< 1,1
UR-WD22	< 4,1	< 45	$1,2 \pm 0,5$
IK-WD22	< 3,1	< 42	< 1,1
EK-WD22	< 2,9	< 41	< 0,9
TO-WD22	< 3,9	101 ± 27	< 1
AY-WD22	< 3,8	50 ± 24	< 0,9
PR-WD22	< 3,3	< 19	< 0,5
IR-WD22	< 2,5	< 35	< 0,9
EM-WD22	< 4,0	2047 ± 161	$2,4 \pm 1,1$
IL-WD22	$7,3 \pm 3,9$	106 ± 44	< 1,2
TK-WD22	< 6,3	< 72	< 1,3
SH-WD22	< 4,6	< 76	< 1,4
KB-WD22	< 3,6	460 ± 32	< 1,2
TA-WD22	< 5,5	< 63	< 1,1
SD-WD22	$8,8 \pm 4,2$	179 ± 66	$3,1 \pm 1,2$

Результаты гамма-спектрометрического анализа нерастворимых компонентов (WS) проб воды, отобранных в бассейнах трансграничных рек Казахстана весной 2017 г.

Образец	Масса, г	Th-234, мБк/л	Рb-214, мБк/л	Ві-214, мБк/л	Рb-210, мБк/л	Ас-228, мБк/л	Ra-224, мБк/л	Рb-212, мБк/л	Ві-212, мБк/л	Tl-208, мБк/л
CH-WS21	2,919	$2,7 \pm 1,1$	$6,3 \pm 0,7$	$3,8 \pm 0,6$	$21,1 \pm 1,9$	$3,3 \pm 0,9$	$4,4 \pm 1,7$	$4,69 \pm 0,23$	< 4	$4,9 \pm 0,6$
UR-WS21	6,226	10 ± 2	$7,4 \pm 1,2$	$12\pm1,1$	21 ± 2.8	$10,4 \pm 1,9$	< 8,3	$10,\!37\pm0,\!47$	$10,2 \pm 4$	$10,4 \pm 1,2$
IK-WS21	0,554	< 2,8	$5,6 \pm 1,1$	$3,9 \pm 1$	$7,7 \pm 2,5$	< 2,4	< 5,8	$1,57 \pm 0,33$	< 6,5	< 1,6
EK-WS21	0,087	< 6,8	< 1,6	< 1,5	< 17,9	< 3,3	< 6,6	$0,\!76\pm0,\!43$	< 7,8	< 2
TO-WS21	0,2	< 8,2	< 2,2	< 2	< 21,6	$5,3 \pm 2,4$	< 7,3	< 0,8	< 9,4	< 2,5
AY-WS21	0,123	< 10	$2,5\pm1,4$	< 2,2	< 25,7	< 4,6	< 10,6	< 1	< 12	< 2,9
PR-WS21	0,099	< 11	$8,5 \pm 2$	$13,6\pm0$	< 28,6	$7,6 \pm 3,2$	< 10,1	< 1,1	< 13	$4,6 \pm 2$
IR-WS21	2,881	$19,8 \pm 2$	$3,6 \pm 1,3$	$9,5 \pm 1,1$	$15,\!4\pm2,\!4$	11 ± 2	< 8,4	$8,6 \pm 0,\!47$	< 6,8	$9,2 \pm 1,2$
EM-WS21	6,788	$21,7 \pm 4,8$	$3,1 \pm 1,3$	< 1,6	< 20,9	$12,5 \pm 2,2$	$7,6 \pm 4,2$	$13,93 \pm 0,59$	$24,7\pm5,5$	$11,7\pm1,4$
IL-WS21	16,267	$32,1 \pm 2,6$	$44,1\pm1,7$	$36,8 \pm 1,5$	$63,3\pm4,5$	$61,\!4\pm2,\!4$	$52,4 \pm 5,1$	$56,84 \pm 0,73$	$54,1\pm5,2$	$59,7 \pm 1,7$
TK-WS21	0,615	$6 \pm 1,5$	< 1,6	< 1,4	$5,4 \pm 1,9$	< 2,6	< 6,8	$1,26 \pm 0,36$	< 5,9	< 1,7
SH-WS21	4,142	$25,2 \pm 4,5$	$7,8 \pm 1,3$	$6,9 \pm 1,2$	< 19,3	$22,6 \pm 2,2$	$10,8 \pm 3,8$	$17,26 \pm 0,57$	$18,8 \pm 5$	$15,4 \pm 1,4$
KB-WS21	2,1	$8 \pm 4,1$	< 1,9	< 1,4	< 17,7	$6,9 \pm 1,9$	< 5,9	$5{,}72 \pm 0{,}45$	< 7,6	$5,6 \pm 1,2$
TA-WS21	0,6	$11,6 \pm 2,4$	< 1	< 0,9	< 10,1	< 1,8	$4,9\pm2,1$	$1,\!87 \pm 0,\!24$	< 4,5	$1,6 \pm 0,7$
SD-WS21	1,024	$6,7 \pm 3,9$	< 1,8	< 1,6	< 17,1	$6,2 \pm 1,9$	< 5,5	$2,92\pm0,4$	$8,2 \pm 4,4$	$3 \pm 1,1$

Образец	TH-227,	K-40,	Cs-137,
Ооразец	Бк/л	Бк/л	Бк/л
CH-WS21	< 1	69 ± 10	$0,62 \pm 0,2$
UR-WS21	< 2	240 ± 16	$0,\!91\pm0,\!27$
IK-WS21	< 1,6	< 26	$0,56 \pm 0,32$
EK-WS21	< 0,3	< 37	$0,\!84\pm0,\!39$
TO-WS21	< 0,9	< 44	< 0,7
AY-WS21	< 0,9	< 53	< 0,9
PR-WS21	< 0,3	237 ± 6	< 0,9
IR-WS21	< 2,1	179 ± 17	< 0,5
EM-WS21	< 2,3	249 ± 24	< 0,7
IL-WS21	< 1,9	633 ± 21	$1,55 \pm 0,38$
TK-WS21	< 1,7	27 ± 14	$0,\!59 \pm 0,\!24$
SH-WS21	< 1,9	151 ± 22	$0,\!98 \pm 0,\!38$
KB-WS21	< 1,9	71 ± 21	< 0,6
TA-WS21	< 1,1	< 20	$0,\!56\pm0,\!22$
SD-WS21	< 1,8	< 33	$0,71\pm0,35$

Результаты гамма-спектрометрического анализа нерастворимых компонентов (WS) проб воды, отобранных в бассейнах трансграничных рек Казахстана осенью 2017 г.

Образец	Масса, г	Th-234, мБк/л	Pb-214, мБк/л	Ві-214, мБк/л	Pb-210, мБк/л	Ас-228, мБк/л	Ra-224, мБк/л	Pb-212, мБк/л	Ві-212, мБк/л	Tl-208, мБк/л
CH-WS22	0,211	< 2,7	< 1,2	< 1,0	$7,6 \pm 2,0$	< 2,0	< 5,1	< 0,5	< 5,3	$1,6 \pm 0,8$
UR-WS22	0,228	< 5,8	< 1,4	< 1,2	< 4,4	< 2,6	< 6,2	< 0,6	< 7,5	< 1,7
IK-WS22	0,688	< 5,6	< 1,3	< 1,1	< 5,9	< 2,6	< 5,4	0.9 ± 0.4	< 7,5	< 1,6
EK-WS22	0,465	< 4	< 2	3 ± 1	< 4	< 3	< 8	< 1	< 10	< 2
TO-WS22	0,075	< 1,1	$3,6 \pm 0,6$	$3,2 \pm 0,5$	< 4,1	< 2,5	< 5,2	< 0,3	< 4,7	< 1,0
AY-WS22	0,064	3 ± 1.8	< 1,3	< 1,1	$8,0 \pm 2,1$	< 2,2	< 5,6	0.5 ± 0.3	< 6,4	$3,1 \pm 0,9$
PR-WS22	0,068	< 1,1	$3,4 \pm 0,6$	4.8 ± 0.6	< 5,2	< 2,8	< 5,3	< 0,3	< 5,4	< 1,0
IR-WS22	0,036	< 1,6	$2,0 \pm 0,5$	< 1,5	$7,2 \pm 1,2$	< 2,2	< 5,3	$0,4 \pm 0,2$	< 5,4	< 1,4
EM-WS22	0,725	$9,2 \pm 3,5$	< 1,4	< 1,2	< 6,0	< 2,5	< 5,3	< 0,6	< 7,5	< 1,7
IL-WS22	1,693	< 3,7	< 1,6	< 1,4	$10,3 \pm 2,7$	$4,6 \pm 1,6$	$8,8 \pm 4,2$	$2,6 \pm 0,4$	< 7,0	$3,8 \pm 1,1$
TK-WS22	2,676	$4 \pm 1,2$	$5,9 \pm 1,2$	$7,3 \pm 0,9$	< 5,0	$7,6 \pm 1,6$	10.8 ± 3.1	$5,5 \pm 0,4$	$17,2 \pm 4,8$	$3,6 \pm 1,0$
SH-WS22	1,537	$9,1 \pm 3,9$	< 1,5	< 1,3	$33,8 \pm 11,3$	$6,4 \pm 1,8$	< 6,9	$6,1 \pm 0,5$	< 8,2	$5,6 \pm 1,2$
KB-WS22	0,588	$19,8 \pm 3,6$	< 1,3	< 1,2	< 5,8	< 2,5	< 6,0	0.9 ± 0.3	< 7,2	< 1,6
TA-WS22	0,393	< 2,8	< 1,3	< 1,1	$9,8 \pm 2,1$	< 2,1	< 5,4	0.9 ± 0.3	< 5,6	$3,1 \pm 0,9$
SD-WS22	1,172	< 2,5	$9,5 \pm 1,4$	$10,7\pm1,2$	< 5,6	$5,7 \pm 2,1$	< 6,7	$2,7 \pm 0,5$	< 5,9	$2,8 \pm 1,3$

Образец	ТН-227, мБк/л	К-40, мБк/л	Cs-137, мБк/л
CH-WS22	$2,8 \pm 0,9$	< 18	< 0,4
UR-WS22	< 1,9	< 20	< 0,5
IK-WS22	< 1,8	< 19	< 0,5
EK-WS22	3 ± 2	< 47	$2,1 \pm 0,7$
TO-WS22	< 14	< 14	< 0,4
AY-WS22	< 1,5	44 ± 12	0.6 ± 0.3
PR-WS22	< 1,1	< 14	< 0,3
IR-WS22	< 1,9	< 11	< 0,6
EM-WS22	< 1,8	< 19	< 0,5
IL-WS22	< 1,9	55 ± 14	< 0,6
TK-WS22	< 1,5	28 ± 13	0.7 ± 0.3
SH-WS22	< 1,9	< 22	$1,0 \pm 0,4$
KB-WS22	< 1,8	< 19	< 0,5
TA-WS22	< 1,4	< 19	< 0,5
SD-WS22	< 2,0	30 ± 17	< 0,7

Результаты нейтроноактивационного анализа растворимых компонентов (WD) проб воды, отобранных в бассейнах трансграничных рек Казахстана весной 2017 г.

Sample code	m, g	Sb, мкг/г	Sb, _{мкг/л}	As, _{ΜΚΓ} /Γ	As, мкг/л	Ni, мкг∕г	Ni, мкг∕л	Сr, мкг/г	Сr, мкг/л	Со, _{мкг/г}	Со, мкг/л	Zn, мкг/г	Zn, мкг/л	U, мкг/г	U, мкг/л	Th, нг/г	Th, нг/л	Ag, _{мкг/г}
CH-WD21	2,34	0,52	0,15	3,3	0,91	170	762	252	70	2,9	0,82	56	16	3,5	0,98	37	10	0,04
UR-WD21	2,803	2,2	0,67	3,4	1,0	12	16	13	4,1	0,63	0,19	39	12	11	3,5	69	21	0,32
IK-WD21	4,344	0,84	0,44	2,8	1,5	5,8	30	5,2	2,8	0,46	0,24	19	10	2,4	1,3	27	14	1,3
EK-WD21	3,243	0,40	0,14	5,1	1,8	10	81	8,8	3,1	1,2	0,41	87	30	1,3	0,44	33	12	0,38
TO-WD21	7,367	0,36	0,27	2,3	1,8	5,5	112	8,3	6,3	0,47	0,35	27	20	4,5	3,4	14	10	0,07
AY-WD21	6,008	0,35	0,21	1,7	0,99	4,6	79	1,1	0,66	0,46	0,28	38	23	13	7,6	19	11	0,52
PR-WD21	1,9	1,3	0,27	4,8	1,0	5,5	8,3	11	2,3	8,8	1,8	254	54	13	2,8	30	6,3	1,3
IR-WD21	2,57	1,7	0,42	2,8	0,73	7,5	12	9,6	2,5	0,82	0,21	559	144	27	7,0	254	65	1,1
EM-WD21	6,309	1,0	0,70	4,4	3,0	3,7	23	2,0	1,4	0,44	0,30	111	76	21	14	56	38	0,03
IL-WD21	4,182	0,74	0,31	3,8	1,6	9,2	52	28	12	0,44	0,19	50	21	17	7,2	91	38	0,10
TK-WD21	3,88	0,29	0,11	2,8	1,1	10	141	240	93	0,89	0,35	26	10	14	5,3	390	151	0,36
SH-WD21	3,862	0,77	0,32	2,9	1,2	3,5	17	5,2	2,1	0,35	0,15	99	41	32	13	77	32	0,21
KB-WD21	11,005	0,24	0,27	2,8	3,2	0,66	30	1,8	2,0	0,11	0,13	33	37	27	30	8,6	10	< 0,02
TA-WD21	3,501	0,83	0,30	2,2	0,79	11	48	47	17	0,22	0,08	140	52	20	7,2	32	12	0,40
SD-WD21	10,62	0,64	0,70	3,5	3,8	1,8	29	2,6	2,9	0,32	0,35	47	52	16	17	21	23	< 0,02

Sample code	Ад, мкг/л	Au, нг/г	Au, нг/л	La, мкг/г	La, мкг/л	Се, мкг/г	Се, мкг/л	Ca, %	Са, мг/л	Fe, мкг/г	Fe, мкг/л	Na, %	Na, мг/л	Ва, мкг/г	Ва, мкг/л	Sr, мкг/г	Sr, мкг/л	Zr, _{ΜΚΓ} /Γ
CIL MIDA1					0.22			10				0.10						
CH-WD21	0,011	5,8	1,6	0,81	0,23	1,5	0,42	10	28	2347	654	8,19	23	86	24	1208	337	< 50
UR-WD21	0,098	9,4	2,9	0,44	0,13	0,60	0,18	11	33	496	153	9,28	29	89	27	1139	351	1,7
IK-WD21	0,68	9,3	4,9	0,21	0,11	0,29	0,15	7,7	41	402	212	15,90	84	73	38	871	459	< 50
EK-WD21	0,13	8,4	2,9	0,26	0,091	0,50	0,17	10	36	228	80	8,62	30	96	34	867	304	3,7
TO-WD21	0,057	< 0,5	< 0,38	0,10	0,077	< 0,5	< 0,38	7,2	55	175	132	14,62	110	64	49	836	632	< 50
AY-WD21	0,31	< 0,5	< 0,30	0,23	0,14	0,16	0,10	7,2	44	332	200	15,64	94	84	50	885	532	< 50
PR-WD21	0,28	6,2	1,3	0,33	0,070	< 0,5	< 0,11	13	28	254	54	8,23	17	141	30	1090	230	< 50
IR-WD21	0,28	3,8	0,98	0,69	0,18	0,44	0,11	9,2	24	725	186	10,52	27	76	19	862	221	< 50
EM-WD21	0,023	4,2	2,9	0,19	0,13	< 0,5	< 0,34	9,4	64	412	283	15,24	104	58	40	1232	845	< 50
IL-WD21	0,041	4,9	2,0	0,38	0,16	0,40	0,17	14	57	469	196	8,86	37	165	69	1003	419	< 50
TK-WD21	0,14	8,6	3,3	1,50	0,58	2,6	1,00	13	52	1430	555	5,83	23	180	70	1655	642	< 50
SH-WD21	0,085	< 0,5	< 0,21	0,12	0,048	< 0,5	< 0,21	12	50	309	127	8,37	34	143	59	1400	575	< 50
KB-WD21	< 0,02	< 0,5	< 0,56	< 0,1	< 0,11	< 0,5	< 0,56	6,5	74	83	94	12,13	137	61	69	1905	2151	< 50
TA-WD21	0,15	1,9	0,71	< 0,1	< 0,04	< 0,5	< 0,18	13	46	107	40	4,99	18	197	73	1490	549	< 50
SD-WD21	< 0,02	< 0,5	< 0,55	< 0,1	< 0,11	< 0,5	< 0,55	11	116	84	92	11,01	121	82	90	2246	2459	< 50

Sample code	Zr, мкг/л	Rb, мкг/г	Rb, мкг/л	Sc, нг/г	Sc, нг/л	Сs, нг/г	Сs, _{нг/л}	Мо, мкг/г	Мо, мкг/л	Br, мкг/г	Br, мкг/л	Se, мкг/г	Se, мкг/л
CH-WD21	< 14	4,2	1,2	42	12	55	15	8,2	2,3	< 0,1	<0,028	0,13	0,037
UR-WD21	0,53	2,9	0,91	106	33	28	8,6	1,9	0,58	< 0,1	< 0,031	0,52	0,16
IK-WD21	< 26	2,0	1,1	49	26	27	14	2,2	1,2	< 0,1	< 0,053	0,22	0,12
EK-WD21	1,3	3,9	1,4	24	8,4	15	5,2	2,6	0,92	< 0,1	< 0,035	0,25	0,088
TO-WD21	< 38	2,0	1,5	23	17	12	8,9	4,0	3,0	< 0,1	< 0,076	0,46	0,35
AY-WD21	< 30	1,9	1,2	19	11	11	6,5	4,3	2,6	27	16	0,18	0,11
PR-WD21	< 11	2,5	0,53	42	9,0	28	5,9	6,0	1,3	0,40	0,084	0,17	0,035
IR-WD21	< 13	5,0	1,3	209	54	153	39	11	2,7	< 0,1	< 0,026	0,17	0,043
EM-WD21	< 34	0,99	0,68	95	65	42	29	17	12	< 0,1	<0,069	0,79	0,54
IL-WD21	< 21	2,4	0,99	53	22	65	27	8,1	3,4	< 0,1	< 0,042	1,2	0,52
TK-WD21	< 19	2,2	0,86	145	56	132	51	4,6	1,8	< 0,1	<0,039	1,3	0,50
SH-WD21	< 21	2,2	0,89	57	24	50	21	7,8	3,2	< 0,1	< 0,041	0,09	0,04
KB-WD21	< 56	0,51	0,58	14	16	12	13	16	18	< 0,1	< 0,11	0,78	0,88
TA-WD21	< 18	2,2	0,82	32	12	42	15	6,8	2,5	< 0,1	< 0,037	0,85	0,31
SD-WD21	< 56	1,0	1,1	16	18	13	14	5,6	6,1	< 0,1	< 0,11	0,92	1,0

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
CH-WD21 0,029 0,0082 <5 <1,4 0,10 0,028 UR-WD21 0,11 0,0345 <5 <1,5 0,32 0,099 IK-WD21 <0,01 <0,0053 <5 <2,6 0,10 0,051 EK-WD21 <0,01 <0,0035 17 6,0 0,14 0,050 TO-WD21 0,007 0,0053 45 34 <0,05 <0,038 AY-WD21 <0,01 <0,0060 <5 <3 0,057 0,034 PR-WD21 <0,01 <0,0021 <5 <1,1 0,30 0,063 IR-WD21 0,024 0,0063 <5 <1,3 0,05 <0,013 EM-WD21 0,012 0,0083 <5 <1,3 0,05 <0,013 EM-WD21 0,012 0,0083 <5 <1,3 0,05 <0,013 EM-WD21 0,017 0,0071 <5 <2,1 0,025 0,010 TK-WD21 0,020 0,0079 <5 <1,9 0,009 0,003 SH-WD21 0,015 0,0062 <5 <2,1 0,12 0,051 KB-WD21 <0,01 <0,011 <5 <5,6 0,046 0,052 TA-WD21 0,017 0,0071 <5 <5,6 0,046 0,052 TA-WD21 0,017 0,0064 <5 <1,8 0,29 0,11	Sample code				.′	_	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		мкг/г	мкг/л	HL/L	нг/л	мкг/г	мкг/л
IK-WD21 < 0,01	CH-WD21	0,029	0,0082	< 5	< 1,4	0,10	0,028
EK-WD21 < 0,01	UR-WD21	0,11	0,0345	< 5	< 1,5	0,32	0,099
TO-WD21 0,007 0,0053 45 34 <0,05 <0,038 AY-WD21 <0,01 <0,0060 <5 <3 0,057 0,034 PR-WD21 <0,01 <0,0021 <5 <1,1 0,30 0,063 IR-WD21 0,024 0,0063 <5 <1,3 0,05 <0,013 EM-WD21 0,012 0,0083 <5 <1,3 0,05 <0,013 EM-WD21 0,017 0,0071 <5 <2,1 0,025 0,010 TK-WD21 0,020 0,0079 <5 <1,9 0,009 0,003 SH-WD21 0,015 0,0062 <5 <2,1 0,12 0,051 KB-WD21 <0,017 0,0071 <5 <5,6 0,046 0,052 TA-WD21 0,017 0,0064 <5 <1,8 0,29 0,11	IK-WD21	< 0,01	<0,0053	< 5	< 2,6	0,10	0,051
AY-WD21 < 0,01	EK-WD21	< 0,01	<0,0035	17	6,0	0,14	0,050
PR-WD21 < 0,01 <0,0021 < 5 < 1,1 0,30 0,063 IR-WD21 0,024 0,0063 < 5 < 1,3 0,05 <0,013 EM-WD21 0,012 0,0083 < 5 < 3,4 0,014 0,010 IIL-WD21 0,017 0,0071 < 5 < 2,1 0,025 0,010 TK-WD21 0,020 0,0079 < 5 < 1,9 0,009 0,003 SH-WD21 0,015 0,0062 < 5 < 2,1 0,12 0,051 KB-WD21 < 0,01 <0,011 < 5 < 5,6 0,046 0,052 TA-WD21 0,017 0,0064 < 5 < 1,8 0,29 0,11	TO-WD21	0,007	0,0053	45	34	< 0,05	<0,038
IR-WD21 0,024 0,0063 <5 <1,3 0,05 <0,013 EM-WD21 0,012 0,0083 <5 <3,4 0,014 0,010 IL-WD21 0,017 0,0071 <5 <2,1 0,025 0,010 TK-WD21 0,020 0,0079 <5 <1,9 0,009 0,003 SH-WD21 0,015 0,0062 <5 <2,1 0,12 0,051 KB-WD21 <0,01 <0,011 <5 <5,6 0,046 0,052 TA-WD21 0,017 0,0064 <5 <1,8 0,29 0,11	AY-WD21	< 0,01	<0,0060	< 5	< 3	0,057	0,034
EM-WD21 0,012 0,0083 < 5	PR-WD21	< 0,01	<0,0021	< 5	< 1,1	0,30	0,063
IL-WD21 0,017 0,0071 <5 <2,1 0,025 0,010 TK-WD21 0,020 0,0079 <5 <1,9 0,009 0,003 SH-WD21 0,015 0,0062 <5 <2,1 0,12 0,051 KB-WD21 <0,01 <0,011 <5 <5,6 0,046 0,052 TA-WD21 0,017 0,0064 <5 <1,8 0,29 0,11	IR-WD21	0,024	0,0063	< 5	< 1,3	0,05	<0,013
TK-WD21 0,020 0,0079 < 5 < 1,9 0,009 0,003 SH-WD21 0,015 0,0062 < 5	EM-WD21	0,012	0,0083	< 5	< 3,4	0,014	0,010
SH-WD21 0,015 0,0062 < 5 < 2,1 0,12 0,051 KB-WD21 < 0,01 <0,011 < 5 < 5,6 0,046 0,052 TA-WD21 0,017 0,0064 < 5 < 1,8 0,29 0,11	IL-WD21	0,017	0,0071	< 5	< 2,1	0,025	0,010
KB-WD21 < 0,01 <0,011 < 5 < 5,6 0,046 0,052 TA-WD21 0,017 0,0064 < 5 < 1,8 0,29 0,11	TK-WD21	0,020	0,0079	< 5	< 1,9	0,009	0,003
TA-WD21 0,017 0,0064 < 5 < 1,8 0,29 0,11	SH-WD21	0,015	0,0062	< 5	< 2,1	0,12	0,051
	KB-WD21	< 0,01	< 0,011	< 5	< 5,6	0,046	0,052
SD-WD21 0,013 0,014 63 69 0,29 0,31	TA-WD21	0,017	0,0064	< 5	< 1,8	0,29	0,11
	SD-WD21	0,013	0,014	63	69	0,29	0,31

Результаты нейтроноактивационного анализа растворимых компонентов (WD) проб воды, отобранных в бассейнах трансграничных рек Казахстана осенью 2017 г.

Sample code	m, g	Sb, мкг/г	Sb, _{мкг/л}	As, $MK\Gamma/\Gamma$	As, мкг/л	Ni, мкг/г	Ni, мкг∕л	Сr, _{мкг/г}	Сr, _{мкг/л}	Со, _{мкг/г}	Со, мкг/л	Z_n , $MK\Gamma/\Gamma$	Zn, _{мкг/л}	U, мкг/г	U, мкг/л	Th, нг/г	Th, _{нг/л}	Ag, мкг/г
CH-WD-22	12,253	0,56	0,69	4,3	5,3	0,15	0,18	0,71	0,87	0,093	0,11	3,5	4,2	0,955	1,17	< 10	< 12	0,10
UR-WD-22	6,27	1,6	1,0	1,4	0,89	2,0	1,2	5,6	3,5	0,19	0,12	4,3	2,7	3,04	1,91	< 10	< 6,3	0,072
IK-WD-22	7,177	0,34	0,24	3,4	2,5	1,7	1,2	4,8	3,43	0,21	0,15	7,2	5,2	1,28	0,916	< 10	< 7,2	0,035
EK-WD-22	4,452	0,29	0,14	3,5	1,7	2,7	1,3	24	12	1,3	0,64	8,2	4,0	1,58	0,775	13	6,6	0,069
TO-WD-22	7,348	0,24	0,18	4,0	2,9	< 0,15	< 0,11	0,52	0,38	0,18	0,13	3,0	2,2	2,64	1,94	< 10	< 7,3	0,15
AY-WD-22	8,818	0,27	0,24	< 0,5	< 0,44	< 0,15	< 0,13	0,43	0,38	0,094	0,083	1,9	1,7	3,43	3,03	< 10	< 8,8	0,17
PR-WD-22	1,204	1,7	0,20	6,3	0,76	2,3	0,27	4,7	0,56	0,42	0,050	16	1,9	9,39	1,13	18	2,2	0,56
IR-WD-22	0,814	4,1	0,33	5,8	0,47	3,5	0,29	8,1	0,66	0,76	0,062	33	2,7	13,6	1,11	40	3,2	0,11
EM-WD-22	9,31	1,1	1,1	1,8	1,7	< 0,15	< 0,14	1,8	1,7	0,089	0,083	2,9	2,7	14,0	13,1	< 10	< 9,3	0,32
IL-WD-22	3,198	0,72	0,23	4,6	1,5	2,4	0,77	1,9	0,60	0,37	0,12	11	3,4	13,3	4,26	58	18	< 0,02
TK-WD-22	2,957	0,28	0,08	2,60	0,77	< 0,15	< 0,04	2,6	0,77	0,25	0,075	11	3,2	12,1	3,58	72	21	0,24
SH-WD-22	4,68	0,74	0,34	4,0	1,9	< 0,15	< 0,07	11	5,3	0,096	0,045	3,9	1,8	38,0	17,8	< 10	< 4,7	0,050
KB-WD-22	20,05	0,29	0,59	2,2	4,4	3,5	7,1	17	35	0,12	0,24	2,2	4,4	29,1	58,3	< 10	< 20	< 0,02
TA-WD-22	2,906	1,9	0,55	2,9	0,84	< 0,15	< 0,04	5,9	1,7	0,16	0,047	4,7	1,4	20,9	6,07	< 10	< 2,9	0,047
SD-WD-22	10,46	0,21	0,23	< 0,5	< 0,57	< 0,15	< 0,17	2,0	2,3	0,085	0,10	1,4	1,6	11,7	13,2	< 10	< 11	< 0,02

-																		
Sample code	Ag,	Au,	Au,	La,	La,	Ce,	Ce,	Ca,	Ca,	Fe,	Fe,	Na,	Na,	Ba,	Ba,	Sr,	Sr,	Zr,
Sumple code	мкг/л	HL/L	нг/л	$MK\Gamma/\Gamma$	мкг/л	$MK\Gamma/\Gamma$	мкг/л	%	мг/л	$MK\Gamma/\Gamma$	мкг/л	%	мг/л	$MK\Gamma/\Gamma$	мкг/л	$MK\Gamma/\Gamma$	мкг/л	$MK\Gamma/\Gamma$
CH-WD-22	0,13	5,3	6,4	< 0,1	< 0,12	< 0,5	< 0,61	7,2	88	19	24	13	159	41	50	856	1049	< 50
UR-WD-22	0,045	4,0	2,5	< 0,1	< 0,063	< 0,5	< 0,31	8,3	52	54	34	13	82	87	55	1007	632	< 50
IK-WD-22	0,025	< 0,5	< 0,36	< 0,1	< 0,072	< 0,5	< 0,36	6,4	46	38	27	17	122	49	35	825	592	< 50
EK-WD-22	0,034	3,7	1,8	< 0,1	< 0,049	< 0,21	< 0,10	7,3	36	151	74	13	64	88	43	818	400	< 1,91
TO-WD-22	0,11	< 0,5	< 0,37	< 0,1	< 0,073	< 0,5	< 0,37	6,1	45	66	48	14	103	64	47	835	613	< 50
AY-WD-22	0,15	< 0,5	< 0,44	< 0,1	< 0,088	< 0,5	< 0,44	5,2	46	44	38	15	132	57	50	848	748	< 50
PR-WD-22	0,068	3,0	0,36	0,15	0,018	< 0,35	< 0,042	14	17	253	30	6,8	8,2	205	25	1171	141	< 50
IR-WD-22	0,009	< 0,5	< 0,041	< 0,1	< 0,008	< 0,5	< 0,041	12	10	170	14	6,6	5,4	133	11	920	75	< 50
EM-WD-22	0,30	< 0,5	< 0,47	< 0,1	< 0,093	< 0,5	< 0,47	5,1	47	74	69	17	158	60	56	1269	1181	< 50
IL-WD-22	< 0,006	2,5	0,81	0,65	0,21	0,95	0,30	12	37	302	97	4,0	13	186	59	1079	345	< 50
TK-WD-22	0,071	2,6	0,77	0,35	0,10	0,55	0,16	15	46	415	123	3,3	10	244	72	1791	530	< 50
SH-WD-22	0,024	5,1	2,4	< 0,1	< 0,047	< 0,5	< 0,23	11	52	123	58	8,7	41	170	80	1719	805	< 50
KB-WD-22	< 0,040	3,2	6,4	< 0,1	< 0,20	< 0,5	< 1	6,9	138	169	339	12	241	41	81	2662	5337	< 50
TA-WD-22	0,014	3,9	1,1	< 0,1	< 0,029	< 0,5	< 0,15	13	39	56	16	4,7	14	317	92	1948	566	< 50
SD-WD-22	< 0,023	< 0,5	< 0,57	< 0,1	< 0,11	< 0,5	< 0,57	9,5	107	26	30	8,6	97	61	69	2249	2544	< 50

Приложение 18 (продолжение)

Sample code	Zr, мкг/л	Rb, _{мкг/г}	Rb, мкг/л	Sc, _{нг/г}	Sc, _{нг/л}	Сs, _{нг/г}	Сs, _{нг/л}	Мо, _{мкг/г}	Мо, мкг/л	Br, _{ΜΚΓ} /Γ	Br, мкг/л	Se, _{ΜΚΓ} / _Γ	Se, мкг/л	Нf, _{мкг} /г	Н f, мкг∕л	Re, _{нг} /г	Re, нг/л	Hg, мкг/г	Нg, мкг∕л
CH-WD-22	< 61	0,77	0,95	4,8	5,9	< 1	< 1,2	0,74	0,91	2,6	3,2	0,062	0,076	< 0,01	< 0,012	< 5	< 6,1	< 0,05	< 0,061
UR-WD-22	< 31	1,0	0,65	7,6	4,8	< 1	< 0,63	2,2	1,4	22	14	0,34	0,21	< 0,01	< 0,006	< 5	< 3,1	< 0,05	< 0,031
IK-WD-22	< 36	0,73	0,52	5,6	4,0	< 1	< 0,72	1,7	1,3	12	8,4	0,22	0,16	< 0,01	< 0,007	< 5	< 3,6	< 0,05	< 0,036
EK-WD-22	< 0,94	1,1	0,54	6,8	3,3	< 1	< 0,49	0,39	0,19	4,8	2,3	0,25	0,12	< 0,01	< 0,005	< 5	< 2,4	< 0,05	< 0,024
TO-WD-22	< 37	1,5	1,1	7,1	5,2	< 1	< 0,73	3,9	2,8	33	25	0,17	0,12	< 0,01	< 0,007	< 5	< 3,7	< 0,05	< 0,037
AY-WD-22	< 44	1,1	0,96	3,4	3,0	< 1	< 0,88	1,3	1,2	45	40	0,093	0,082	< 0,01	< 0,009	< 5	< 4,4	< 0,05	< 0,044
PR-WD-22	< 6	2,5	0,31	29	3,5	19	2,2	7,0	0,84	< 0,1	< 0,012	0,28	0,034	< 0,01	< 0,001	< 5	< 0,6	< 0,05	< 0,006
IR-WD-22	< 4,1	8,4	0,68	18	1,5	22	1,8	9,4	0,77	< 0,1	< 0,008	0,093	0,008	< 0,01	< 0,001	< 5	< 0,41	< 0,05	< 0,004
EM-WD-22	< 47	0,51	0,47	1,4	1,3	< 1	< 0,93	19	18	< 0,1	< 0,093	0,56	0,52	< 0,01	< 0,009	56	51,9	< 0,05	< 0,047
IL-WD-22	< 16	3,1	0,99	26	8,3	51	16,3	6,9	2,2	0,45	0,14	0,62	0,20	< 0,01	< 0,003	< 5	< 1,6	< 0,05	< 0,016
TK-WD-22	< 15	1,3	0,40	34	10	30	8,9	4,4	1,3	< 0,1	< 0,030	0,68	0,20	< 0,01	< 0,003	< 5	< 1,5	< 0,05	< 0,015
SH-WD-22	< 23	1,3	0,61	4,4	2,0	13	6,1	8,2	3,9	< 0,1	< 0,047	0,12	0,058	< 0,01	< 0,005	< 5	< 2,3	0,17	0,079
KB-WD-22	< 100	0,31	0,63	2,9	5,9	9,3	18,6	14	29	< 0,1	< 0,20	0,74	1,5	< 0,01	< 0,020	< 5	< 10	< 0,05	< 0,010
TA-WD-22	< 15	2,0	0,57	5,2	1,5	< 1	< 0,29	4,4	1,3	12	3,4	0,97	0,28	< 0,01	< 0,003	< 5	< 1,5	< 0,05	< 0,015
SD-WD-22	< 57	0,56	0,64	3,7	4,2	7,7	8,7	4,1	4,6	< 0,1	< 0,11	1,1	1,2	< 0,01	< 0,011	106	120,3	< 0,05	< 0,057

Результаты нейтроноактивационного анализа нерастворимых компонентов (WS) проб воды, отобранных в бассейнах трансграничных рек Казахстана весной 2017 г.

Sample code	m, g	Sb, мкг/г	Sb, mkg/l	As, _{ΜΚΓ} / _Γ	As, mkg/l	Ni, мкг/г	Ni, mkg/l	Сr, мкг/г	Cr, mkg/l	Со, мкг/г	Co, mkg/l	Zn, мкг/г	Zn, mkg/l	U, мкг/г	U, mkg/l	Th, мкг/г	Th, mkg/l
CH-WS21	2,919	1,3	0,18	8,0	1,2	105	15	198	29	18	2,7	99	15	1,8	0,26	8,3	1,2
UR-WS21	6,226	1,1	0,34	7,5	2,3	78	24	180	56	18	5,8	134	42	1,8	0,55	7,4	2,3
IK-WS21	0,554	2,5	0,070	9,1	0,25	95	2,6	167	4,6	22	0,61	126	3,5	1,9	0,05	9,1	0,25
EK-WS21	0,087	1,5	0,006	6,5	0,028	121	0,53	158	0,69	21	0,09	623	2,7	2,7	0,01	5,2	0,02
TO-WS21	0,2	3,1	0,031	13	0,13	96	0,96	89	0,89	32	0,32	143	1,4	4,9	0,05	6,3	0,06
AY-WS21	0,123	4,4	0,027	61	0,37	138	0,85	122	0,75	41	0,25	166	1,0	13	0,08	5,9	0,04
PR-WS21	0,099	2,1	0,010	7,5	0,037	70	0,35	138	0,68	7,7	0,04	291	1,4	8,7	0,04	4,4	0,02
IR-WS21	2,881	1,6	0,23	7,8	1,1	78	11	105	15	18	2,5	124	18	5,0	0,72	12	1,8
EM-WS21	6,788	1,4	0,47	12	4,1	26	8,7	54	18	12	4,0	79	27	3,3	1,1	8,0	2,7
IL-WS21	16,267	1,7	1,36	14	11	27	22	67	55	14	12	107	87	2,7	2,2	14	11
TK-WS21	0,615	1,4	0,044	5,7	0,18	29	0,90	50	1,5	8,6	0,27	144	4,4	2,9	0,09	9,6	0,30
SH-WS21	4,142	1,6	0,34	11	2,3	43	8,9	158	33	14	2,9	111	23	4,6	0,95	17	3,5
KB-WS21	2,1	1,5	0,15	12	1,3	40	4,2	74	7,8	20	2,1	96	10	3,9	0,41	10	1,0
TA-WS21	0,6	1,9	0,056	7,6	0,23	34	1,0	77	2,3	14	0,41	98	2,9	4,1	0,12	9,4	0,28
SD-WS21	1,024	2,3	0,12	12	0,62	80	4,1	89	4,6	18	0,91	149	7,6	4,0	0,20	14	0,70

Sample	Au,	Au,	Ag,	Ag,	La,	La,	Ce,	Ce,	Ca,	Ca,	Fe,	Fe,	Na,	Na,	Ba,	Ba,	Sr,
code	нг/г	ng/l	мкг/г	мкг/l	мкг/г	mkg/l	мкг/г	mkg/l	%	mg/l	%	mg/l	%	mg/l	мкг/г	mkg/l	мкг/г
CH-WS21	5,4	0,79	< 0,2	< 0,03	25	3,7	51	7,4	2,7	4,0	4,0	5,9	0,78	1,1	444	65	153
UR-WS21	3,8	1,2	< 0,2	< 0,06	24	7,6	46	14	3,6	11	3,7	12	0,73	2,3	402	125	160
IK-WS21	40	1,1	< 0,2	< 0,01	26	0,72	53	1,5	6,1	1,7	4,8	1,3	1,1	0,31	425	12	315
EK-WS21	82	0,36	2,5	0,011	15	0,07	31	0,13	14	0,61	2,8	0,12	6,1	0,27	378	1,6	1098
TO-WS21	99	0,99	1,2	0,012	21	0,21	37	0,37	8,6	0,86	4,3	0,43	7,2	0,72	639	6,4	774
AY-WS21	204	1,3	9,2	0,057	22	0,13	34	0,21	7,6	0,47	8,1	0,50	6,5	0,40	833	5,1	865
PR-WS21	112	0,56	0,86	0,004	13	0,07	22	0,11	18	0,90	2,2	0,11	0,68	0,03	316	1,6	1113
IR-WS21	15	2,2	< 0,2	< 0,03	35	5,0	65	9,3	2,2	3,10	4,5	6,5	1,6	2,3	408	59	147
EM-WS21	9,0	3,0	< 0,2	< 0,07	23	7,8	43	14	7,6	26	3,2	11	1,7	5,6	482	164	592
IL-WS21	3,5	2,8	< 0,2	< 0,2	33	27	62	50	6,3	52	3,8	31	1,1	9,3	563	458	249
TK-WS21	8,5	0,26	3,7	0,11	25	0,78	45	1,4	6,6	2,0	2,6	0,79	1,6	0,48	613	19	416
SH-WS21	7,3	1,5	0,20	0,04142	37	7,6	65	13	4,3	8,9	3,6	7,4	1,5	3,1	570	118	244
KB-WS21	6,0	0,62	0,67	0,070	24	2,6	45	4,7	7,4	7,8	3,4	3,5	1,2	1,2	476	50	521
TA-WS21	9,4	0,28	2,1	0,062	28	0,84	49	1,5	12	3,5	3,1	0,92	1,0	0,30	593	18	507

SD-WS21 20 1,0 1,4 0,071 31 1,6 58 3,0 9,0 4,6 4,1 2,1 0,92 0,47 628 32 493

Sample code	Sr, mkg/l	Zr, μκγ/γ	Zr, mkg/l	Rb, мкг/г	Rb, mkg/l	Sc, мкг/г	Sc, mkg/l	Сs, мкг/г	Cs, mkg/l	Нf, мкг∕г	Hf, mkg/l	Та, мкг/г	Ta, mkg/l	Мо, мкг/г	Mo, mkg/l
CH-WS21	22	191	28	76	11	15	2,3	5,5	0,80	6,2	0,90	0,71	0.094	0,99	0,14
UR-WS21	50	170	53	70	22	15	4,6	4,8	1,5	4,9	1,5	0,71	0,094	1,1	0,35
IK-WS21	8,7	140	3,9	92	2,5	17	0,47	7,0	0,19	4,1	0,11	0,72	0.018	< 1	< 0,03
							· ·	· ·		,			- ,		
EK-WS21	4,8	68	0,29	50	0,22	10	0,04	3,8	0,02	1,8	0,01	0,46	0,002	3,4	0,015
TO-WS21	7,7	73	0,73	55	0,55	11	0,11	4,5	0,04	2,3	0,02	0,37	0,003	0,33	0,003
AY-WS21	5,3	64	0,39	46	0,28	12	0,08	3,8	0,02	2,2	0,01	0,57	0,003	19	0,12
PR-WS21	5,5	46	0,23	41	0,20	7,1	0,04	3,7	0,02	1,6	0,01	0,23	0,001	4,0	0,020
IR-WS21	21	140	20	109	16	18	2,5	8,9	1,3	5,8	0,83	0,90	0,12	0,69	0,10
EM-WS21	201	161	55	80	27	12	4,2	5,1	1,7	4,4	1,5	0,63	0,19	0,27	0,090
IL-WS21	202	145	118	114	93	14	12	9,0	7,3	4,8	3,9	0,82	0,60	< 1	0,80
TK-WS21	13	152	4,7	95	2,9	10	0,30	6,2	0,19	4,4	0,13	0,68	0,019	0,26	0,008
SH-WS21	50	210	43	113	23	14	2,8	7,5	1,6	5,7	1,2	1,0	0,20	0,29	0,060
KB-WS21	55	113	12	82	8,6	13	1,4	7,0	0,74	3,6	0,38	0,58	0,055	2,9	0,31
TA-WS21	15	140	4,2	83	2,5	11	0,34	5,6	0,17	4,4	0,13	0,67	0,018	< 1	< 0,03
SD-WS21	25	114	5,8	105	5,4	15	0,75	9,5	0,49	3,6	0,19	0,85	0,040	1,1	0,059

Sample code	Br,	Br,	Nd,	Nd,	Sm,	Sm,	Tb,	Tb,	Yb,	Yb,	Lu,	Lu,	Eu,	Eu,
Sample code	$MK\Gamma/\Gamma$	mkg/l												
CH-WS21	4,9	0,71	33	4,8	4,6	0,68	0,71	0,10	2,7	0,39	0,39	0,057	1,4	0,20
UR-WS21	4,5	1,4	20	6,1	4,4	1,4	0,62	0,19	2,6	0,81	0,33	0,10	1,1	0,36
IK-WS21	13	0,36	28	0,77	4,7	0,13	0,69	0,019	2,7	0,076	0,34	0,009	1,3	0,036
EK-WS21	106	0,46	17	0,074	3,0	0,01	0,45	0,002	1,3	0,006	0,20	0,001	0,78	0,003
TO-WS21	221	2,2	16	0,16	4,3	0,04	0,58	0,006	2,0	0,020	0,22	0,002	0,92	0,009
AY-WS21	177	1,1	16	0,10	4,1	0,03	0,56	0,003	2,5	0,015	0,22	0,001	1,0	0,006
PR-WS21	25	0,12	12	0,058	2,3	0,01	0,29	0,001	1,3	0,006	0,15	0,001	0,56	0,003
IR-WS21	6,1	0,88	31	4,4	6,8	0,98	0,98	0,14	3,7	0,53	0,41	0,060	1,6	0,23
EM-WS21	7,3	2,5	17	5,8	4,6	1,6	0,69	0,24	2,6	0,87	0,31	0,10	1,1	0,38
IL-WS21	3,1	2,5	36	29	5,5	4,4	0,82	0,67	3,1	2,5	0,38	0,31	1,2	0,99
TK-WS21	7,1	0,22	26	0,79	4,2	0,13	0,56	0,017	2,5	0,078	0,31	0,010	0,95	0,029
SH-WS21	6,4	1,3	33	6,77	5,9	1,2	0,94	0,20	3,1	0,64	0,36	0,075	1,3	0,27
KB-WS21	4,8	0,50	23	2,40	4,0	0,42	0,52	0,055	2,2	0,23	0,26	0,027	0,97	0,10
TA-WS21	20	0,60	27	0,82	4,5	0,14	0,56	0,017	2,2	0,066	0,26	0,008	1,1	0,033
SD-WS21	8,9	0,46	28	1,4	5,2	0,27	0,71	0,036	2,6	0,13	0,29	0,015	1,2	0,060

Результаты нейтроноактивационного анализа нерастворимых компонентов (WS) проб воды, отобранных в бассейнах трансграничных рек Казахстана осенью 2017 г

Sample	m a	Sb,	Sb,	As,	As,	Ni,	Ni,	Cr,	Cr,	Co,	Co,	Zn,	Zn,	U,	U,	Th,	Th,	Au,
code	m, g	мкг/г	мкг/л	мкг/г	мкг/л	мкг/г	мкг/л	мкг/г	мкг/л	мкг/г	мкг/л	мкг/г	мкг/л	мкг/г	мкг/л	мкг/г	мкг/л	нг/г
CH-WS22	0,211	4,0	0,043	4,2	0,045	39	0,41	127	1,3	15	0,16	91	0,96	1,7	0,018	6,8	0,072	48
UR-WS22	0,228	3,2	0,037	3,7	0,042	49	0,56	110	1,3	13	0,15	87	0,99	3,0	0,034	4,9	0,055	47
IK-WS22	0,688	1,4	0,047	9,4	0,33	38	1,3	135	4,6	15	0,52	62	2,1	1,9	0,066	6,1	0,21	17
EK-WS22	0,465	1,1	0,027	5,4	0,13	54	1,3	187	4,4	9,7	0,23	223	5,2	2,2	0,052	2,6	0,059	60
TO-WS22	0,075	4,8	0,018	22	0,084	< 2	< 0,008	115	0,43	20	0,076	264	0,99	3,7	0,014	5,5	0,021	58
AY-WS22	0,064	1,5	0,005	23	0,075	21	0,069	55	0,18	6,5	0,021	103	0,33	3,9	0,012	1,0	0,003	59
PR-WS22	0,068	2,6	0,009	5,5	0,019	< 2	< 0,007	60	0,21	5,6	0,019	152	0,52	11	0,036	2,9	0,010	52
IR-WS22	0,036	5,5	0,010	6,2	0,011	69	0,12	100	0,18	18	0,033	417	0,75	85	0,15	15	0,026	150
EM-WS22	0,725	0,69	0,025	3,8	0,14	< 2	< 0,073	15	0,54	3,9	0,14	67	2,4	7,9	0,29	2,0	0,072	14
IL-WS22	1,693	0,46	0,039	3,4	0,28	< 2	< 0,17	24	2,0	5,0	0,42	69	5,8	1,3	0,11	5,3	0,45	11
TK-WS22	2,676	0,75	0,10	5,7	0,76	< 2	< 0,27	35	4,6	8,2	1,1	76	10	1,5	0,21	7,1	0,95	10
SH-WS22	1,537	2,0	0,15	11	0,86	37	2,8	80	6,1	16	1,2	121	9,3	6,5	0,50	17	1,3	6,1
KB-WS22	0,588	1,0	0,030	7,0	0,21	< 2	< 0,059	42	1,2	11	0,33	83	2,4	13	0,38	6,7	0,20	7,7
TA-WS22	0,393	1,2	0,023	5,3	0,10	< 2	< 0,039	48	0,94	12	0,24	98	1,9	4,0	0,078	6,1	0,12	49
SD-WS22	1,172	2,0	0,11	8,2	0,48	55	3,2	77	4,5	14	0,83	96	5,7	3,5	0,20	10	0,60	5,7
																		_
Sample	Au,	Ag,	Ag,	La,	La,	Ce,	Ce,	Ca,	Ca,	Fe,	Fe,	Na,	Na,	Ba,	Ba,	Sr,	Sr,	Zr,
Sample code	Au, нг/л	Ag, мкг/г	Ад, мкг/л	La, мкг/г	La, мкг/л	Се, мкг/г	Се, мкг/л	Ca, %	Са, мг/л	Fe, %	Fe, мг/л	Na, %	Na, мг/л	Ва, _{мкг/г}	Ва, мкг/л	Sr, _{ΜΚΓ} / _Γ	Sr, мкг/л	Zr, _{ΜΚΓ} /Γ
	,			,			,						,	,	,	,		,
code	нг/л	$MK\Gamma/\Gamma$	мкг/л	мкг/г	мкг/л	$MK\Gamma/\Gamma$	мкг/л	%	мг/л	%	мг/л	%	мг/л	мкг/г	мкг/л	$MK\Gamma/\Gamma$	мкг/л	мкг/г
code CH-WS22	нг/л 0,51	мкг/г 0,92	мкг/л 0,010	мкг/г 22	мкг/л 0,23	мкг/г 37	мкг/л 0,39	4,8	мг/л 0,51	3,3	мг/л 0,35	9,2	мг/л 0,97	мкг/г 335	мкг/л 3,5	мкг/г 570	мкг/л 6,0	мкг/г 114
code CH-WS22 UR-WS22	нг/л 0,51 0,54	мкг/г 0,92 1,0	мкг/л 0,010 0,012	мкг/г 22 15	мкг/л 0,23 0,17	мкг/г 37 29	мкг/л 0,39 0,33	% 4,8 9,2	мг/л 0,51 1,1	% 3,3 2,4	мг/л 0,35 0,28	% 9,2 7,9	мг/л 0,97 0,90	мкг/г 335 321	мкг/л 3,5 3,7	мкг/г 570 741	мкг/л 6,0 8,5	мкг/г 114 108
code CH-WS22 UR-WS22 IK-WS22	нг/л 0,51 0,54 0,59	мкг/г 0,92 1,0 < 0,2	мкг/л 0,010 0,012 < 0,007	мкг/г 22 15 18	мкг/л 0,23 0,17 0,62	мкг/г 37 29 35	мкг/л 0,39 0,33 1,2	% 4,8 9,2 7,5	мг/л 0,51 1,1 2,6	3,3 2,4 3,0	мг/л 0,35 0,28 1,0	9,2 7,9 3,4	мг/л 0,97 0,90 1,2	мкг/г 335 321 228	мкг/л 3,5 3,7 7,8	мкг/г 570 741 437	мкг/л 6,0 8,5 15	мкг/г 114 108 175
code CH-WS22 UR-WS22 IK-WS22 EK-WS22	нг/л 0,51 0,54 0,59 1,4	мкг/г 0,92 1,0 < 0,2 3,9	мкг/л 0,010 0,012 < 0,007 0,091	мкг/г 22 15 18 7,7	мкг/л 0,23 0,17 0,62 0,18	37 29 35 18	мкг/л 0,39 0,33 1,2 0,42	% 4,8 9,2 7,5 15	мг/л 0,51 1,1 2,6 0,35	% 3,3 2,4 3,0 1,6	мг/л 0,35 0,28 1,0 0,38	9,2 7,9 3,4 7,6	мг/л 0,97 0,90 1,2 1,8	335 321 228 331	мкг/л 3,5 3,7 7,8 7,7	мкг/г 570 741 437 944	мкг/л 6,0 8,5 15 22	мкг/г 114 108 175 73
CH-WS22 UR-WS22 IK-WS22 EK-WS22 TO-WS22	нг/л 0,51 0,54 0,59 1,4 0,22	мкг/г 0,92 1,0 < 0,2 3,9 2,9	мкг/л 0,010 0,012 < 0,007 0,091 0,011	22 15 18 7,7 17	мкг/л 0,23 0,17 0,62 0,18 0,064	37 29 35 18 33	мкг/л 0,39 0,33 1,2 0,42 0,12	% 4,8 9,2 7,5 15 4,7	мг/л 0,51 1,1 2,6 0,35 0,18	% 3,3 2,4 3,0 1,6 3,7	мг/л 0,35 0,28 1,0 0,38 0,14	% 9,2 7,9 3,4 7,6 5,9	мг/л 0,97 0,90 1,2 1,8 0,22	335 321 228 331 341	мкг/л 3,5 3,7 7,8 7,7 1,3	мкг/г 570 741 437 944 593	мкг/л 6,0 8,5 15 22 2,2	мкг/г 114 108 175 73 128
CH-WS22 UR-WS22 IK-WS22 EK-WS22 TO-WS22 AY-WS22	нг/л 0,51 0,54 0,59 1,4 0,22 0,19	0,92 1,0 < 0,2 3,9 2,9 3,1	мкг/л 0,010 0,012 < 0,007 0,091 0,011 0,010	22 15 18 7,7 17 2,7	мкг/л 0,23 0,17 0,62 0,18 0,064 0,009	37 29 35 18 33 6,3	0,39 0,33 1,2 0,42 0,12 0,020	% 4,8 9,2 7,5 15 4,7 14	мг/л 0,51 1,1 2,6 0,35 0,18 0,46	% 3,3 2,4 3,0 1,6 3,7 1,6	мг/л 0,35 0,28 1,0 0,38 0,14 0,052	% 9,2 7,9 3,4 7,6 5,9 10	мг/л 0,97 0,90 1,2 1,8 0,22 0,32	мкг/г 335 321 228 331 341 272	мкг/л 3,5 3,7 7,8 7,7 1,3 0,87	мкг/г 570 741 437 944 593 1616	мкг/л 6,0 8,5 15 22 2,2 5,2	114 108 175 73 128 36
CH-WS22 UR-WS22 IK-WS22 EK-WS22 TO-WS22 AY-WS22 PR-WS22	нг/л 0,51 0,54 0,59 1,4 0,22 0,19 0,18	0,92 1,0 < 0,2 3,9 2,9 3,1 1,3	мкг/л 0,010 0,012 < 0,007 0,091 0,011 0,010 0,004	мкг/г 22 15 18 7,7 17 2,7 8,0	мкг/л 0,23 0,17 0,62 0,18 0,064 0,009 0,027	37 29 35 18 33 6,3 14	мкг/л 0,39 0,33 1,2 0,42 0,12 0,020 0,048	% 4,8 9,2 7,5 15 4,7 14 15	мг/л 0,51 1,1 2,6 0,35 0,18 0,46 0,51	% 3,3 2,4 3,0 1,6 3,7 1,6 1,2	мг/л 0,35 0,28 1,0 0,38 0,14 0,052 0,040	% 9,2 7,9 3,4 7,6 5,9 10 7,6	мг/л 0,97 0,90 1,2 1,8 0,22 0,32 0,26	мкг/г 335 321 228 331 341 272 205	мкг/л 3,5 3,7 7,8 7,7 1,3 0,87 0,70	мкг/г 570 741 437 944 593 1616 1235	мкг/л 6,0 8,5 15 22 2,2 5,2 4,2	114 108 175 73 128 36 62
CH-WS22 UR-WS22 IK-WS22 EK-WS22 TO-WS22 AY-WS22 PR-WS22 IR-WS22	нг/л 0,51 0,54 0,59 1,4 0,22 0,19 0,18 0,27	0,92 1,0 < 0,2 3,9 2,9 3,1 1,3 23	мкг/л 0,010 0,012 < 0,007 0,091 0,011 0,010 0,004 0,041	мкг/г 22 15 18 7,7 17 2,7 8,0 33	мкг/л 0,23 0,17 0,62 0,18 0,064 0,009 0,027 0,059	37 29 35 18 33 6,3 14 57	мкг/л 0,39 0,33 1,2 0,42 0,12 0,020 0,048 0,10	% 4,8 9,2 7,5 15 4,7 14 15 7,8	мг/л 0,51 1,1 2,6 0,35 0,18 0,46 0,51 0,14	% 3,3 2,4 3,0 1,6 3,7 1,6 1,2 4,1	мг/л 0,35 0,28 1,0 0,38 0,14 0,052 0,040 0,073	% 9,2 7,9 3,4 7,6 5,9 10 7,6 2,0	мг/л 0,97 0,90 1,2 1,8 0,22 0,32 0,26 0,04	мкг/г 335 321 228 331 341 272 205 231	мкг/л 3,5 3,7 7,8 7,7 1,3 0,87 0,70 0,41	мкг/г 570 741 437 944 593 1616 1235 668	мкг/л 6,0 8,5 15 22 2,2 5,2 4,2 1,2	114 108 175 73 128 36 62 165
CH-WS22 UR-WS22 IK-WS22 EK-WS22 TO-WS22 AY-WS22 PR-WS22 IR-WS22 EM-WS22	нг/л 0,51 0,54 0,59 1,4 0,22 0,19 0,18 0,27 0,51	мкг/г 0,92 1,0 < 0,2 3,9 2,9 3,1 1,3 23 < 0,2	мкг/л 0,010 0,012 < 0,007 0,091 0,011 0,010 0,004 0,041 < 0,007	мкг/г 22 15 18 7,7 17 2,7 8,0 33 5,5	мкг/л 0,23 0,17 0,62 0,18 0,064 0,009 0,027 0,059 0,20	37 29 35 18 33 6,3 14 57	0,39 0,33 1,2 0,42 0,12 0,020 0,048 0,10 0,37	% 4,8 9,2 7,5 15 4,7 14 15 7,8 29	мг/л 0,51 1,1 2,6 0,35 0,18 0,46 0,51 0,14 10	% 3,3 2,4 3,0 1,6 3,7 1,6 1,2 4,1 0,91	мг/л 0,35 0,28 1,0 0,38 0,14 0,052 0,040 0,073 0,33	% 9,2 7,9 3,4 7,6 5,9 10 7,6 2,0 2,8	мг/л 0,97 0,90 1,2 1,8 0,22 0,32 0,26 0,04 1,0	мкг/г 335 321 228 331 341 272 205 231 291	мкг/л 3,5 3,7 7,8 7,7 1,3 0,87 0,70 0,41 11	мкг/г 570 741 437 944 593 1616 1235 668 1700	мкг/л 6,0 8,5 15 22 2,2 5,2 4,2 1,2 62	114 108 175 73 128 36 62 165 35
CH-WS22 UR-WS22 IK-WS22 EK-WS22 TO-WS22 AY-WS22 PR-WS22 IR-WS22 EM-WS22	нг/л 0,51 0,54 0,59 1,4 0,22 0,19 0,18 0,27 0,51 0,93	мкг/г 0,92 1,0 < 0,2 3,9 2,9 3,1 1,3 23 < 0,2 0,72	мкг/л 0,010 0,012 < 0,007 0,091 0,011 0,010 0,004 0,041 < 0,007 0,061	мкг/г 22 15 18 7,7 17 2,7 8,0 33 5,5 12	мкг/л 0,23 0,17 0,62 0,18 0,064 0,009 0,027 0,059 0,20 1,0	37 29 35 18 33 6,3 14 57 10 22	0,39 0,33 1,2 0,42 0,12 0,020 0,048 0,10 0,37 1,9	% 4,8 9,2 7,5 15 4,7 14 15 7,8 29 24	мг/л 0,51 1,1 2,6 0,35 0,18 0,46 0,51 0,14 10 20	% 3,3 2,4 3,0 1,6 3,7 1,6 1,2 4,1 0,91 1,4	мг/л 0,35 0,28 1,0 0,38 0,14 0,052 0,040 0,073 0,33 1,1	% 9,2 7,9 3,4 7,6 5,9 10 7,6 2,0 2,8 0,61	мг/л 0,97 0,90 1,2 1,8 0,22 0,32 0,26 0,04 1,0 0,52	мкг/г 335 321 228 331 341 272 205 231 291 154	мкг/л 3,5 3,7 7,8 7,7 1,3 0,87 0,70 0,41 11 13	мкг/г 570 741 437 944 593 1616 1235 668 1700 606	мкг/л 6,0 8,5 15 22 2,2 5,2 4,2 1,2 62 51	114 108 175 73 128 36 62 165 35 155
CH-WS22 UR-WS22 IK-WS22 EK-WS22 TO-WS22 AY-WS22 PR-WS22 IR-WS22 IL-WS22 TK-WS22	нг/л 0,51 0,54 0,59 1,4 0,22 0,19 0,18 0,27 0,51 0,93 1,4	0,92 1,0 < 0,2 3,9 2,9 3,1 1,3 23 < 0,2 0,72 < 0,2	мкг/л 0,010 0,012 < 0,007 0,091 0,011 0,010 0,004 0,041 < 0,007 0,061 < 0,027	22 15 18 7,7 17 2,7 8,0 33 5,5 12	мкг/л 0,23 0,17 0,62 0,18 0,064 0,009 0,027 0,059 0,20 1,0 2,3	37 29 35 18 33 6,3 14 57 10 22 31	0,39 0,33 1,2 0,42 0,12 0,020 0,048 0,10 0,37 1,9 4,1	% 4,8 9,2 7,5 15 4,7 14 15 7,8 29 24 16	мг/л 0,51 1,1 2,6 0,35 0,18 0,46 0,51 0,14 10 20 22	% 3,3 2,4 3,0 1,6 3,7 1,6 1,2 4,1 0,91 1,4 2,1	мг/л 0,35 0,28 1,0 0,38 0,14 0,052 0,040 0,073 0,33 1,1 2,9	% 9,2 7,9 3,4 7,6 5,9 10 7,6 2,0 2,8 0,61 0,90	мг/л 0,97 0,90 1,2 1,8 0,22 0,32 0,26 0,04 1,0 0,52 1,2	мкг/т 335 321 228 331 341 272 205 231 291 154 331	мкг/л 3,5 3,7 7,8 7,7 1,3 0,87 0,70 0,41 11 13 44	мкг/г 570 741 437 944 593 1616 1235 668 1700 606 324	мкг/л 6,0 8,5 15 22 2,2 5,2 4,2 1,2 62 51 43	114 108 175 73 128 36 62 165 35 155 135
CODE CH-WS22 UR-WS22 IK-WS22 EK-WS22 TO-WS22 AY-WS22 PR-WS22 IR-WS22 IL-WS22 TK-WS22 SH-WS22	нг/л 0,51 0,54 0,59 1,4 0,22 0,19 0,18 0,27 0,51 0,93 1,4 0,47	0,92 1,0 < 0,2 3,9 2,9 3,1 1,3 23 < 0,2 0,72 < 0,2 < 0,2	мкг/л 0,010 0,012 < 0,007 0,091 0,011 0,010 0,004 0,041 < 0,007 0,061 < 0,027 < 0,015	мкг/г 22 15 18 7,7 17 2,7 8,0 33 5,5 12 17 36	мкг/л 0,23 0,17 0,62 0,18 0,064 0,009 0,027 0,059 0,20 1,0 2,3 2,8	37 29 35 18 33 6,3 14 57 10 22 31 62	мкг/л 0,39 0,33 1,2 0,42 0,12 0,020 0,048 0,10 0,37 1,9 4,1 4,8	% 4,8 9,2 7,5 15 4,7 14 15 7,8 29 24 16 7,9	мг/л 0,51 1,1 2,6 0,35 0,18 0,46 0,51 0,14 10 20 22 6,1	% 3,3 2,4 3,0 1,6 3,7 1,6 1,2 4,1 0,91 1,4 2,1 4,2	мг/л 0,35 0,28 1,0 0,38 0,14 0,052 0,040 0,073 0,33 1,1 2,9 3,2	% 9,2 7,9 3,4 7,6 5,9 10 7,6 2,0 2,8 0,61 0,90 1,7	мг/л 0,97 0,90 1,2 1,8 0,22 0,32 0,26 0,04 1,0 0,52 1,2 1,3	мкг/г 335 321 228 331 341 272 205 231 291 154 331 638	мкг/л 3,5 3,7 7,8 7,7 1,3 0,87 0,70 0,41 11 13 44 49	мкг/г 570 741 437 944 593 1616 1235 668 1700 606 324 438	мкг/л 6,0 8,5 15 22 2,2 5,2 4,2 1,2 62 51 43 34	MKT/T 114 108 175 73 128 36 62 165 35 155 135 202
code CH-WS22 UR-WS22 IK-WS22 EK-WS22 TO-WS22 AY-WS22 IR-WS22 IR-WS22 EM-WS22 IL-WS22 TK-WS22 SH-WS22 KB-WS22	нг/л 0,51 0,54 0,59 1,4 0,22 0,19 0,18 0,27 0,51 0,93 1,4 0,47 0,23	0,92 1,0 < 0,2 3,9 2,9 3,1 1,3 23 < 0,2 0,72 < 0,2 < 0,2 0,82	мкг/л 0,010 0,012 < 0,007 0,091 0,011 0,010 0,004 0,041 < 0,007 0,061 < 0,027 < 0,015 0,024	мкг/г 22 15 18 7,7 17 2,7 8,0 33 5,5 12 17 36 15	мкг/л 0,23 0,17 0,62 0,18 0,064 0,009 0,027 0,059 0,20 1,0 2,3 2,8 0,45	37 29 35 18 33 6,3 14 57 10 22 31 62 27	0,39 0,33 1,2 0,42 0,12 0,020 0,048 0,10 0,37 1,9 4,1 4,8 0,81	% 4,8 9,2 7,5 15 4,7 14 15 7,8 29 24 16 7,9 22	мг/л 0,51 1,1 2,6 0,35 0,18 0,46 0,51 0,14 10 20 22 6,1 6,5	% 3,3 2,4 3,0 1,6 3,7 1,6 1,2 4,1 0,91 1,4 2,1 4,2 2,1	мг/л 0,35 0,28 1,0 0,38 0,14 0,052 0,040 0,073 0,33 1,1 2,9 3,2 0,60	% 9,2 7,9 3,4 7,6 5,9 10 7,6 2,0 2,8 0,61 0,90 1,7 1,9	мг/л 0,97 0,90 1,2 1,8 0,22 0,32 0,26 0,04 1,0 0,52 1,2 1,3 0,55	мкг/г 335 321 228 331 341 272 205 231 291 154 331 638 449	мкг/л 3,5 3,7 7,8 7,7 1,3 0,87 0,70 0,41 11 13 44 49 13	мкг/г 570 741 437 944 593 1616 1235 668 1700 606 324 438 2775	мкг/л 6,0 8,5 15 22 2,2 5,2 4,2 1,2 62 51 43 34 82	114 108 175 73 128 36 62 165 35 155 135 202 59

Sample	Zr,	Rb,	Rb,	Sc,	Sc,	Cs,	Cs,	Hf,	Hf,	Ta,	Ta,	Mo,	Mo,	Br,	Br,	Nd,	Nd,
code	мкг/л	мкг/г	мкг/л	мкг/г	мкг/л	мкг/г	мкг/л	мкг/г	мкг/л								
CH-WS22	1,2	68	0,72	10	0,11	3,6	0,038	3,9	0,042	0,54	0,006	< 1	< 0,011	183	1,9	13	0,14
UR-WS22	1,2	44	0,51	8,4	0,10	2,9	0,034	3,1	0,035	0,49	0,006	<1	< 0,011	117	1,3	16	0,18
IK-WS22	6,0	56	1,9	9,1	0,31	3,4	0,12	5,0	0,17	0,48	0,017	< 1	< 0,034	48	1,6	15	0,52
EK-WS22	1,7	25	0,58	4,7	0,11	1,6	0,038	1,9	0,045	0,28	0,006	<1	< 0,023	104	2,4	9,6	0,22
TO-WS22	0,48	47	0,18	9,1	0,034	3,4	0,013	2,6	0,010	0,43	0,002	11	0,042	76	0,29	19	0,073
AY-WS22	0,12	9,2	0,030	2,3	0,007	0,57	0,002	0,85	0,003	0,10	0,0003	12	0,038	128	0,41	1,4	0,004
PR-WS22	0,21	25	0,085	4,1	0,014	1,9	0,006	1,2	0,004	0,18	0,001	12	0,040	127	0,43	5,7	0,020
IR-WS22	0,30	89	0,16	12	0,022	8,0	0,014	3,3	0,006	0,53	0,001	33	0,060	65	0,12	30	0,054
EM-WS22	1,3	18	0,65	2,8	0,10	1,1	0,039	0,96	0,035	0,12	0,004	6,4	0,23	30	1,1	7,0	0,25
IL-WS22	13	44	3,8	4,4	0,37	3,1	0,27	4,0	0,34	0,30	0,025	< 1	< 0,085	6,4	0,54	11	0,94
TK-WS22	18	58	7,7	7,2	0,97	4,2	0,56	4,1	0,55	0,51	0,068	<1	< 0,13	3,5	0,47	16	2,1
SH-WS22	16	119	9,1	14	1,0	7,8	0,60	4,9	0,38	0,87	0,067	< 1	< 0,077	11	0,85	30	2,3
KB-WS22	1,7	48	1,4	7,1	0,21	3,8	0,11	2,0	0,059	0,33	0,010	4,1	0,12	32	0,94	11	0,33
TA-WS22	1,7	60	1,2	7,3	0,14	3,9	0,078	2,0	0,039	0,33	0,006	2,4	0,047	21	0,41	15	0,30
SD-WS22	3,4	97	5,7	11	0,67	5,9	0,35	3,8	0,22	0,72	0,042	1,5	0,087	7,7	0,45	21	1,3

	Sample	Sm,	Sm,	Tb,	Tb,	Yb,	Yb,	Lu,	Lu,	Eu,	Eu,
	code	$MK\Gamma/\Gamma$	мкг/л	$MK\Gamma/\Gamma$	мкг/л	$MK\Gamma/\Gamma$	мкг/л	$MK\Gamma/\Gamma$	MКГ $/$ Л	$MK\Gamma/\Gamma$	мкг/л
_	CH-WS22	3,6	0,038	0,51	0,005	2,0	0,021	0,27	0,0028	0,90	0,010
1	UR-WS22	2,6	0,030	0,31	0,0036	1,3	0,015	0,18	0,0020	0,59	0,0067
	IK-WS22	3,5	0,12	0,41	0,014	1,7	0,058	0,30	0,010	0,75	0,026
]	EK-WS22	8,2	0,19	0,23	0,005	0,76	0,018	0,12	0,003	0,38	0,009
,	TO-WS22	3,2	0,012	0,35	0,0013	1,4	0,0052	0,26	0,0010	0,75	0,0028
1	AY-WS22	0,61	0,002	0,08	0,0003	< 0,005	< 0,00002	0,05	0,0001	0,16	0,0005
	PR-WS22	1,4	0,005	0,15	0,0005	0,57	0,0019	0,12	0,0004	0,27	0,0009
	IR-WS22	6,2	0,011	0,82	0,0015	2,4	0,0043	0,40	0,0007	1,2	0,0022
]	EM-WS22	1,1	0,039	0,18	0,0066	0,53	0,019	0,08	0,0028	0,21	0,0077
	IL-WS22	2,1	0,18	0,25	0,022	1,0	0,087	0,16	0,013	0,37	0,031
,	TK-WS22	3,1	0,41	0,34	0,045	1,6	0,21	0,25	0,033	0,68	0,091
	SH-WS22	6,2	0,48	0,87	0,067	2,7	0,21	0,42	0,032	1,2	0,092
]	KB-WS22	2,6	0,075	0,34	0,010	1,2	0,036	0,16	0,0048	0,53	0,015
,	TA-WS22	2,6	0,051	0,33	0,0065	1,2	0,023	0,18	0,0036	0,49	0,010
	SD-WS22	4,8	0,28	0,46	0,027	2,3	0,13	0,31	0,018	0,96	0,056
_		,-	- ,	-,	- ,	,-	-,	- ,	-,	- ,	-,

Результаты радиохимического анализа растворимых компонентов (WD) проб воды, отобранных в бассейнах трансграничных рек Казахстана весной 2017 г.

Sample code	U238,mbq/l	U234, mbq/l	Ra226, mbq/l
CH-WD-21	9,37	10,75	1,31
UR-WD-21	14,06	23,63	1,70
IK-WD-21	15,54	10,79	3,39
EK-WD-21	19,49	24,31	0,53
TO-WD-21	20,71	31,89	2,13
AY-WD-21	116,35	196,63	2,75
PR-WD-21	37,33	53,48	1,52
IR-WD-21	77,33	108,02	1,16
EM-WD-21	157,71	239,20	2,73
IL-WD-21	69,52	98,23	3,80
TK-WD-21	52,25	78,65	4,48
SH-WD-21	174,13	201,74	5,02
KB-WD-21	370,68	451,69	1,72
TA-WD-21	91,00	114,35	2,99
SD-WD-21	199,19	228,46	6,78

Результаты радиохимического анализа растворимых компонентов (WD) проб воды, отобранных в бассейнах трансграничных рек Казахстана осенью 2017г

-			
Sample code	U238,mbq/l	U234, mbq/l	Ra226, mbq/l
CH-WD-22	18,21	25,12	1,10
UR-WD-22	26,14	40,69	1,42
IK-WD-22	16,26	19,49	2,32
EK-WD-22	13,88	17,30	0,63
TO-WD-22	37,31	65,91	2,67
AY-WD-22	37,54	56,32	2,61
PR-WD-22	27,18	38,01	0,94
IR-WD-22	16,67	22,57	3,60
EM-WD-22	171,47	261,34	3,21
IL-WD-22	70,18	105,14	6,49
TK-WD-22	56,81	89,67	7,25
SH-WD-22	257,26	316,37	1,11
KB-WD-22	727,08	944,16	4,05
TA-WD-22	72,30	103,80	3,18
SD-WD-22	198,37	244,04	4,64

Результаты определения методом МС-ИСП элементного состава проб отфильтрованной воды (WD), отобранных в трансграничных реках Казахстана весной 2017 г.

Код пробы	Ag	Al	As	В	Ba	Be	Ce	Cd	Co	Cu	Cr	Hg	K	La	Li	Mg	Mn	Mo	Nd	Ni
CH-WD-21	<0,2	230	1,46	42,0	19,2	<0,03	0,54	<0,1	0,79	7,26	1,00	<0,1	4025	0,28	5,79	7098	14,5	0,55	0,33	4,23
UR-WD-21	<0,2	73,6	1,30	41,6	47,0	< 0,03	0,26	< 0,1	0,48	6,12	3,57	< 0,1	2273	0,12	4,35	10097	13,2	<0,3	< 0,1	6,25
IK-WD-21	<0,2	77,8	1,84	65,5	32,2	< 0,03	0,25	< 0,1	0,30	4,17	7,31	< 0,1	3834	0,11	9,72	13184	15,2	1,00	< 0,1	5,19
EK-WD-21	<0,2	40,1	1,52	92,1	35,9	< 0,03	0,34	< 0,1	0,41	2,62	24,7	< 0,1	2445	0,14	10,3	18940	54,1	1,76	0,18	5,85
TO-WD-21	<0,2	32,3	1,89	122	45,7	<0,03	0,15	< 0,1	0,66	3,12	7,16	< 0,1	4283	0,06	22,8	25389	192	1,47	< 0,1	8,35
AY-WD-21	<0,2	6,81	1,42	80,6	61,9	< 0,03	< 0,04	< 0,1	0,48	3,13	6,92	< 0,1	3260	<0,03	9,46	25477	31,1	3,34	< 0,1	6,37
PR-WD-21	<0,2	4,61	1,36	30,2	36,2	< 0,03	< 0,04	< 0,1	0,21	2,59	1,18	< 0,1	1007	<0,03	3,42	7066	3,28	1,00	< 0,1	3,18
IR-WD-21	<0,2	571	1,33	38,1	24,4	< 0,03	0,65	< 0,1	0,38	3,14	8,93	< 0,1	2232	0,34	4,51	7924	12,3	2,50	0,33	3,14
EM-WD-21	<0,2	112	3,77	232	47,7	< 0,03	0,15	< 0,1	0,71	5,28	3,50	< 0,1	3574	0,10	7,00	26720	9,46	13,7	< 0,1	5,85
IL-WD-21	<0,2	392	1,93	45,9	59,5	< 0,03	0,76	< 0,1	0,43	5,63	2,07	< 0,1	2013	0,40	5,38	16876	20,0	3,77	0,34	6,95
TK-WD-21	<0,2	148	1,15	25,8	61,7	< 0,03	0,31	< 0,1	0,24	2,96	1,31	< 0,1	1803	0,14	6,04	17960	6,58	2,13	< 0,1	7,20
SH-WD-21	<0,2	310	2,50	63,3	70,9	< 0,03	0,62	< 0,1	0,36	2,48	3,85	< 0,1	2103	0,31	7,23	20724	11,2	4,82	< 0,1	5,24
KB-WD-21	<0,2	33,4	2,94	108	60,4	< 0,03	< 0,04	< 0,1	0,25	2,19	1,55	< 0,1	5063	<0,03	18,0	64874	1,87	21,2	< 0,1	5,60
TA-WD-21	<0,2	59,8	0,83	29,0	59,6	<0,03	< 0,04	< 0,1	0,13	1,00	1,47	< 0,1	1286	<0,03	3,90	16410	1,62	2,31	< 0,1	2,90
SD-WD-21	<0,2	23,0	3,82	164	65,2	<0,03	< 0,04	< 0,1	0,43	4,17	1,48	< 0,1	5196	<0,03	17,7	52450	12,3	7,63	< 0,1	7,49

-										
Код пробы	P	Pb	Se	Sr	Sb	V	Zn	Zr	U	Y
CH-WD-21	175	2,10	<3	256	<0,3	2,40	19,0	0,24	0,46	0,23
UR-WD-21	42,1	0,80	<3	450	1,43	3,91	63,3	< 0,1	1,21	0,13
IK-WD-21	122	0,43	<3	460	< 0,3	3,53	8,79	< 0,1	1,22	0,11
EK-WD-21	26,8	1,72	<3	500	< 0,3	4,29	9,92	< 0,1	1,37	0,13
TO-WD-21	62,3	0,30	<3	576	< 0,3	3,79	15,8	< 0,1	1,70	0,09
AY-WD-21	23,7	0,64	<3	689	< 0,3	2,38	51,2	< 0,1	8,89	0,05
PR-WD-21	<5	1,46	<3	294	< 0,3	0,86	32,6	< 0,1	3,09	< 0,01
IR-WD-21	<5	1,45	<3	257	< 0,3	4,05	11,7	< 0,1	8,82	0,21
EM-WD-21	23,7	1,31	<3	1026	0,49	4,33	87,3	< 0,1	13,1	0,11
IL-WD-21	25,0	2,14	<3	431	< 0,3	2,15	55,0	< 0,1	6,94	0,29
TK-WD-21	13,0	2,50	<3	665	< 0,3	1,11	13,7	< 0,1	5,15	0,12
SH-WD-21	110	0,42	<3	734	< 0,3	2,55	8,10	< 0,1	15,1	0,21
KB-WD-21	25,5	0,10	<3	2220	1,22	1,98	3,62	< 0,1	30,2	0,04
TA-WD-21	17,6	0,08	<3	471	< 0,3	0,71	3,88	< 0,1	7,36	0,02
SD-WD-21	28,2	0,22	<3	2160	0,64	2,68	6,13	< 0,1	13,9	0,05

Результаты определения методом МС-ИСП элементного состава проб отфильтрованной воды (WD), отобранных в трансграничных реках Казахстана осенью 2017 г.

Код пробы	Ag,	Al,	As,	В,	Ba,	Be,	Ce,	Cd,	Co,	Cu,	Cr,	Hg,	K,	La,	Li,	Mg,	Mn,	Mo,	Nd,
	мкг/л	мкг/л	мкг/л	мкг/л	мкг/л	мкг/л	мкг/л	мкг/л	мкг/л	мкг/л	мкг/л	мкг/л	мкг/л	мкг/л	мкг/л	мкг/л	мкг/л	мкг/л	мкг/л
CH-WD-22	0,54	10,4	6,85	95,5	40,5	< 0,03	< 0,04	< 0,1	0,51	2,84	9,26	< 0,1	9574	< 0,03	24,4	34192	7,51	0,60	< 0,1
UR-WD-22	0,78	14,4	1,89	60,0	50,9	<0,03	<0,04	< 0,1	0,29	4,42	2,00	< 0,1	6859	<0,03	7,91	21126	6,78	1,79	< 0,1
IK-WD-22	<0,2	10,5	2,65	59,2	25,2	< 0,03	< 0,04	< 0,1	0,23	2,00	3,92	< 0,1	7369	< 0,03	9,39	15339	9,67	0,82	< 0,1
EK-WD-22	<0,2	24,6	2,18	56,6	28,7	< 0,03	< 0,04	< 0,1	0,25	1,07	16,7	< 0,1	7556	< 0,03	7,87	15276	17,6	0,62	< 0,1
TO-WD-22	0,54	6,94	4,36	88,0	31,8	< 0,03	< 0,04	< 0,1	0,24	1,85	1,71	< 0,1	11898	< 0,03	18,1	30340	9,76	2,75	< 0,1
AY-WD-22	<0,2	6,36	2,03	77,5	38,8	< 0,03	< 0,04	< 0,1	0,21	1,32	1,78	< 0,1	8903	< 0,03	16,0	38651	21,0	1,43	< 0,1
PR-WD-22	<0,2	19,4	1,52	21,9	29,5	< 0,03	< 0,04	< 0,1	< 0,1	1,75	0,83	< 0,1	2705	< 0,03	2,86	5730	2,50	1,33	< 0,1
IR-WD-22	<0,2	5,51	0,72	9,89	12,3	< 0,03	< 0,04	< 0,1	0,17	1,42	2,80	< 0,1	2931	< 0,03	2,22	2909	1,11	0,95	< 0,1
EM-WD-22	<0,2	84,0	4,01	227	37,0	< 0,03	< 0,04	< 0,1	0,25	2,08	15,3	< 0,1	7124	< 0,03	13,8	36519	2,38	25,2	< 0,1
IL-WD-22	<0,2	145	2,00	25,5	51,7	< 0,03	0,37	< 0,1	0,28	2,05	< 0,5	< 0,1	5414	0,16	4,43	14280	10,8	1,82	< 0,1
TK-WD-22	<0,2	119	1,02	13,3	60,2	< 0,03	0,16	< 0,1	0,24	1,51	1,03	< 0,1	3588	0,06	5,92	13649	7,41	0,85	< 0,1
SH-WD-22	7,62	27,6	2,06	66,9	67,6	< 0,03	< 0,04	< 0,1	< 0,1	0,67	3,39	< 0,1	5114	< 0,03	6,45	19210	0,56	3,86	< 0,1
KB-WD-22	<0,2	28,3	4,48	155	61,8	< 0,03	< 0,04	< 0,1	0,63	3,96	2,72	< 0,1	17319	< 0,03	34,1	100304	1,98	26,5	< 0,1
TA-WD-22	<0,2	18,8	1,17	27,1	64,9	< 0,03	< 0,04	< 0,1	< 0,1	0,58	2,16	< 0,1	4849	< 0,03	5,16	19092	0,24	1,73	< 0,1
SD-WD-22	<0,2	16,8	2,53	98,6	59,8	<0,03	<0,04	<0,1	0,70	3,62	4,99	<0,1	8063	<0,03	18,1	56325	4,32	3,88	<0,1

Код пробы	Ni,	P,	Pb,	Se,	Sr,	Sb,	V,	Zn,	Zr,	U,	Y,	Th,
Код проов	мкг/л	мкг/л										
CH-WD-22	7,44	194	0,55	<3,0	974	0,52	5,20	26,4	< 0,1	1,39	<0,01	< 0,01
UR-WD-22	5,48	< 5,0	0,29	<3,0	669	<0,3	3,75	22,6	< 0,1	2,70	< 0,01	< 0,01
IK-WD-22	4,03	25,4	< 0,1	<3,0	498	1,06	3,27	4,38	< 0,1	1,27	<0,01	<0,01
EK-WD-22	4,20	13,2	< 0,1	<3,0	377	<0,3	3,62	3,04	< 0,1	1,02	<0,01	< 0,01
TO-WD-22	5,62	173	< 0,1	<3,0	624	<0,3	2,58	3,39	< 0,1	2,67	<0,01	< 0,01
AY-WD-22	4,66	< 5,0	< 0,1	<3,0	696	<0,3	0,61	2,97	< 0,1	3,46	< 0,01	< 0,01
PR-WD-22	2,06	< 5,0	0,18	<3,0	190	<0,3	1,93	4,91	< 0,1	1,96	< 0,01	< 0,01
IR-WD-22	1,90	< 5,0	< 0,1	<3,0	98	0,74	1,65	8,01	< 0,1	1,64	< 0,01	< 0,01
EM-WD-22	4,08	< 5,0	0,58	<3,0	1078	<0,3	2,86	5,40	< 0,1	21,7	< 0,01	< 0,01
IL-WD-22	4,09	< 5,0	0,49	<3,0	372	<0,3	1,88	7,34	< 0,1	5,31	0,10	< 0,01
TK-WD-22	4,01	< 5,0	0,44	<3,0	541	<0,3	1,05	8,32	< 0,1	4,26	0,03	< 0,01
SH-WD-22	3,62	< 5,0	< 0,1	<3,0	750	<0,3	2,23	4,53	< 0,1	20,8	< 0,01	< 0,01
KB-WD-22	8,28	< 5,0	0,91	<3,0	3957	0,52	4,16	21,6	< 0,1	60,1	0,08	< 0,01
TA-WD-22	2,64	< 5,0	< 0,1	<3,0	516	<0,3	1,25	4,74	< 0,1	6,63	< 0,01	< 0,01
SD-WD-22	7,98	< 5,0	1,39	<3,0	2277	<0,3	2,63	29,4	< 0,1	16,2	0,04	< 0,01

Результаты гамма-спектрометрического анализа послойных проб почвы, отобранных в бассейнах трансграничных рек Казахстана весной 2017 г.

	TEL 224	D 226	DI 214	D: 214	DI 210		D 224	DI 212
Образец	Th-234, Бк/кг	Ra-226, Бк/кг	Рb-214, Бк/кг	Ві-214, Бк/кг	Рb-210, Бк/кг	Ас-228, Бк/кг	Ra-224, Бк/кг	Рb-212, Бк/кг
CH-S21-1	$22,1 \pm 2,3$	25.8 ± 3.6	$21,2 \pm 2,0$	$19,4 \pm 1,9$	$21,6 \pm 3,0$	29.4 ± 2.7	29.7 ± 3.5	30.8 ± 2.6
CH-S21-2	$24,3 \pm 2,5$	$28,5 \pm 3,0$ $28,5 \pm 3,7$	$21,2 \pm 2,0$ $20,9 \pm 2,0$	$19,9 \pm 1,9$	$33,6 \pm 3,7$	$32,9 \pm 2,8$	$30,3 \pm 3,5$	$30,6 \pm 2,6$ $32,6 \pm 2,6$
CH-S21-3	$24,3 \pm 2,5$ $21,1 \pm 2,5$	27.8 ± 3.7	$20,7 \pm 2,0$ $22,7 \pm 2,1$	$19,9 \pm 1,9$ $19,9 \pm 1,9$	$26,8 \pm 3,1$	$32,9 \pm 2,8$ $33,8 \pm 2,8$	$29,1 \pm 3,5$	$32,8 \pm 2,6$ $32,8 \pm 2,6$
CH-S21-4	$21,1 \pm 2,3$ $21,4 \pm 2,4$	30.9 ± 3.7	$22,7 \pm 2,1$ $21,7 \pm 2,1$	$21,3 \pm 1,9$	$25,6 \pm 3,4$	$33,6 \pm 2,6$ $32,5 \pm 2,9$	$29,7 \pm 3,6$ $29,7 \pm 3,6$	$32,0 \pm 2,0$ $31,2 \pm 2,6$
CH-S21-5	$15,1 \pm 1,4$	$30,7 \pm 3,7$ $32,3 \pm 2,5$	$21,7 \pm 2,1$ $21,1 \pm 1,7$	19.3 ± 1.6	$29,6 \pm 2,4$	$29,7 \pm 2,2$	$29,7 \pm 3,0$ $29,1 \pm 2,4$	$29,5 \pm 2,4$
CH-S21-6	$21,0 \pm 1,7$	$28,7 \pm 2,5$	$19,4 \pm 1,7$	$19,9 \pm 1,6$ $19,9 \pm 1,6$	$29,5 \pm 2,5$	$30,0 \pm 2,2$	$29,1 \pm 2,4$ $29,5 \pm 2,4$	$29,3 \pm 2,4$ $28,4 \pm 2,4$
UR-S21-1	13.8 ± 1.8	$26,7 \pm 2,3$ $14,1 \pm 2,7$	$12,0 \pm 1,7$ $12,0 \pm 1,8$	$17,7 \pm 1,0$ $11,2 \pm 1,7$	$27,9 \pm 2,3$ $27,9 \pm 3,1$	$12,3 \pm 2,2$	$25,5 \pm 2,7$ $15,5 \pm 2,7$	$14,1 \pm 1,4$
UR-S21-2	$13,0 \pm 1,8$ $11,4 \pm 1,8$	$13,9 \pm 2,6$	$12,6 \pm 1,8$ $12,6 \pm 1,8$	$11,2 \pm 1,7$ $11,5 \pm 1,7$	18.9 ± 2.9	$12,3 \pm 2,2$ $14,0 \pm 2,3$	$15,8 \pm 2,7$ $15,8 \pm 2,1$	$14,1 \pm 1,4$ $14,3 \pm 1,4$
UR-S21-3	$15,4 \pm 1,9$	$15,9 \pm 2,0$ $15,2 \pm 2,7$	$13,0 \pm 1,8$	$11,3 \pm 1,7$ $11,3 \pm 1,7$	$31,1 \pm 3,2$	$13,9 \pm 2,3$	$10,8 \pm 2,1$	$14,7 \pm 1,4$
UR-S21-4	$15,4 \pm 1,5$ $15,4 \pm 2,0$	$20,4 \pm 2,8$	$16,6 \pm 1,9$	$11,3 \pm 1,7$ $14,1 \pm 1,8$	$26,8 \pm 3,2$	$16,9 \pm 2,3$ $16,9 \pm 2,3$	$19,2 \pm 2,3$	$14,7 \pm 1,4$ $18,7 \pm 1,4$
UR-S21-5	$13,7 \pm 2,0$ $14,7 \pm 1,3$	$11,7 \pm 1,8$	$10,0 \pm 1,5$ $14,0 \pm 1,6$	$14,1 \pm 1,5$ $12,2 \pm 1,5$	$20,0 \pm 3,2$ $20,1 \pm 1,9$	$15,3 \pm 1,9$	$15,2 \pm 2,5$ $15,5 \pm 1,5$	$16,7 \pm 1,4$ $14,2 \pm 1,3$
UR-S21-6	$14,7 \pm 1,3$ $11,4 \pm 1,2$	$12,9 \pm 1,7$	10.9 ± 1.5	$10,2 \pm 1,5$ $10,2 \pm 1,5$	$19,7 \pm 2,0$	$13,5 \pm 1,9$ $11,5 \pm 1,8$	$13,9 \pm 1,3$ $12,9 \pm 1,4$	$14,2 \pm 1,3$ $12,5 \pm 1,2$
IK-S21-1	$12,4 \pm 2,5$	$24,6 \pm 4,6$	$15,1 \pm 1,1$	$15,1 \pm 1,9$	87.9 ± 6.3	$25,1 \pm 1,7$	$23,7 \pm 3,9$	$23,7 \pm 1,6$
IK-S21-2	$18,0 \pm 2,6$	$25,7 \pm 4,6$	$13,0 \pm 1,0$	$13,1 \pm 1,9$ $14,1 \pm 1,8$	43.2 ± 5.0	$25,5 \pm 1,7$	$23,8 \pm 3,9$	$23,7 \pm 1,6$ $23,7 \pm 1,6$
IK-S21-3	$10,0 \pm 2,0$ $11,4 \pm 2,5$	$28,7 \pm 4,6$ $28,2 \pm 4,6$	$15,0 \pm 1,0$ $16,1 \pm 1,1$	$15,5 \pm 1,9$	32.8 ± 5.0	$23,9 \pm 1,7$ $23,9 \pm 1,7$	$26,2 \pm 4,0$	$23,7 \pm 1,6$ $23,1 \pm 1,6$
IK-S21-4	$13,3 \pm 2,5$	$19,5 \pm 4,6$	$10,1 \pm 1,1$ $19,0 \pm 1,1$	$15,3 \pm 1,9$ $15,3 \pm 1,9$	$28,0 \pm 4,9$	$24,6 \pm 1,7$	$24,6 \pm 4,0$	$23,1 \pm 1,0$ $22,6 \pm 1,6$
IK-S21-5	$10,6 \pm 2,5$	$26,1 \pm 4,5$	$19,0 \pm 1,1$ $14,9 \pm 1,0$	$15,3 \pm 1,9$ $15,3 \pm 1,9$	$20,3 \pm 4,4$	$23,5 \pm 1,6$	$24,8 \pm 3,7$	$23,0 \pm 1,6$
IK-S21-6	$15,0 \pm 1,7$	$28,2 \pm 3,2$	$14,5 \pm 1,0$ $15,5 \pm 1,7$	$12,4 \pm 1,6$	$32,2 \pm 3,5$	$23,6 \pm 1,0$ $23,6 \pm 1,1$	19.9 ± 2.6	$23,0 \pm 1,0$ $22,1 \pm 1,4$
EK-S21-1	$13,6 \pm 1,7$ $13,6 \pm 1,9$	$18,0 \pm 2,9$	$13,1 \pm 1,8$	$13,5 \pm 1,7$	$40,2 \pm 3,6$	$10,7 \pm 2,1$	$8,5 \pm 3,7$	11.8 ± 1.4
EK-S21-2	$13,9 \pm 2,0$	$13,7 \pm 2,8$	$13,3 \pm 1,8$	$13,0 \pm 1,7$	$51,0 \pm 3,7$	10,7 = 2,1 $11,8 \pm 2,1$	14.9 ± 2.3	$12,5 \pm 1,4$
EK-S21-3	$17,6 \pm 2,1$	$13,7 = 2,8$ $13,1 \pm 2,9$	$13,9 \pm 1,8$	$15,0 \pm 1,8$	$30,4 \pm 3,2$	$15,1 \pm 2,3$	$13,5 \pm 2,1$	$13,0 \pm 1,4$
EK-S21-4	$16,3 \pm 1,8$	$20,3 \pm 3,0$	$15,9 = 1,0$ $15,4 \pm 1,9$	15,0 = 1,0 $15,2 \pm 1,7$	$29,4 \pm 3,2$	13,1 = 2,3 $11,5 \pm 2,2$	$15,2 \pm 2,1$	$12,7 \pm 1,4$
EK-S21-5	$14,5 \pm 1,3$	$18,0 \pm 2,0$	$13,7 \pm 1,6$	$13,1 \pm 1,5$	$28,5 \pm 2,2$	$11,9 \pm 1,8$	$13,1 \pm 1,4$	$10,6 \pm 1,2$
EK-S21-6	$17,1 \pm 1,5$	$13,5 \pm 2,0$	$15,7 = 1,6$ $15,3 \pm 1,6$	$13,8 \pm 1,5$	$16,7 \pm 2,0$	$12,4 \pm 1,8$	$12,6 \pm 1,5$	$11,5 \pm 1,2$
TO-S21-1	$16,0 \pm 2,6$	$24,7 \pm 5,0$	$19,4 \pm 1,2$	$16,0 \pm 1,9$	$52,4 \pm 5,5$	$26,3 \pm 1,8$	27.9 ± 4.3	$23,5 \pm 1,6$
TO-S21-2	$15,8 \pm 2,6$	$29,6 \pm 4,8$	$16,3 \pm 1,1$	$14,6 \pm 1,9$	$38,3 \pm 5,5$	$26,0 \pm 1,8$	$20,1 \pm 3,9$	$24,4 \pm 1,6$
TO-S21-3	$14,5 \pm 2,6$	31.9 ± 4.9	$15,5 \pm 1,1$	$16,6 \pm 1,9$	$36,7 \pm 5,3$	$27,2 \pm 1,8$	$27,7 \pm 4,2$	26.8 ± 1.6
TO-S21-4	$14,7 \pm 2,5$	$36,3 \pm 4,9$	$14,4 \pm 1,1$	$15,8 \pm 1,9$	$32,5 \pm 4,9$	25.8 ± 1.8	$29,2 \pm 4,1$	$25,8 \pm 1,6$
TO-S21-5	$15,5 \pm 1,8$	$28,8 \pm 3,3$	$18,6 \pm 1,8$	$15,6 \pm 1,6$	$31,3 \pm 3,6$	$26,2 \pm 1,2$	$24,7 \pm 2,8$	$26,1 \pm 1,4$
TO-S21-6	$15,6 \pm 1,8$	$29,6 \pm 3,4$	$17,2 \pm 1,8$	$15,5 \pm 1,6$	$30,0 \pm 3,6$	$28,9 \pm 1,3$	$25,4 \pm 2,9$	$26,2 \pm 1,4$
AY-S21-1	$13,6 \pm 2,5$	$30,5 \pm 4,6$	$19,2 \pm 1,1$	$18,4 \pm 1,9$	$46,5 \pm 5,4$	$27,4 \pm 1,7$	$27,9 \pm 3,9$	21.8 ± 1.6
AY-S21-2	17.8 ± 2.5	$23,3 \pm 4,5$	$19,2 \pm 1,1$	$19,1 \pm 1,9$	$46,5 \pm 5,4$	$25,5 \pm 1,7$	$21,6 \pm 3,9$	$23,1 \pm 1,6$
AY-S21-3	17.8 ± 2.6	$31,2 \pm 4,8$	$19,3 \pm 1,1$	$19,3 \pm 1,9$	$38,0 \pm 5,4$	$27,2 \pm 1,8$	$18,3 \pm 4,0$	$23,9 \pm 1,6$
AY-S21-4	$19,6 \pm 2,6$	$36,1 \pm 5,0$	$19,0 \pm 1,1$	$18,5 \pm 1,9$	$48,8 \pm 5,6$	$23,7 \pm 1,7$	$27,2 \pm 4,1$	$22,1 \pm 1,6$
AY-S21-5	$16,7 \pm 1,8$	$27,5 \pm 3,4$	$22,3 \pm 1,8$	$19,6 \pm 1,7$	$36,1 \pm 3,7$	$24,7 \pm 1,2$	$25,1 \pm 2,9$	$23,4 \pm 1,4$
AY-S21-6	$14,1 \pm 1,8$	$33,8 \pm 3,4$	$16,3 \pm 1,8$	$16,7 \pm 1,6$	$40,4 \pm 3,6$	$24,0 \pm 1,2$	$23,3 \pm 2,8$	$21,2 \pm 1,4$
PR-S21-1	$17,9 \pm 2,2$	$22,3 \pm 3,0$	$18,0 \pm 2,0$	$15,4 \pm 1,8$	$34,9 \pm 3,3$	$21,8 \pm 2,5$	$21,0 \pm 2,4$	$23,8 \pm 2,5$
PR-S21-2	$18,3 \pm 2,0$	14.8 ± 2.9	$14,9 \pm 1,9$	$16,5 \pm 1,8$	$31,7 \pm 3,2$	$20,7 \pm 2,5$	$23,8 \pm 2,4$	$23,4 \pm 2,5$
PR-S21-3	$12,2 \pm 1,9$	$16,8 \pm 2,9$	$15,8 \pm 1,9$	$15,8 \pm 1,8$	$31,8 \pm 3,4$	$22,5 \pm 2,5$	$21,0 \pm 2,3$	$22,2 \pm 2,5$
PR-S21-4	$16,5 \pm 2,0$	$21,3 \pm 2,9$	$15,7 \pm 1,9$	$15,1 \pm 1,8$	$28,6 \pm 3,1$	$21,3 \pm 2,4$	$24,5 \pm 2,7$	$22,9 \pm 2,5$
PR-S21-5	$17,1 \pm 1,4$	$20,6 \pm 2,0$	$15,8 \pm 1,6$	$14,3 \pm 1,5$	$28,3 \pm 2,2$	$22,7 \pm 2,0$	$21,9 \pm 1,8$	$24,4 \pm 2,3$
PR-S21-6	$16,9 \pm 1,4$	$21,0 \pm 2,0$	$18,3 \pm 1,6$	$16,4 \pm 1,5$	$25,4 \pm 2,1$	$27,5 \pm 2,1$	$28,3 \pm 1,9$	$26,4 \pm 2,3$
IR-S21-1	$13,8 \pm 2,7$	$32,9 \pm 5,2$	$25,5 \pm 1,3$	$24,1 \pm 1,1$	$58,6 \pm 5,8$	$33,4 \pm 2,0$	$29,6 \pm 4,5$	$29,4 \pm 1,7$
IR-S21-2	$17,6 \pm 2,6$	$34,5 \pm 5,1$	$23,4 \pm 1,2$	$18,8 \pm 1,0$	$46,1 \pm 5,3$	$30,1 \pm 1,9$	$29,7 \pm 4,3$	$29,6 \pm 1,7$
IR-S21-3	$18,2 \pm 1,5$	$39,1\pm2,8$	$25,6 \pm 1,7$	$24,2 \pm 1,6$	$44,1\pm3,0$	$37,6 \pm 1,1$	$31{,}7\pm2{,}4$	$33,2 \pm 1,4$
IR-S21-4	$17,7\pm1,8$	$35,1\pm3,5$	$23,0\pm1,8$	$21,7\pm1,7$	$39,9\pm3,5$	$37,0\pm1,4$	$29{,}4\pm2{,}9$	$31,5 \pm 1,5$
IR-S21-5	$22,0 \pm 1,4$	$36,0 \pm 2,6$	$23,2 \pm 1,6$	$22,1 \pm 1,5$	$39,8 \pm 2,7$	$33,6 \pm 1,0$	$32,0\pm2,2$	$33,0 \pm 1,4$
IR-S21-6	$22,8\pm1,8$	$37,2\pm3,3$	$21,7\pm1,8$	$20,5 \pm 1,6$	$35,3\pm3,3$	$35,8\pm1,3$	$34,6\pm2,8$	$33,2 \pm 1,5$
EM-S21-1	$15,1\pm1,9$	$17,3\pm3,1$	$15,8\pm1,9$	$14,\!4\pm1,\!8$	$28,7\pm3,2$	$14,\!4\pm2,\!3$	$17,0\pm2,2$	$17,0\pm1,4$
EM-S21-2	$14,1\pm1,8$	$17,8\pm2,8$	$13,6\pm1,8$	$13,1\pm1,7$	$21,6 \pm 2,6$	$15,\!4\pm2,\!2$	$15,\!4\pm2,\!0$	$15,5\pm1,4$
EM-S21-3	$13,9\pm1,0$	$18,9\pm1,7$	$15,2\pm1,5$	$15,2\pm1,4$	$23,7\pm1,6$	$16,\!4\pm1,\!7$	$16,9\pm1,2$	$16,3\pm1,2$
EM-S21-4	$15,2\pm1,2$	$18,5\pm1,9$	$15,2\pm1,5$	$14,1\pm1,5$	$25,5\pm1,9$	$15,3\pm1,8$	$16,2\pm1,4$	$15,7\pm1,3$
EM-S21-5	$15,3\pm1,0$	$16,\!4\pm1,\!4$	$14,5\pm1,4$	$12,8 \pm 1,3$	$22,6 \pm 1,5$	$15,2 \pm 1,6$	$14,\!4\pm1,\!0$	$16,1\pm1,2$
EM-S21-6	$17,3 \pm 1,3$	$19,1 \pm 1,9$	$15,2 \pm 1,5$	$13,8 \pm 1,5$	$23,7\pm1,9$	$14,6 \pm 1,8$	$14,8 \pm 1,3$	$16,6 \pm 1,3$

	D: 010	WI 200				G 105
Образец	Bi-212,	T1-208,	U-235,	TH-227,	K-40,	Cs-137,
CH-S21-1	Бк/кг 28,9 ± 3,1	Бк/кг 29,2 ± 2,3	$\frac{\text{Бк/кг}}{1,04 \pm 0,22}$	Бк/кг < 1,10	Бк/кг 806 ± 18	Бк/кг < 0,28
CH-S21-1 CH-S21-2	$26,9 \pm 3,1$ $31,6 \pm 3,1$	$29,2 \pm 2,3$ $29,7 \pm 2,4$	$1,04 \pm 0,22$ $1,11 \pm 0,22$	$1,10$ $1,13 \pm 0,68$	788 ± 18	< 0,28
CH-S21-2 CH-S21-3	$31,0 \pm 3,1$ $32,8 \pm 3,2$	$29,7 \pm 2,4$ $31,3 \pm 2,4$	0.97 ± 0.22	$1,15 \pm 0,08$ $1,55 \pm 0,70$	760 ± 16 767 ± 17	< 0,27
CH-S21-4	37.0 ± 3.3	$31,2 \pm 2,4$	0.98 ± 0.22	< 1,13	757 ± 17	< 0,29
CH-S21-5	30.9 ± 2.1	30.0 ± 2.9	0.71 ± 0.14	1.01 ± 0.47	723 ± 12	< 0,17
CH-S21-6	$28,5 \pm 2,1$	27.8 ± 1.9	0.96 ± 0.15	$1,36 \pm 0,47$	716 ± 12	< 0.18
UR-S21-1	16.8 ± 2.5	$14,1 \pm 2,0$	0.66 ± 0.16	< 0,91	409 ± 13	0.42 ± 0.16
UR-S21-2	14.0 ± 2.4	$12,8 \pm 1,9$	0.51 ± 0.15	< 0,91	394 ± 13	< 0,23
UR-S21-3	$19,6 \pm 2,6$	$15,1 \pm 2,0$	0.68 ± 0.16	< 0,90	422 ± 13	0.55 ± 0.16
UR-S21-4	15.9 ± 2.5	$16,1 \pm 2,0$	0.70 ± 0.17	< 0,99	423 ± 13	0.66 ± 0.17
UR-S21-5	$15,3 \pm 1,6$	$13,1 \pm 1,7$	0.71 ± 0.11	0.82 ± 0.39	345 ± 9	0.69 ± 0.11
UR-S21-6	$10,6 \pm 1,5$	$11,5 \pm 1,6$	$0,49 \pm 0,10$	0.75 ± 0.38	284 ± 8	0.25 ± 0.10
IK-S21-1	$22,3 \pm 3,7$	24.8 ± 2.6	$0,60 \pm 0,28$	< 1,50	506 ± 17	$20,84 \pm 0,65$
IK-S21-2	$24,6 \pm 3,7$	$26,5 \pm 2,6$	0.86 ± 0.28	< 1,46	465 ± 16	$6,57 \pm 0,41$
IK-S21-3	$24,6 \pm 3,7$	$27,9 \pm 2,6$	$0,50 \pm 0,27$	< 1,47	513 ± 17	$0,91 \pm 0,26$
IK-S21-4	$24,9 \pm 3,9$	$26,5 \pm 2,6$	$0,\!64\pm0,\!28$	< 1,50	509 ± 17	< 0,41
IK-S21-5	$17,9 \pm 3,5$	$23,2\pm2,5$	$0,\!48 \pm 0,\!27$	< 1,44	474 ± 16	< 0,38
IK-S21-6	$27,0\pm2,6$	$23,4 \pm 2,1$	$0,66 \pm 0,19$	$1,31 \pm 0,59$	483 ± 12	< 0,26
EK-S21-1	$15,3 \pm 2,3$	$10,0\pm1,8$	$0,64 \pm 0,17$	$1,20 \pm 0,63$	364 ± 12	$0,\!80\pm0,\!16$
EK-S21-2	$17,7 \pm 2,2$	$12,0 \pm 1,9$	$0,60 \pm 0,17$	< 0,96	363 ± 12	$0,63 \pm 0,16$
EK-S21-3	$13,8 \pm 2,4$	$13,1\pm1,9$	$0,76 \pm 0,17$	$1,02 \pm 0,57$	386 ± 12	$1,01\pm0,17$
EK-S21-4	$15,3 \pm 2,3$	$11,6 \pm 1,9$	$0,72 \pm 0,18$	$1,06 \pm 0,58$	367 ± 12	$1,\!40\pm0,\!19$
EK-S21-5	$12,7 \pm 1,5$	$10,4 \pm 1,6$	$0,64 \pm 0,12$	$0,98 \pm 0,39$	327 ± 8	$0,47 \pm 0,10$
EK-S21-6	$9,9 \pm 1,4$	$12,5 \pm 1,6$	$0,76 \pm 0,12$	$1,16 \pm 0,41$	326 ± 8	$0,58 \pm 0,11$
TO-S21-1	$29,7 \pm 4,1$	$26,4 \pm 2,7$	$0,74 \pm 0,30$	< 1,56	413 ± 17	$16,66 \pm 0,61$
TO-S21-2	$28,0 \pm 3,9$	$29,1 \pm 2,7$	$0,73 \pm 0,29$	$2,95 \pm 0,96$	413 ± 16	$2,78 \pm 0,33$
TO-S21-3	$30,9 \pm 4,1$	$29,0 \pm 2,7$	$0,67 \pm 0,29$	< 1,53	424 ± 17	$1,85 \pm 0,31$
TO-S21-4	$27,3 \pm 3,8$	$27,4 \pm 2,7$	$0,67 \pm 0,29$	$3,23 \pm 0,95$	423 ± 17	$1,20 \pm 0,29$
TO-S21-5	$23,8 \pm 2,6$	$28,5 \pm 2,2$	$0,\!70\pm0,\!20$	$1,11 \pm 0,62$	425 ± 11	$0,88 \pm 0,19$
TO-S21-6	$26,6 \pm 2,7$	$29,7 \pm 2,2$	$0,72 \pm 0,20$	< 1,06	455 ± 12	$0,63 \pm 0,19$
AY-S21-1	$23,0 \pm 3,5$	$27,2 \pm 2,6$	$0,65 \pm 0,27$	< 1,40	492 ± 16	$3,08 \pm 0,33$
AY-S21-2	$27,0 \pm 3,7$	$24,8 \pm 2,6$	$0,\!79\pm0,\!27$	< 1,47	500 ± 17	$4,69 \pm 0,37$
AY-S21-3	$24,0 \pm 3,6$	$26,7 \pm 2,6$	$0,81 \pm 0,29$	< 1,46	532 ± 17	$3,42 \pm 0,35$
AY-S21-4	$24,2 \pm 3,7$	$29,1 \pm 2,7$	$0,93 \pm 0,29$	$2,05 \pm 0,92$	536 ± 17	$3,94 \pm 0,35$
AY-S21-5	$23,0\pm2,6$	$26,8 \pm 2,1$	$0,\!77 \pm 0,\!20$	< 1,04	503 ± 12	$4,92 \pm 0,27$
AY-S21-6	$19,0 \pm 2,5$	$23,5 \pm 2,1$	$0,61 \pm 0,20$	< 1,06	502 ± 12	$5,78 \pm 0,28$
PR-S21-1	$19,2 \pm 2,7$	$22,3 \pm 2,2$	$0,\!84\pm0,\!18$	< 1,00	552 ± 15	$3,\!97 \pm 0,\!27$
PR-S21-2	$29,0\pm3,0$	$23,4 \pm 2,2$	$0,\!82\pm0,\!18$	$1,\!90 \pm 0,\!61$	551 ± 15	$4,06 \pm 0,27$
PR-S21-3	$25,9\pm2,8$	$21,8 \pm 2,2$	$0,62 \pm 0,17$	< 0,96	594 ± 15	$3,05 \pm 0,25$
PR-S21-4	$22,2 \pm 2,7$	$23,7 \pm 2,2$	$0,74 \pm 0,17$	$1,35 \pm 0,59$	545 ± 14	$2,66 \pm 0,23$
PR-S21-5	$22,3 \pm 1,8$	$22,7 \pm 1,8$	$0,77 \pm 0,12$	$0,95 \pm 0,40$	553 ± 10	$3,26 \pm 0,17$
PR-S21-6	$27,3 \pm 1,9$	$24,6 \pm 1,8$	$0,75 \pm 0,12$	< 0,65	557 ± 10	$2,53 \pm 0,16$
IR-S21-1	$24,1 \pm 4,0$	$31,6 \pm 2,8$	0.66 ± 0.31	$1,79 \pm 0,98$	540 ± 19	$5,58 \pm 0,42$
IR-S21-2	$29,3 \pm 4,0$	$31,4 \pm 2,7$	0.83 ± 0.30	$2,20 \pm 0,97$	545 ± 18	$3,64 \pm 0,36$
IR-S21-3	$35,1 \pm 2,3$	$37,1 \pm 2,0$	0.84 ± 0.16	$1,79 \pm 0,51$	581 ± 10	$1,22 \pm 0,16$
IR-S21-4	$29,8 \pm 2,8$	$34,1 \pm 2,2$	0.85 ± 0.21	< 1,07	555 ± 12	$0,79 \pm 0,19$
IR-S21-5	$36,4 \pm 2,2$	$34,8 \pm 2,9$	$1,00 \pm 0,15$	$1,06 \pm 0,48$	594 ± 9	$0,62 \pm 0,14$
IR-S21-6	$32,9 \pm 2,6$	$37,4 \pm 2,2$	$1,05 \pm 0,19$	< 0,96	509 ± 11	0.44 ± 0.17
EM-S21-1	$20,6 \pm 2,7$	$15,3 \pm 2,0$	$0,75 \pm 0,19$	< 0,95	752 ± 17	< 0,24
EM-S21-2	$14,1 \pm 2,3$	$14,1 \pm 1,9$	$0,67 \pm 0,17$	$1,83 \pm 0,55$	719 ± 15	< 0,24
EM-S21-3	$14,0 \pm 1,3$	$15,3 \pm 1,5$	0.68 ± 0.10	$1,33 \pm 0,32$	781 ± 9	$0,23 \pm 0,08$
EM-S21-4	$16,4 \pm 1,6$	$15,7 \pm 1,6$	0.71 ± 0.12	< 0,58	741 ± 10	< 0,16
EM-S21-5	$17,1 \pm 1,2$	13.8 ± 1.5	0.74 ± 0.09	$1,24 \pm 0,28$	695 ± 8	0.14 ± 0.07
EM-S21-6	$14,7 \pm 1,6$	$14,7 \pm 1,6$	0.80 ± 0.12	0.93 ± 0.37	699 ± 10	$0,25 \pm 0,10$
	,· -,~	, , ~	,,	, , ,,-,		, - ~j-~

Результаты гамма-спектрометрического анализа послойных проб почвы, отобранных в бассейнах трансграничных рек Казахстана осенью 2017 г.

Образец	Th-234, Бк/кг	Ra-226, Бк/кг	Pb-214, Бк/кг	Ві-214, Бк/кг	Pb-210, Бк/кг	Ас-228, Бк/кг	Ra-224, Бк/кг	Pb-212, Бк/кг
IL-S22-1	$29,5 \pm 3,2$	$36,2 \pm 5,1$	28.8 ± 2.7	$27,4 \pm 2,5$	45.9 ± 4.7	$37,3 \pm 3,9$	$42,6 \pm 4,6$	$37,4 \pm 3,9$
IL-S22-2	$33,6 \pm 3,1$	$37,2 \pm 4,6$	$31,7 \pm 2,6$	30.9 ± 2.5	$38,8 \pm 4,1$	$45,1 \pm 3,8$	$45,2 \pm 4,2$	42.8 ± 3.8
IL-S22-3	$28,3 \pm 3,2$	$49,5 \pm 5,8$	$29,7 \pm 2,9$	$30,3 \pm 2,7$	$39,2 \pm 4,5$	$46,2 \pm 4,3$	$53,2 \pm 5,1$	$45,7 \pm 4,0$
IL-S22-4	$31,7 \pm 3,2$	$37,0 \pm 4,9$	$34,5 \pm 3,8$	$31,0 \pm 2,6$	$44,7\pm4,5$	$46,6 \pm 4,1$	$42,6 \pm 4,4$	$43,7 \pm 3,9$
IL-S22-5	$29,0\pm2,8$	$31,4 \pm 4,3$	$29,5 \pm 2,5$	$28,6 \pm 2,4$	$41,5 \pm 3,9$	$43,6 \pm 4,2$	$42,0 \pm 3,9$	$41,3 \pm 3,8$
IL-S22-6	$30,8\pm2,9$	$41,5\pm4,1$	$31{,}7\pm3{,}1$	$29,1 \pm 2,9$	$43,1\pm3,6$	$45,9\pm3,9$	$48,0\pm4,7$	$45,0\pm3,6$
TK-S22-1	$31,0 \pm 3,1$	$38,2 \pm 5,2$	$34{,}7\pm3{,}8$	$31,4 \pm 2,6$	$57,8 \pm 5,9$	$52,6 \pm 5,2$	$46,8\pm4,6$	$44,7\pm3,9$
TK-S22-2	$27,8\pm2,8$	$49,3\pm4,8$	$33,8 \pm 3,6$	$31,1\pm3,4$	$53,6 \pm 5,3$	$45,7\pm4,8$	$54,1\pm5,3$	$45,3 \pm 3,8$
TK-S22-3	$27,1\pm2,0$	$44,7\pm4,2$	$31,6 \pm 3,1$	$30,8 \pm 3,0$	$52,3\pm5,0$	$45,2 \pm 3,9$	$49,\!4\pm4,\!9$	$44,2 \pm 3,6$
TK-S22-4	$33,1\pm3,3$	$47,9 \pm 5,3$	$34,0 \pm 2,8$	$32,5 \pm 3,6$	$61,7 \pm 6,0$	$45,\!4\pm4,\!1$	$46,8 \pm 4,6$	$45,8 \pm 3,9$
TK-S22-5	$29,6 \pm 1,9$	$45,1\pm4,0$	$31,3 \pm 3,0$	$28,5\pm2,9$	$50,7\pm4,7$	$43,5 \pm 3,7$	$40,7 \pm 3,6$	$44,0\pm4,5$
TK-S22-6	$29,3 \pm 2,0$	$34,7\pm3,1$	$27,2 \pm 2,9$	$26,6 \pm 2,9$	$67,3 \pm 6,2$	$47,0\pm3,9$	$42,4 \pm 3,8$	$40,2 \pm 3,6$
SH-S22-1	$39,8 \pm 3,9$	$57,0 \pm 5,4$	$41,0\pm4,1$	$38,0\pm3,0$	$53,6 \pm 4,7$	$51,9\pm4,8$	$50,5 \pm 5,6$	$51,8 \pm 4,5$
SH-S22-2	$40,8\pm4,1$	$50,7 \pm 4,6$	$40,8 \pm 3,7$	$39,7 \pm 3,5$	$55,0 \pm 4,4$	$53,0\pm4,8$	$50,3 \pm 5,2$	$53,4 \pm 4,9$
SH-S22-3	$45,1 \pm 4,6$	$58,5 \pm 5,8$	$44,0 \pm 3,7$	$39,4 \pm 3,5$	$60,2 \pm 5,8$	$52,5 \pm 4,7$	$49,7 \pm 4,2$	$53,8 \pm 4,9$
SH-S22-4	$40,4 \pm 3,6$	$51,8 \pm 5,4$	$46,7\pm4,1$	$40,7 \pm 3,8$	$53,0 \pm 4,9$	$62,6 \pm 5,5$	$63,9 \pm 6,2$	$56,0 \pm 5,0$
SH-S22-5	$37,7 \pm 3,1$	$58,9 \pm 5,9$	$43,8 \pm 3,8$	$40,1 \pm 3,6$	$60,3 \pm 5,5$	$54,2 \pm 4,9$	$59,4 \pm 5,5$	$54,3 \pm 4,9$
SH-S22-6	$42,3\pm4,3$	$52,1 \pm 5,4$	$45,5 \pm 4,3$	$41,7\pm4,1$	$64,4 \pm 6,3$	$58,2 \pm 5,1$	$56,6 \pm 5,1$	$55,2 \pm 4,6$
KB-S22-1	$33,4 \pm 3,3$	$42,1 \pm 5,0$	$33,7 \pm 3,8$	$36,3 \pm 3,7$	$36,9 \pm 4,2$	$48,9 \pm 4,0$	$47,8 \pm 4,6$	$44,5 \pm 3,9$
KB-S22-2	$32,2 \pm 2,6$	$39,7\pm4,1$	$34,3 \pm 3,5$	$32,8 \pm 3,3$	$41,9 \pm 3,7$	$41,7 \pm 3,4$	$44,4\pm4,6$	$44,0 \pm 3,8$
KB-S22-3	$30,8 \pm 3,0$	$41,4\pm4,0$	$33,6 \pm 3,1$	$32,5 \pm 3,0$	$39,9 \pm 3,7$	$44,3 \pm 3,8$	$45,6\pm4,8$	$42,5 \pm 3,6$
KB-S22-4	$35,1 \pm 3,4$	$39,4 \pm 3,5$	$37,6 \pm 3,3$	$34,9 \pm 3,2$	$42,7\pm4,2$	$46,8 \pm 4,1$	$51,5 \pm 5,3$	$43,6 \pm 3,6$
KB-S22-5	$33,2 \pm 2,9$	$45,0 \pm 3,9$	$36,7 \pm 3,1$	$32,5 \pm 2,9$	$43,1 \pm 3,6$	$42,1 \pm 3,4$	$44,3 \pm 4,6$	$42,7 \pm 3,5$
KB-S22-6	$35,8 \pm 3,3$	$30,9\pm4,1$	$35,4 \pm 3,8$	$32,0 \pm 2,6$	$42,1 \pm 3,5$	$49,5 \pm 5,0$	43.9 ± 4.4	$42,0 \pm 3,9$
TA-S22-1	$24,2 \pm 2,5$	$33,2 \pm 3,7$	$28,2\pm2,5$	$26,9\pm2,3$	$71,7 \pm 6,6$	$37,4 \pm 3,1$	$38,4\pm3,9$	$40,3 \pm 3,8$
TA-S22-2	$24,7\pm2,2$	$34,2 \pm 3,3$	$25,9 \pm 2,3$	$26,6\pm2,2$	$72,\!4\pm7,\!1$	$39,3 \pm 3,2$	$47,1\pm4,5$	$39,3 \pm 3,7$
TA-S22-3	$26,3 \pm 2,4$	$30,2 \pm 3,3$	$28,0\pm2,3$	$26,8\pm2,2$	$59,3 \pm 5,9$	$44,4\pm4,4$	$36,4\pm3,4$	$39,8 \pm 3,7$
TA-S22-4	$24,6 \pm 3,0$	$37,3 \pm 4,5$	$30,1 \pm 2,7$	$28,\!4\pm2,\!3$	$82,1 \pm 7,5$	$51,8 \pm 5,2$	$42,6 \pm 4,5$	$43,4 \pm 3,9$
TA-S22-5	$27,0\pm2,7$	$30,2 \pm 3,8$	$27,8 \pm 2,5$	$24,2 \pm 2,1$	$56,2 \pm 5,2$	$40,6 \pm 4,1$	$43,0\pm3,9$	$40,7 \pm 3,8$
TA-S22-6	$32,0 \pm 2,5$	$37,6 \pm 3,5$	$36,3 \pm 3,5$	$35,6 \pm 3,1$	$49,3 \pm 4,7$	$47,9 \pm 4,4$	$48,7 \pm 4,6$	47.8 ± 3.7
SD-S22-1	$28,9 \pm 3,0$	$30,\!4\pm4,\!7$	$31,3 \pm 3,7$	$29,1\pm2,5$	$61,4 \pm 5,8$	$40,4 \pm 3,8$	$35,6 \pm 4,2$	$37,5 \pm 3,8$
SD-S22-2	$26,3 \pm 2,7$	$39,4 \pm 4,6$	$32,0 \pm 2,6$	$29,6\pm2,5$	$59,8 \pm 5,5$	$40,4 \pm 3,7$	$32,8 \pm 4,0$	$36,5 \pm 3,8$
SD-S22-3	$31,1 \pm 2,9$	$49,3 \pm 3,2$	$37,1 \pm 3,2$	$35,2\pm3,0$	$45,2\pm4,8$	$41,5 \pm 3,8$	$45,7\pm4,8$	41.8 ± 3.6
SD-S22-4	$29,7\pm3,1$	$47,6 \pm 5,3$	$37,0 \pm 3,9$	$33,6 \pm 2,7$	$40,7 \pm 4,4$	$51,4 \pm 5,2$	$40,5\pm4,5$	$41,1 \pm 3,9$
SD-S22-5	$57,2 \pm 5,1$	$47,7 \pm 4,6$	$33,2 \pm 3,5$	$32,3 \pm 3,4$	$35,7 \pm 3,5$	$45,3 \pm 4,5$	$44,3 \pm 3,7$	$40,4 \pm 3,7$

 $SD-S22-6 \hspace{0.5cm} 58,8 \pm 5,5 \hspace{0.5cm} 44,9 \pm 3,6 \hspace{0.5cm} 36,0 \pm 3,2 \hspace{0.5cm} 35,5 \pm 3,1 \hspace{0.5cm} 36,9 \pm 3,8 \hspace{0.5cm} 43,1 \pm 4,0 \hspace{0.5cm} 48,1 \pm 4,1 \hspace{0.5cm} 42,3 \pm 3,6 \hspace{0.5cm} 42,3 \pm 3,6 \hspace{0.5cm} 43,1 \pm 4,1 \hspace{0.5cm} 44,2 \pm 4,1 \hspace{0.5cm} 44,3 \pm 4,2 \hspace{0.5cm} 44,3 \pm 4,3 \hspace{0.5cm} 44,3 \pm$

06,000	Bi-212,	T1-208,	U-235,	TH-227,	K-40,	Cs-137,
Образец	Бк/кг	Бк/кг	Бк/кг	Бк/кг	Бк/кг	Бк/кг
IL-S22-1	$43,8 \pm 5,8$	$35,3 \pm 3,9$	$1,35 \pm 0,30$	$2,2 \pm 1,0$	736 ± 63	$0,7 \pm 0,3$
IL-S22-2	$49,2 \pm 6,5$	$37,9 \pm 3,7$	$1,53 \pm 0,28$	$2,2 \pm 0,9$	636 ± 57	0.8 ± 0.3
IL-S22-3	$73,0 \pm 8,6$	$47,5 \pm 4,2$	$1,31 \pm 0,33$	< 1,7	654 ± 59	$1,2 \pm 0,4$
IL-S22-4	$57,6 \pm 7,0$	$42,8\pm3,9$	$1,\!49 \pm 0,\!29$	$3,4 \pm 1,0$	568 ± 57	$1,0 \pm 0,3$
IL-S22-5	$46,8\pm5,9$	$39,6 \pm 3,7$	$1,32 \pm 0,25$	$2{,}7\pm0{,}9$	586 ± 55	$2,1 \pm 0,3$
IL-S22-6	$53,6 \pm 5,2$	$43,9 \pm 4,2$	$1,46 \pm 0,18$	$2,6 \pm 0,6$	611 ± 60	$1,3 \pm 0,2$
TK-S22-1	$53,6 \pm 7,5$	$41,6 \pm 4,3$	$1,48 \pm 0,30$	$3,2 \pm 1,0$	724 ± 72	$7,8 \pm 0,5$
TK-S22-2	$58,5 \pm 6,6$	$43,2 \pm 3,8$	$1,29 \pm 0,28$	$3,1 \pm 0,9$	687 ± 60	$18,7\pm0,7$
TK-S22-3	$56,5 \pm 5,6$	$43,8\pm4,5$	$1,23 \pm 0,18$	$2,4 \pm 0,6$	734 ± 74	$13,8 \pm 0,4$
TK-S22-4	$40,7\pm6,7$	$41,5\pm4,0$	$1,48 \pm 0,30$	$1,8 \pm 1,0$	688 ± 62	$12,9 \pm 0,7$
TK-S22-5	$50,8 \pm 3,9$	$43,7\pm4,1$	$1,35 \pm 0,17$	$1,4 \pm 0,6$	679 ± 63	$11,7\pm0,4$
TK-S22-6	$47,3\pm4,3$	$37,9 \pm 3,2$	$1,37 \pm 0,18$	$1,2 \pm 0,6$	728 ± 64	$3,9 \pm 0,3$
SH-S22-1	$55,2 \pm 4,9$	$48,5\pm4,4$	$1,86 \pm 0,20$	$1,7 \pm 0,5$	821 ± 73	$0,6 \pm 0,2$
SH-S22-2	$55,1 \pm 6,2$	$49,5\pm4,2$	$1,89 \pm 0,27$	$2,1 \pm 0,9$	807 ± 71	0.8 ± 0.3
SH-S22-3	$64,9 \pm 6,4$	$52,5 \pm 4,8$	$2,11 \pm 0,28$	$3,6 \pm 0,9$	705 ± 66	$0,7 \pm 0,3$
SH-S22-4	$68,8 \pm 7,7$	$50,4 \pm 4,6$	$1,86 \pm 0,32$	< 1,7	800 ± 73	$1,0 \pm 0,3$
SH-S22-5	$74,4 \pm 7,0$	$53,0 \pm 4,3$	$1,75 \pm 0,28$	$3,0 \pm 0,9$	738 ± 70	$1,9 \pm 0,3$
SH-S22-6	$61,2 \pm 5,7$	$54,9 \pm 4,7$	$1,93 \pm 0,20$	$3,4 \pm 0,7$	800 ± 75	$2,2 \pm 0,2$
KB-S22-1	$49,3 \pm 6,5$	$46,4\pm4,4$	$1,53 \pm 0,29$	< 1,6	810 ± 73	< 0,4
KB-S22-2	$57,2 \pm 5,8$	$39,4 \pm 3,9$	$1,47 \pm 0,24$	$2,4 \pm 0,8$	731 ± 69	$0,6 \pm 0,2$
KB-S22-3	$54,2 \pm 5,3$	$42,2 \pm 4,4$	$1,40 \pm 0,17$	< 1,0	772 ± 64	$0,5 \pm 0,2$
KB-S22-4	$59,0 \pm 5,1$	$43,4 \pm 3,7$	$1,62 \pm 0,20$	$2,0 \pm 0,7$	746 ± 66	0.8 ± 0.2
KB-S22-5	$48,5\pm4,9$	$39,3 \pm 3,3$	$1,56 \pm 0,17$	$1,8 \pm 0,6$	717 ± 63	< 0,3
KB-S22-6	$51,7 \pm 6,6$	$40,4\pm3,8$	$1,63 \pm 0,25$	< 1,5	732 ± 61	< 0,5
TA-S22-1	$44,1 \pm 5,8$	$37,3 \pm 4,0$	$1,15 \pm 0,22$	$1,5 \pm 0,9$	714 ± 60	$4,9 \pm 0,4$
TA-S22-2	$44,1 \pm 5,0$	$40,9 \pm 3,8$	$1,15 \pm 0,19$	< 1,2	758 ± 68	$4,0 \pm 0,3$
TA-S22-3	$39,9 \pm 5,1$	$38,2 \pm 3,9$	$1,23 \pm 0,19$	$2,2 \pm 0,8$	733 ± 68	$4,4\pm0,4$
TA-S22-4	$54,0 \pm 7,4$	$41,0\pm4,4$	$1,10 \pm 0,26$	$2,0 \pm 1,0$	705 ± 63	$5,6 \pm 0,5$
TA-S22-5	$57,6 \pm 6,3$	$40,6 \pm 4,1$	$1,27 \pm 0,22$	< 1,4	705 ± 60	$3,5 \pm 0,4$
TA-S22-6	$68,7 \pm 6,9$	$44,8 \pm 3,9$	$1,48 \pm 0,21$	$2,5 \pm 0,8$	705 ± 68	$11,3 \pm 0,5$
SD-S22-1	$56,4 \pm 6,8$	$35,9 \pm 3,2$	$1,\!36\pm0,\!28$	< 1,5	492 ± 49	$3,0 \pm 0,4$
SD-S22-2	$50,5 \pm 6,5$	$36,8 \pm 3,1$	$1,18 \pm 0,27$	< 1,4	536 ± 49	$3,1 \pm 0,4$
SD-S22-3	$48,\!4\pm4,\!3$	$41,9 \pm 3,5$	$1,\!44\pm0,\!19$	1.8 ± 0.6	557 ± 53	$3,8 \pm 0,3$
SD-S22-4	$49,8\pm6,6$	$41,3\pm3,4$	$1,\!41\pm0,\!30$	< 1,6	575 ± 51	< 0,4
SD-S22-5	$54,2\pm6,0$	$37,8 \pm 3,9$	$2,\!63\pm0,\!28$	$1,4\pm0,8$	546 ± 47	< 0,4

SD-S22-6 60.3 ± 5.8 39.9 ± 3.5 2.74 ± 0.22 2.2 ± 0.7 631 ± 54 < 0.3

Результаты определения методом РФА элементного состава послойных проб почвы, отобранных в бассейнах трансграничных рек Казахстана весной 2017 г.

Образец	K %	Ca %	Ti %	V, мкг/г	Сг, мкг/г	Mn %	Fe %	Со, мкг/г
CH-S21-1	2,36±0,23	1,01±0,22	0,406±0,036	130±12	370±13	0,0846±0,0099	3,367±0,150	11,0±3,0
CH-S21-2	$2,29\pm0,24$	$1,14\pm0,24$	$0,441\pm0,026$	130±14	290±13	$0,094\pm0,011$	$3,524\pm0,164$	< 4
CH-S21-3	$2,22\pm0,24$	$1,04\pm0,23$	$0,420\pm0,025$	100 ± 13	330±13	$0,093\pm0,011$	$3,453\pm0,164$	$9,2\pm2,3$
CH-S21-4	$2,21\pm0,24$	$1,69\pm0,26$	$0,418\pm0,026$	130±14	230±13	$0,09\pm0,01$	$3,51\pm0,16$	< 4
CH-S21-5	$2,18\pm0,25$	$1,37\pm0,21$	$0,410\pm0,026$	120±14	350 ± 13	$0,088\pm0,011$	$3,361\pm0,156$	$9,0\pm 2,3$
CH-S21-6	$2,16\pm0,25$	$1,86\pm0,23$	$0,424\pm0,026$	110±14	360 ± 13	$0,086\pm0,011$	$3,360\pm0,154$	< 4
UR-S21-1	$1,34\pm0,23$	$2,9\pm0,29$	$0,253\pm0,034$	80±12	800 ± 15	$0,0458\pm0,0087$	$1,890\pm0,082$	$9,7\pm2,5$
UR-S21-2	$1,28\pm0,23$	$2,98\pm0,29$	$0,294\pm0,035$	70 ± 12	780 ± 14	$0,0465\pm0,0086$	$1,941\pm0,086$	$9,9\pm2,6$
UR-S21-3	$1,38\pm0,23$	$2,99\pm0,29$	$0,280\pm0,034$	90±12	800 ± 15	$0,0485\pm0,0088$	$1,964\pm0,088$	$9,8\pm2,4$
UR-S21-4	$1,26\pm0,23$	$2,9\pm0,29$	$0,296\pm0,025$	90±13	1510±18	$0,0547\pm0,0097$	$2,304\pm0,102$	$9,9\pm2,6$
UR-S21-5	$1,18\pm0,23$	$2,65\pm0,28$	$0,310\pm0,024$	80 ± 13	1590 ± 18	$0,0471\pm0,0093$	$2,022\pm0,090$	$11,7\pm2,5$
UR-S21-6	$1,00\pm0,23$	$2,16\pm0,26$	$0,351\pm0,023$	70 ± 12	2400 ± 20	$0,0482\pm0,0098$	$1,972\pm0,090$	$14,0\pm 3,2$
IK-S21-1	$1,86\pm0,23$	$0,68\pm0,21$	$0,360\pm0,034$	50±12	250 ± 11	$0,0595\pm0,0084$	$2,103\pm0,092$	< 4
IK-S21-2	$1,85\pm0,24$	$0,59\pm0,21$	$0,345\pm0,035$	40±12	250±12	$0,0551\pm0,0085$	$2,016\pm0,092$	$8,9\pm2,3$
IK-S21-3	$1,82\pm0,24$	$0,62\pm0,21$	$0,360\pm0,035$	100 ± 12	300 ± 12	$0,0570\pm0,0086$	$2,051\pm0,092$	< 4
IK-S21-4	$1,75\pm0,24$	$0,59\pm0,21$	$0,344\pm0,024$	80 ± 12	250±12	$0,0521\pm0,0084$	$1,989\pm0,092$	< 4
IK-S21-5	$1,75\pm0,24$	$0,54\pm0,21$	$0,369\pm0,024$	80 ± 12	260 ± 12	$0,0502\pm0,0083$	$1,946\pm0,090$	$4,7\pm1,4$
IK-S21-6	$1,78\pm0,24$	$0,56\pm0,21$	$0,338\pm0,024$	60 ± 13	240 ± 12	$0,0480\pm0,0082$	$1,973\pm0,090$	$6,0\pm1,6$
EK-S21-1	$1,24\pm0,23$	$1,00\pm0,23$	$0,179\pm0,030$	< 14	300 ± 12	$0,0339\pm0,0071$	$1,108\pm0,052$	$7,0\pm1,7$
EK-S21-2	$1,32\pm0,23$	$1,14\pm0,23$	$0,22 \pm 0,03$	< 14	500 ± 12	$0,0306\pm0,0071$	$1,214\pm0,054$	$8,0\pm1,7$
EK-S21-3	$1,34\pm0,23$	$1,30\pm0,23$	$0,21\pm0,03$	100 ± 10	500 ± 13	$0,0339\pm0,0073$	$1,370\pm0,058$	$5,0\pm1,5$
EK-S21-4	$1,29\pm0,23$	$1,13\pm0,23$	$0,230\pm0,031$	70 ± 11	510±12	$0,0334\pm0,0073$	$1,31\pm0,06$	$4,3\pm1,4$
EK-S21-5	$1,17\pm0,23$	$1,04\pm0,23$	$0,179\pm0,030$	100 ± 10	500±12	$0,0305\pm0,0071$	$1,195\pm0,052$	$10,7\pm2,7$
EK-S21-6	$1,23\pm0,23$	$1,03\pm0,22$	$0,236\pm0,031$	< 14	700 ± 13	$0,0324\pm0,0075$	$1,256\pm0,056$	$9,3\pm2,3$
TO-S21-1	$1,68\pm0,22$	$1,17\pm0,22$	$0,394\pm0,034$	90±12	190 ± 11	$0,079\pm0,009$	$2,530\pm0,110$	< 4
TO-S21-2	$1,62\pm0,23$	$0,93\pm0,22$	$0,411\pm0,024$	90±13	200 ± 12	$0,0747\pm0,0092$	$2,505\pm0,114$	< 4
TO-S21-3	$1,69\pm0,23$	$0,81\pm0,21$	$0,417\pm0,0245$	80 ± 13	180 ± 12	$0,0659\pm0,0089$	$2,523\pm0,114$	$9,9\pm2,5$
TO-S21-4	$1,67\pm0,23$	$0,78\pm0,21$	$0,43\pm0,025$	60 ± 13	190±12	$0,0674\pm0,0082$	$2,702\pm0,122$	$9,7\pm2,5$
TO-S21-5	$1,67\pm0,23$	$0,78\pm0,21$	$0,396\pm0,024$	120 ± 13	180 ± 12	$0,0679\pm0,0091$	$2,672\pm0,122$	$9,9\pm2,5$
TO-S21-6	$1,69\pm0,23$	$0,74\pm0,21$	$0,414\pm0,025$	70 ± 13	200±12	$0,066\pm0,009$	$2,744\pm0,124$	$9,8\pm2,5$
AY-S21-1	$1,92\pm0,23$	$1,76\pm0,24$	$0,346\pm0,034$	110±12	220±12	$0,0834\pm0,0093$	$2,697\pm0,114$	$12,0\pm 2,9$
AY-S21-2	$1,92\pm0,22$	$2,17\pm0,25$	$0,345\pm0,034$	100 ± 12	200 ± 11	$0,0800\pm0,0093$	$2,759\pm0,114$	< 4
AY-S21-3	$1,95\pm0,22$	$3,16\pm0,28$	$0,342\pm0,034$	110 ± 12	260 ± 12	$0,0858\pm0,0094$	$2,725\pm0,110$	$9,8\pm2,6$
AY-S21-4	$1,93\pm0,22$	$3,21\pm0,28$	$0,342\pm0,035$	90±12	220 ± 12	$0,0778\pm0,0092$	$2,694\pm0,110$	$19,2\pm 4,1$
AY-S21-5	$1,84\pm0,23$	$3,00\pm0,29$	$0,318\pm0,024$	80 ± 13	180 ± 12	$0,0769\pm0,0096$	$2,632\pm0,110$	$10,3\pm2,7$
AY-S21-6	$1,79\pm0,23$	$2,41\pm0,27$	$0,301\pm0,023$	110 ± 12	280 ± 12	$0,0772\pm0,0095$	$2,582\pm0,112$	$10,5\pm2,7$

PR-S21-1	$1,75\pm0,25$	$1,16\pm0,24$	$0,271\pm0,023$	70 ± 12	170 ± 12	$0,0366\pm0,0079$	$1,696\pm0,078$	< 4
PR-S21-2	$1,72\pm0,25$	$1,26\pm0,24$	$0,270\pm0,023$	40 ± 12	170 ± 12	$0,0389\pm0,0079$	$1,69\pm0,08$	< 4
PR-S21-3	$1,80\pm0,25$	$1,08\pm0,24$	$0,263\pm0,023$	60 ± 12	150±12	$0,0334\pm0,0077$	$1,603\pm0,074$	< 4
PR-S21-4	$1,77\pm0,25$	$1,06\pm0,24$	$0,258\pm0,023$	70 ± 12	150 ± 12	$0,0337\pm0,0076$	$1,618\pm0,076$	< 4
PR-S21-5	$1,77\pm0,25$	$1,03\pm0,24$	$0,262\pm0,023$	60 ± 12	180 ± 12	$0,0340\pm0,0077$	$1,651\pm0,076$	< 4
PR-S21-6	$1,74\pm0,25$	$0,94\pm0,24$	$0,305\pm0,024$	40 ± 13	170 ± 12	$0,0348\pm0,0078$	$1,758\pm0,082$	< 4
IR-S21-1	$1,85\pm0,23$	$2,91\pm0,25$	$0,370\pm0,025$	100 ± 13	150 ± 12	$0,0581\pm0,0093$	$3,352\pm0,148$	$8,8\pm2,3$
IR-S21-2	$1,88\pm0,24$	$3,00\pm0,29$	$0,370\pm0,025$	110 ± 14	170 ± 12	$0,0561\pm0,0093$	$3,329\pm0,146$	$9,4\pm2,5$
IR-S21-3	$1,98\pm0,24$	$2,91\pm0,29$	$0,399\pm0,026$	110 ± 14	140 ± 12	$0,0546\pm0,0094$	$3,810\pm0,172$	$9,2\pm 2,5$
IR-S21-4	$1,91\pm0,23$	$2,79\pm0,29$	$0,407\pm0,026$	100 ± 14	170 ± 13	$0,0559\pm0,0095$	$3,814\pm0,172$	$9,1\pm2,5$
IR-S21-5	$1,92\pm0,23$	$2,68\pm0,29$	$0,420\pm0,026$	120 ± 14	150 ± 12	$0,0571\pm0,0095$	$3,861\pm0,170$	$6,6\pm1,5$
IR-S21-6	$1,87\pm0,24$	$1,98\pm0,26$	$0,421\pm0,026$	80 ± 14	180 ± 12	$0,0545\pm0,0094$	$3,85\pm0,18$	$9,8\pm2,6$
EM-S21-1	$2,05\pm0,24$	$2,58\pm0,29$	$0,296\pm0,024$	100 ± 13	210±12	$0,0444\pm0,0086$	$2,539\pm0,110$	< 4
EM-S21-2	$2,06\pm0,25$	$2,88\pm0,29$	$0,296\pm0,024$	110 ± 14	120 ± 12	$0,0453\pm0,0087$	$2,448\pm0,108$	< 4
EM-S21-3	$2,08\pm0,25$	$2,11\pm0,28$	$0,309\pm0,024$	150 ± 14	250±13	$0,0463\pm0,0089$	$2,65\pm0,12$	< 4
EM-S21-4	$2,07\pm0,25$	$2,11\pm0,28$	$0,329\pm0,025$	130 ± 14	250±13	$0,0474\pm0,0089$	$2,706\pm0,122$	$8,3\pm1,7$
EM-S21-5	$2,05\pm0,25$	$1,75\pm0,26$	$0,327\pm0,025$	130 ± 14	260 ± 13	$0,049\pm0,009$	$2,893\pm0,132$	< 4
EM-S21-6	$2,01\pm0,25$	$2,21\pm0,28$	$0,330\pm0,025$	100 ± 14	260 ± 13	$0,0468\pm0,0088$	$2,781\pm0,128$	$9,2\pm2,3$

Образец	Ni, мкг/г	Си, мкг/г	Zn, мкг/г	Ga, мкг/г	As, мкг/г	Br, мкг/г	Rb, мкг/г	Sr, мкг/г	Ү, мкг/г
CH-S21-1	61±6	26±2	48±6	11,3±0,8	6,5±0,9	10,8±1,8	76,4±4,3	146±10	23,0±1,5
CH-S21-2	60±6	27 ± 2	50±6	$11,4\pm0,8$	$8,3\pm1,3$	$14,2\pm2,5$	$80,1\pm4,5$	143±10	$24,2\pm1,6$
CH-S21-3	58±6	25 ± 2	45±6	$9,4\pm0,8$	$5,0\pm0,9$	$13,1\pm2,4$	$80,1\pm4,6$	143±10	$23,2\pm1,6$
CH-S21-4	58±6	27 ± 2	47±6	$11,0\pm0,8$	$4,0\pm0,8$	$15,0\pm2,5$	$80,8\pm4,6$	150±10	$23,9\pm1,6$
CH-S21-5	59±6	24 ± 2	47±6	$9,5\pm0,8$	$4,0\pm0,8$	$13,0\pm2,4$	$77,8\pm4,6$	148 ± 10	$23,8\pm1,6$
CH-S21-6	55±6	27 ± 2	46±6	$10,0\pm0,8$	$2,0\pm0,4$	$12,5\pm2,3$	$77,6\pm4,6$	151±10	$22,9\pm1,6$
UR-S21-1	84±10	15±2	$20,6\pm5,0$	$3,8\pm0,7$	< 1	$3,1\pm0,7$	$38,9\pm3,2$	155±10	$13,6\pm1,2$
UR-S21-2	78±10	15±2	20±4	$5,0\pm0,7$	< 1	$2,7\pm0,6$	$38,7\pm3,3$	158 ± 10	$16,0\pm1,3$
UR-S21-3	80±10	16 ± 2	20±4	$5,0\pm0,7$	< 1	$3,3\pm0,7$	$40,1\pm3,3$	160 ± 10	$11,7\pm1,3$
UR-S21-4	89±10	19±2	27±5	$5,1\pm0,7$	$1,6\pm0,3$	$3,6\pm0,8$	$41,5\pm3,4$	163 ± 12	$16,4\pm1,4$
UR-S21-5	90±9	14 ± 2	$22,4\pm4,0$	$4,0\pm0,7$	< 1	$2,9\pm0,6$	$35,4\pm3,2$	146 ± 10	$12,7\pm1,3$
UR-S21-6	100 ± 9	12±2	10 ± 2	$3,3\pm0,7$	< 1	$2,4\pm0,6$	29±3	127 ± 10	$12,1\pm1,2$
IK-S21-1	37±4	20 ± 2	34±5	$5,9\pm0,7$	< 1	$4,0\pm0,8$	$66,3\pm3,8$	106 ± 8	$18,9\pm1,4$
IK-S21-2	37±4	18 ± 2	28 ± 5	$6,0\pm0,7$	< 1	$4,4\pm0,8$	$66,4\pm3,9$	103 ± 8	$18,0\pm1,4$
IK-S21-3	35±4	18 ± 2	27±5	$6,4\pm0,7$	< 1	$5,2\pm0,9$	$67,2\pm 3,9$	107 ± 8	$17,2\pm1,4$
IK-S21-4	36±4	17±2	30±5	$5,0\pm0,7$	< 1	$5,9\pm1,0$	$65,2\pm3,9$	103 ± 8	$17,9\pm1,4$
IK-S21-5	29 ± 3	16 ± 2	20±4	$5,5\pm0,7$	$5,8\pm0,8$	$5,6\pm1,0$	$63,9\pm3,9$	98 ± 8	$18,0\pm1,4$
IK-S21-6	34±4	19±2	20±4	$6,7\pm0,7$	< 1	$5,6\pm1,0$	$64,5\pm3,9$	98 ± 8	$17,8\pm1,4$
EK-S21-1	33±4	8 ± 1	$4,5\pm1,3$	$1,5\pm0,6$	< 1	$2,4\pm0,5$	$34,1\pm2,8$	64 ± 6	$11,3\pm1,1$
EK-S21-2	29 ± 3	8 ± 1	$9,9\pm2,0$	$1,6\pm0,6$	< 1	$3,2\pm0,6$	$37,2\pm2,9$	77±6	$12,5\pm1,1$
EK-S21-3	34±4	9±1	$9,8\pm2,0$	$2,1\pm0,6$	< 1	$3,2\pm0,6$	$38,3\pm2,9$	78 ± 6	$12,7\pm1,1$
EK-S21-4	33±4	9±1	$6,1\pm1,4$	$1,5\pm0,6$	< 1	$2,9\pm0,6$	$36,4\pm2,9$	70±6	$12,1\pm1,1$
EK-S21-5	29±3	6±1	$4,3\pm1,2$	$1,3\pm0,6$	< 1	$2,6\pm0,5$	$31,8\pm2,7$	65±6	$12,4\pm1,1$
EK-S21-6	40±4	9±1	$5,5\pm1,4$	$1,3\pm0,6$	< 1	$3,3\pm0,6$	$33,3\pm2,8$	68±6	$13,5\pm1,1$
TO-S21-1	35±4	24 ± 2	65±10	$6,7\pm0,7$	< 1	$9,9\pm1,7$	$57,2\pm3,6$	123 ± 8	$17,4\pm1,3$
TO-S21-2	38±4	23 ± 2	37±5	$8,0\pm0,7$	< 1	$9,4\pm1,6$	$57,5\pm3,7$	119±10	$16,3\pm1,4$
TO-S21-3	36±4	23±2	38±5	$7,0\pm0,7$	< 1	$9,1\pm1,5$	$59,1\pm3,8$	116±10	$16,8\pm1,4$
TO-S21-4	40±4	21±2	33±5	$7,6\pm0,7$	$4,0\pm0,8$	$10,4\pm1,8$	$61,1\pm3,9$	118 ± 10	$17,3\pm1,4$
TO-S21-5	36±4	24±2	40 ± 6	$8,2\pm0,7$	$4,0\pm0,8$	$9,7\pm1,7$	$61,1\pm3,9$	118 ± 10	$17,7\pm1,4$
TO-S21-6	44±5	21±2	36±5	$7,6\pm0,7$	< 1	$11,2\pm1,8$	$62,1\pm3,9$	116±10	$17,4\pm1,4$
AY-S21-1	44±5	24 ± 2	38±6	$6,5\pm0,7$	< 1	$9,8\pm1,7$	$62,1\pm3,8$	144 ± 10	$15,1\pm1,3$
AY-S21-2	42±5	25±2	37±6	$7,0\pm0,7$	< 1	$11,0\pm 1,8$	$63,5\pm3,9$	161±10	$15,4\pm1,3$
AY-S21-3	45±5	27±2	46 ± 6	$7,0\pm0,7$	< 1	$15,1\pm2,0$	$60,8\pm3,10$	190±12	$15,7\pm1,3$
AY-S21-4	42±5	25±2	50±6	$6,0\pm0,7$	$1,6\pm0,3$	$16,0\pm 2,1$	$60,7\pm3,11$	194±12	$16,2\pm1,3$
AY-S21-5	39±4	26 ± 2	52±7	$6,6\pm0,7$	< 1	$18,6\pm3,2$	$60,0\pm3,12$	189±12	$15,6\pm1,4$
AY-S21-6	56±6	27 ± 2	52±7	$6,8\pm0,7$	< 1	$19,0\pm 3,2$	$58,9\pm3,13$	183±12	$14,5\pm1,3$

PR-S21-1	24±3	15±2	41±5	$6,9\pm0,7$	$2,1\pm0,4$	$4,8\pm0,9$	63±4	174±12	18,9±1,4
PR-S21-2	22±3	15±2	41±5	$7,8\pm0,7$	< 1	$4,9\pm0,9$	$62 \pm 3,9$	172±12	$17,4\pm1,4$
PR-S21-3	24 ± 3	13±2	30±5	$7,4\pm0,7$	$1,7\pm0,3$	$3,8\pm0,7$	$61\pm3,9$	165 ± 12	$17,9\pm1,4$
PR-S21-4	26 ± 3	12±2	25±4	$7,0\pm0,7$	$1,4\pm0,3$	$4,0\pm0,7$	$60,3\pm3,8$	158 ± 10	$15,6\pm1,3$
PR-S21-5	29 ± 3	11±2	30±4	$6,0\pm0,7$	< 1	$4,5\pm0,8$	$61,3\pm3,9$	165 ± 12	$17,1\pm1,4$
PR-S21-6	31±3	11±2	23±4	$8,0\pm0,7$	$5,6\pm0,9$	$3,6\pm0,7$	$61,7\pm3,9$	165 ± 12	$20,1\pm1,4$
IR-S21-1	45±5	36 ± 3	54±7	$11,1\pm0,8$	< 1	$9,3\pm1,8$	$81,3\pm4,7$	227 ± 14	$25,2\pm1,6$
IR-S21-2	46 ± 5	33 ± 3	52±7	12±1	$4,6\pm0,8$	$11,4\pm3,8$	$79,6\pm4,6$	233 ± 14	$25,3\pm1,6$
IR-S21-3	46 ± 5	37 ± 3	56±7	$13,4\pm0,8$	< 1	$14,6\pm 4,1$	89±5	229 ± 14	$28,1\pm1,7$
IR-S21-4	51±5	36 ± 3	61±8	$12,5\pm0,8$	< 1	15±4	$85\pm4,9$	228 ± 14	$28,3\pm1,7$
IR-S21-5	44±5	35±3	59±8	$12,4\pm0,8$	$4,2\pm0,8$	14±4	$85,1\pm4,9$	230±14	$28,1\pm1,7$
IR-S21-6	49 ± 5	31±3	57±7	$12\pm0,8$	< 1	$13,1\pm 3,9$	$81,3\pm4,8$	219 ± 14	$28,5\pm1,7$
EM-S21-1	40±4	18 ± 2	31±6	$10,5\pm0,8$	$3,5\pm0,7$	$2,7\pm0,6$	$63,3\pm4,2$	325 ± 16	$19,8\pm1,5$
EM-S21-2	26 ± 3	16 ± 2	25±4	$10,8\pm0,8$	$3,5\pm0,7$	$2,0\pm3,3$	$65,6\pm4,2$	317 ± 16	$19,5\pm1,5$
EM-S21-3	55±6	19±2	35±5	$11,6\pm0,8$	$6,3\pm0,9$	$2,5\pm3,3$	$64,2\pm4,3$	318±16	$18,6\pm1,5$
EM-S21-4	52±5	19±2	34±5	$12,8\pm0,8$	$5,7\pm0,9$	$2,6\pm3,4$	$63,4\pm4,2$	324 ± 16	$20,1\pm1,5$
EM-S21-5	55±6	23±2	39±11	$12,4\pm0,8$	$5,5\pm0,9$	$1,9\pm3,3$	$58,9\pm4,1$	335 ± 16	$20,1\pm1,5$
EM-S21-6	46 ± 5	19±2	30±12	$11,1\pm0,8$	$5,0\pm0,9$	$2,8\pm3,4$	$60,6\pm4,2$	332 ± 16	$21,0\pm1,5$

Образец	Zr, мкг/г	Nb, мкг/г	Мо, мкг/г	Pd мкг/г	Cd мкг/г	Ва, мкг/г	Рь, мкг/г	Th мкг/г	U мкг/г
CH-S21-1	281±14	9,4±0,9	2,1±0,3	0,5±0,2	3,5±0,4	194±18	8,0±1,1	5,1±0,7	1,7±0,4
CH-S21-2	252±14	$9,6\pm0,9$	$1,9\pm0,3$	$1,0\pm0,2$	$3,9\pm0,5$	259±19	$10,0\pm1,1$	$5,2\pm0,8$	$2,1\pm0,4$
CH-S21-3	263±14	$9,9\pm0,9$	$2,0\pm0,3$	$0,6\pm0,2$	$3,1\pm0,4$	206±19	$10,0\pm1,1$	$6,7\pm0,8$	$1,4\pm0,5$
CH-S21-4	261±14	$9,9\pm0,9$	$2,0\pm0,3$	$0,7\pm0,2$	$3,8\pm0,5$	194±19	$8,0\pm1,1$	$6,7\pm0,8$	$2,2\pm0,5$
CH-S21-5	265±14	$9,7\pm1,0$	$2,5\pm0,3$	$0,4\pm0,2$	$3,2\pm0,4$	123±19	$10,0\pm1,1$	$6,3\pm0,8$	$1,6\pm0,5$
CH-S21-6	263 ± 14	$9,2\pm1,0$	$2,0\pm0,3$	$0,6\pm0,2$	$3,8\pm0,5$	123±19	$7,0\pm1,1$	$5,7\pm0,8$	$2,2\pm0,5$
UR-S21-1	177±12	$4,8\pm0,8$	$1,7\pm0,2$	< 0,2	$2,7\pm0,4$	235±18	< 1	$1,9\pm0,7$	$1,4\pm0,4$
UR-S21-2	206±12	$4,8\pm0,8$	$1,8\pm0,3$	$0,3\pm0,2$	$2,9\pm0,4$	206±18	< 1	$1,7\pm0,7$	$0,9\pm0,4$
UR-S21-3	194±12	$4,8\pm0,8$	$1,8\pm0,3$	$0,4\pm0,2$	$3,7\pm0,4$	194±18	< 1	$1,1\pm0,7$	$0,9\pm0,4$
UR-S21-4	242±14	$6,2\pm0,8$	$2,0\pm0,3$	$0,7\pm0,2$	$3,4\pm0,4$	118±19	< 1	$2,4\pm0,8$	$1,9\pm0,5$
UR-S21-5	251±14	$5,0\pm0,8$	$2,4\pm0,3$	$0,2\pm0,2$	$3,8\pm0,4$	159±18	< 1	$1,5\pm0,7$	$1,6\pm0,4$
UR-S21-6	279±14	$4,6\pm0,8$	$2,9\pm0,3$	$0,6\pm0,2$	$3,7\pm0,4$	118 ± 18	< 1	$0,6\pm0,8$	$0,9\pm0,4$
IK-S21-1	305±14	$7,6\pm0,8$	$2,0\pm0,3$	$0,5\pm0,2$	$3,4\pm0,4$	282±17	6±1	$4,6\pm0,7$	$1,6\pm0,4$
IK-S21-2	305±14	$7,5\pm0,8$	$1,9\pm0,3$	$0,4\pm0,2$	$3,8\pm0,4$	229±17	4±1	$3,4\pm0,8$	$1,9\pm0,4$
IK-S21-3	314 ± 14	$7,6\pm0,8$	$2,0\pm0,3$	$0,5\pm0,2$	$3,2\pm0,4$	235±18	5±1	$3,3\pm0,8$	$2,0\pm0,4$
IK-S21-4	330±16	$7,3\pm0,8$	$2,0\pm0,3$	$0,8\pm0,2$	$4,0\pm0,4$	176±18	3±1	$3,2\pm0,8$	$1,4\pm0,4$
IK-S21-5	299±14	$7,5\pm0,8$	$1,5\pm0,3$	$0,6\pm0,2$	$3,7\pm0,4$	235±18	2±1	$3,8\pm0,8$	$1,7\pm0,4$
IK-S21-6	314±14	$7,3\pm0,8$	$2,0\pm0,3$	$0,7\pm0,2$	$3,2\pm0,4$	235±18	3±1	$3,1\pm0,8$	$1,2\pm0,4$
EK-S21-1	144 ± 10	$2,7\pm0,6$	$1,3\pm0,2$	$0,5\pm0,2$	$2,9\pm0,4$	194±16	< 1	$1,1\pm0,6$	$1,3\pm0,3$
EK-S21-2	184 ± 10	$3,0\pm0,7$	$1,4\pm0,2$	$0,3\pm0,2$	$3,3\pm0,4$	218±16	< 1	$1,4\pm0,6$	$1,4\pm0,4$
EK-S21-3	211 ± 12	$3,8\pm0,7$	$1,7\pm0,2$	$0,7\pm0,2$	$3,5\pm0,4$	182 ± 17	< 1	$0,9\pm0,6$	$1,1\pm0,4$
EK-S21-4	184 ± 10	$3,5\pm0,7$	$1,5\pm0,2$	< 0,2	$1,5\pm0,4$	171±16	< 1	$0,7\pm0,6$	$1,3\pm0,4$
EK-S21-5	176±10	$3,0\pm0,7$	$1,2\pm0,2$	$0,3\pm0,2$	$3,6\pm0,4$	147±16	< 1	$1,1\pm0,5$	$1,1\pm0,4$
EK-S21-6	241±12	$3,2\pm0,7$	$1,8\pm0,3$	< 0,2	$2,5\pm0,4$	200±16	< 1	$1,4\pm0,7$	$2,2\pm0,4$
TO-S21-1	241±12	$7,5\pm0,8$	$1,6\pm0,3$	$0,5\pm0,2$	$3,4\pm0,4$	165±17	9±1	$3,9\pm0,7$	$2,3\pm0,4$
TO-S21-2	274±14	$8,1\pm0,8$	$1,6\pm0,3$	< 0,2	$3,7\pm0,4$	188 ± 17	10 ± 1	$4,6\pm0,7$	$1,8\pm0,4$
TO-S21-3	247±12	$7,9\pm0,8$	$1,5\pm0,3$	$0,3\pm0,2$	$3,0\pm0,4$	118 ± 18	10 ± 1	$4,2\pm0,7$	$1,5\pm0,4$
TO-S21-4	252±14	$8,6\pm0,8$	$1,5\pm0,3$	$0,3\pm0,2$	$3,3\pm0,4$	176±18	10 ± 1	$4,6\pm0,8$	$1,5\pm0,4$
TO-S21-5	248±12	$8,1\pm0,8$	$1,4\pm0,3$	$0,7\pm0,2$	$4,2\pm0,4$	118 ± 18	10 ± 1	$5,0\pm0,8$	$1,7\pm0,4$
TO-S21-6	255±14	$8,2\pm0,8$	$1,7\pm0,3$	$0,7\pm0,2$	$4,0\pm0,4$	176±18	10 ± 1	$5,0\pm0,8$	$1,6\pm0,4$
AY-S21-1	122±10	$6,4{\pm}0,8$	$1,7\pm0,2$	$0,5\pm0,2$	$3,4\pm0,4$	235±18	8±1	5,1±0,6	1,6±0,4
AY-S21-2	136±10	$6,4{\pm}0,8$	$2,1\pm0,2$	$0,5\pm0,2$	$3,6\pm0,4$	294±18	10±1	$4,6\pm0,6$	2,4±0,4
AY-S21-3	136±10	$6,4\pm0,8$	$2,4\pm0,2$	$0,2\pm0,2$	$3,1\pm0,4$	294±18	10±1	$4,9\pm0,6$	3,1±0,4
AY-S21-4	138±10	$6,7\pm0,8$	$2,3\pm0,2$	$0,9\pm0,2$	$3,4\pm0,4$	294±18	10±1	$4,1\pm0,7$	2,5±0,4
AY-S21-5	134±10	$6,2\pm0,8$	$2,6\pm0,2$	< 0,2	3,9±0,4	176±18	10±1	4,5±0,7	2,8±0,4
AY-S21-6	132±10	$6,2\pm0,8$	$3,2\pm0,2$	$0,5\pm0,2$	$3,1\pm0,4$	235±18	10±1	$3,8\pm0,7$	$2,1\pm0,4$

PR-S21-1	203±12	$6,9\pm0,8$	$1,7\pm0,3$	$0,5\pm0,2$	$3,2\pm0,4$	200±18	< 1	$3,1\pm0,7$	$1,6\pm0,4$
PR-S21-2	204±12	$7,0\pm0,8$	$1,6\pm0,3$	$0,4\pm0,2$	$3,4\pm0,4$	235±18	< 1	$4,2\pm0,8$	$1,9\pm0,4$
PR-S21-3	181 ± 12	$6,3\pm0,8$	$1,6\pm0,2$	$0,5\pm0,2$	$3,3\pm0,4$	235±18	3±1	$3,6\pm0,7$	$1,3\pm0,4$
PR-S21-4	186 ± 12	$6,5\pm0,8$	$1,4\pm0,2$	$0,4\pm0,2$	$3,3\pm0,4$	235±18	2±1	$3,1\pm0,7$	$1,6\pm0,4$
PR-S21-5	219±12	$6,9\pm0,8$	$1,5\pm0,3$	$0,6\pm0,2$	$3,5\pm0,4$	282 ± 18	3±1	$4,0\pm0,8$	$1,8\pm0,4$
PR-S21-6	264 ± 14	$7,7\pm0,8$	$1,6\pm0,3$	$0,4\pm0,2$	$3,5\pm0,4$	200 ± 18	< 1	$3,6\pm0,8$	$1,4\pm0,4$
IR-S21-1	156 ± 12	$8,0\pm0,9$	$1,3\pm0,3$	$0,8\pm0,2$	$3,6\pm0,4$	94±19	$8,0\pm1,1$	$7,2\pm0,7$	$1,9\pm0,4$
IR-S21-2	171 ± 12	$8,0\pm0,9$	$1,4\pm0,3$	$0,6\pm0,2$	$3,0\pm0,4$	106 ± 19	$7,0\pm1,1$	$5,7\pm0,8$	$1,8\pm0,4$
IR-S21-3	182 ± 12	$8,8\pm1,0$	$1,3\pm0,3$	< 0,2	$2,6\pm0,4$	94±19	$7,0\pm1,2$	$7,6\pm0,8$	$1,9\pm0,4$
IR-S21-4	181 ± 12	$9,1\pm1,0$	$1,4\pm0,3$	$0,6\pm0,2$	$3,4\pm0,4$	53±19	$9,0\pm1,2$	$7,5\pm0,8$	$2,3\pm0,4$
IR-S21-5	186 ± 12	$9,5\pm1,0$	$1,2\pm0,3$	$0,3\pm0,2$	$3,6\pm0,4$	129±19	$9,0\pm1,2$	$7,5\pm0,8$	$2,1\pm0,4$
IR-S21-6	206 ± 12	10 ± 1	$1,2\pm0,3$	$0,4\pm0,2$	$3,4\pm0,4$	53±19	$9,0\pm1,2$	$7,9\pm0,8$	$2,3\pm0,4$
EM-S21-1	152 ± 12	$6,3\pm0,8$	$2,4\pm0,2$	< 0,2	$2,3\pm0,4$	429±19	< 1	$3,2\pm0,8$	$1,9\pm0,4$
EM-S21-2	149 ± 12	$6,3\pm0,8$	$2,0\pm0,2$	$0,6\pm0,2$	$3,2\pm0,4$	453 ± 20	< 1	$2,9\pm0,8$	$1,9\pm0,4$
EM-S21-3	147 ± 12	$6,2\pm0,8$	$3,5\pm0,2$	< 0,2	$2,6\pm0,4$	423 ± 20	< 1	$2,3\pm0,8$	$1,6\pm0,4$
EM-S21-4	163 ± 12	$6,5\pm0,8$	$3,4\pm0,3$	$0,6\pm0,2$	$3,2\pm0,5$	465 ± 20	< 1	$3,3\pm0,8$	$2,2\pm0,4$
EM-S21-5	133 ± 12	$5,9\pm0,8$	$3,4\pm0,2$	$0,3\pm0,2$	$3,2\pm0,4$	394 ± 20	< 1	$2,2\pm0,8$	$2,0\pm0,4$
EM-S21-6	183 ± 12	$6,7\pm0,9$	$3,0\pm0,3$	< 0,2	$3,2\pm0,4$	476 ± 20	< 1	$2,3\pm0,8$	$1,9\pm0,4$

Результаты определения методом РФА элементного состава послойных проб почвы, отобранных в бассейнах трансграничных рек Казахстана осенью 2017 г.

Приложение 28

	K,	грансграни Са,	чных рек каз: Ті,	<u>ахстана ос</u> V,	<u>Стыю 201 </u>	Mn,	Fe,	Co,	Ni,
Образец	%	%	%	мкг/г	мкг/г	%	%	мкг/г	мкг/г
IL-S22-1	1,85±0,47	6,78±0,39	0,338±0,053	90±25	110±13	0,0512±0,0093	2,683±0,056	10±12	25±3
IL-S22-2	$1,90\pm0,47$	$6,67\pm0,35$	$0,341\pm0,053$	70±25	100±13	$0,0571\pm0,0096$	$2,87\pm0,06$	< 4	20±3
IL-S22-3	$1,98\pm0,47$	$6,39\pm0,34$	$0,383\pm0,054$	110±26	120±13	$0,06\pm0,01$	$3,149\pm0,066$	< 4	23±3
IL-S22-4	$2,02\pm0,47$	$6,35\pm0,34$	$0,372\pm0,054$	110±25	90±13	$0,0618\pm0,0099$	$3,106\pm0,064$	< 4	29 ± 3
IL-S22-5	$1,93\pm0,46$	$6,49\pm0,34$	$0,349\pm0,053$	60 ± 26	100 ± 13	$0,0583\pm0,0096$	$2,90\pm0,06$	10±13	28±3
IL-S22-6	$1,91\pm0,47$	$6,26\pm0,38$	$0,349\pm0,053$	60 ± 25	90±13	$0,0608\pm0,0098$	$3,009\pm0,063$	< 4	25±3
TK-S22-1	$2,04\pm0,42$	$8,71\pm0,39$	$0,271\pm0,051$	40±25	160 ± 13	$0,0572\pm0,0095$	$2,48\pm0,05$	10±12	28±3
TK-S22-2	$2,11\pm0,43$	$8,57\pm0,39$	$0,293\pm0,052$	50±25	110±13	$0,08\pm0,01$	$2,664\pm0,054$	< 4	27 ± 3
TK-S22-3	$2,09\pm0,43$	$8,64\pm0,39$	$0,304\pm0,052$	110±25	90±13	$0,07\pm0,01$	$2,684\pm0,054$	< 4	24 ± 3
TK-S22-4	$2,08\pm0,43$	8,57±0,39	$0,297\pm0,051$	90±25	120±13	$0,07\pm0,01$	$2,632\pm0,053$	< 4	24±3
TK-S22-5	$2,16\pm0,43$	$8,64\pm0,39$	$0,301\pm0,051$	80 ± 25	100 ± 13	$0,07\pm0,01$	$2,669\pm0,054$	10±12	25±3
TK-S22-6	$2,14\pm0,43$	$8,07\pm0,38$	$0,319\pm0,052$	120±25	70 ± 13	$0,07\pm0,01$	$3,044\pm0,061$	< 4	25±3
SH-S22-1	$2,25\pm0,49$	$3,66\pm0,32$	$0,330\pm0,051$	90±24	90±13	$0,0504\pm0,0091$	$2,751\pm0,061$	< 4	23±3
SH-S22-2	$2,31\pm0,49$	$3,73\pm0,32$	$0,320\pm0,051$	60 ± 24	120 ± 13	$0,0514\pm0,0091$	$2,784\pm0,061$	< 4	21±3
SH-S22-3	$2,25\pm0,49$	$3,70\pm0,32$	$0,342\pm0,051$	100 ± 24	100 ± 13	$0,0536\pm0,0092$	$2,878\pm0,064$	< 4	17±3
SH-S22-4	$2,16\pm0,48$	$4,06\pm0,29$	$0,352\pm0,051$	120±25	110±13	$0,0601\pm0,0096$	$3,059\pm0,067$	< 4	24 ± 3
SH-S22-5	$2,25\pm0,48$	$3,83\pm0,32$	$0,360\pm0,051$	110 ± 24	100 ± 12	$0,0582\pm0,0094$	$2,983\pm0,066$	< 4	25 ± 3
SH-S22-6	$2,21\pm0,49$	$3,73\pm0,32$	$0,345\pm0,051$	100 ± 24	120 ± 13	$0,0570\pm0,0094$	$2,961\pm0,065$	< 4	26 ± 3
KB-S22-1	$2,15\pm0,47$	$3,86\pm0,29$	$0,377\pm0,052$	180 ± 25	100 ± 13	$0,0678\pm0,0099$	$3,620\pm0,081$	10 ± 14	30 ± 3
KB-S22-2	$2,09\pm0,47$	$4,10\pm0,33$	$0,359\pm0,052$	90 ± 25	130 ± 13	$0,07\pm0,01$	$3,613\pm0,078$	10 ± 14	31 ± 3
KB-S22-3	$2,13\pm0,47$	$4,03\pm0,29$	$0,384\pm0,052$	150 ± 25	110 ± 13	$0,066\pm0,01$	$3,605\pm0,081$	10 ± 14	35 ± 3
KB-S22-4	$2,11\pm0,47$	$4,05\pm0,29$	$0,381\pm0,052$	120 ± 25	120 ± 13	$0,0667\pm0,0099$	$3,628\pm0,078$	< 4	35 ± 3
KB-S22-5	$2,15\pm0,47$	$3,99\pm0,29$	$0,380\pm0,052$	150 ± 25	120 ± 13	$0,07\pm0,01$	$3,62\pm0,08$	10 ± 14	32 ± 3
KB-S22-6	$2,10\pm0,47$	$4,21\pm0,29$	$0,366\pm0,052$	110 ± 25	120 ± 13	$0,07\pm0,01$	$3,601\pm0,079$	< 4	38 ± 3
TA-S22-1	$2,14\pm0,47$	$6,00\pm0,33$	$0,341\pm0,051$	150 ± 25	140 ± 13	$0,084\pm0,011$	$3,417\pm0,071$	10 ± 13	41 ± 3
TA-S22-2	$2,15\pm0,46$	$6,02\pm0,33$	$0,343\pm0,052$	100 ± 24	120 ± 13	$0,083\pm0,011$	$3,427\pm0,071$	10 ± 14	45±3
TA-S22-3	$2,13\pm0,46$	$6,00\pm0,33$	$0,340\pm0,051$	140 ± 25	140 ± 13	$0,084\pm0,011$	$3,472\pm0,073$	< 4	47 ± 3
TA-S22-4	$2,17\pm0,46$	$6,10\pm0,33$	$0,336\pm0,052$	80 ± 25	150 ± 13	$0,087\pm0,011$	$3,533\pm0,073$	< 4	44 ± 3
TA-S22-5	$2,18\pm0,47$	$6,10\pm0,34$	$0,316\pm0,052$	110 ± 25	160 ± 13	$0,082\pm0,011$	$3,37\pm0,07$	10 ± 13	46 ± 3
TA-S22-6	$2,13\pm0,46$	$6,13\pm0,33$	$0,331\pm0,052$	80 ± 25	150 ± 13	$0,086\pm0,011$	$3,454\pm0,071$	< 4	37 ± 3
SD-S22-1	$1,67\pm0,43$	$8,43\pm0,39$	$0,324\pm0,053$	90 ± 26	130 ± 13	$0,0503\pm0,0094$	$2,518\pm0,051$	10 ± 12	32 ± 3
SD-S22-2	$1,65\pm0,43$	$8,64\pm0,39$	$0,327\pm0,053$	90±26	90±13	$0,0500\pm0,0095$	$2,540\pm0,051$	< 4	27±3
SD-S22-3	$1,72\pm0,43$	$8,21\pm0,38$	$0,348\pm0,053$	130 ± 26	110±13	$0,0542\pm0,0097$	$2,784\pm0,057$	10 ± 13	32±3
SD-S22-4	$1,72\pm0,42$	$7,93\pm0,38$	$0,356\pm0,053$	90±26	100 ± 13	$0,0546\pm0,0097$	$2,839\pm0,058$	< 4	32±3
SD-S22-5	$1,69\pm0,43$	$8,71\pm0,39$	$0,347\pm0,054$	110 ± 26	100 ± 13	$0,0532\pm0,0097$	$2,765\pm0,055$	< 4	30±3
SD-S22-6	$1,72\pm0,43$	$8,00\pm0,37$	$0,356\pm0,054$	60±26	100±13	$0,0543\pm0,0096$	2,819±0,056	10±13	36±3

Образец	Cu,	Zn,	Ga,	As,	Br,	Rb,	Sr,	Υ,	Zr,
	МКГ/Г	МКГ/Г 42+12	мкг/г	мкг/г	мкг/г 2.7+2.7	МКГ/Г	мкг/г 224+7	МКГ/Г	МКГ/Г 205 - 8
IL-S22-1	14±2 19±2	42±12	9,9±0,9	8,9±0,9	$3,7\pm3,7$	86±5 90±5	234±7	$27,5\pm3,5$	305±8 288±8
IL-S22-2	19±2 25±2	49±13	11,5±0,9	12,8±0,9	$4,1\pm3,7$	90±5 96±5	234±7	28,0±3,5	288±8 238±7
IL-S22-3		61±13	11,7±0,9	13,8±1,0	$4,1\pm3,8$		231±7	29,4±3,6	
IL-S22-4	25±2	56±13	12,2±0,9	$14,7\pm1,0$	$4,3\pm3,8$	94±5	230±7	28,5±3,6	248±7
IL-S22-5	19±2	47±13	11,4±0,9	$5,1\pm1,0$	$3,9\pm3,7$	89±5	232±7	27,7±3,5	272±8
IL-S22-6	19±2	49±13	$10,2\pm0,9$	$10,7\pm1,0$	3,7±3,7	92±5	233±7	$27,3\pm3,6$	255±7
TK-S22-1	22±2	48±13	$11,1\pm0,9$	$4,9\pm1,0$	12,1±4,1	103±6	311±8	21,9±3,4	190±7
TK-S22-2	25±2	58±13	11±0,9	13±1,4	11,5±4,3	107±6	292±8	23,6±3,8	199±7
TK-S22-3	22±2	50±13	10,5±0,9	12,9±1	12,6±4,2	108±6	297±8	22,4±3,6	196±7
TK-S22-4	24±2	43±13	10,5±0,8	12,4±1	11,9±4,2	106±6	292±8	22,8±3,5	192±7
TK-S22-5	24±2	46±14	11,1±0,9	10±1	12,4±4,2	109±6	289±8	23,2±3,5	204±7
TK-S22-6	26±2	50±13	10,1±0,9	20±1	11,7±4,3	112±6	252±7	25,1±3,6	197±7
SH-S22-1	16±2	47±12	11,3±0,8	< 1	$7,7\pm3,8$	114±6	247±7	25,8±3,5	271±7
SH-S22-2	17±2	48±12	$11,8\pm0,8$	5,2±0,9	$7,9\pm3,8$	112±6	249±7	$27,1\pm3,5$	285±8
SH-S22-3	21±2	50±12	$14\pm0,8$	15±0,9	8,2±3,8	111±6	250±7	$24,8\pm3,6$	281±8
SH-S22-4	24±2	56±13	$12,5\pm0,8$	$7,8\pm1,0$	9,9±3,9	110±6	260±7	$26,3\pm3,6$	262±7
SH-S22-5	21±2	54±13	$13,4\pm0,8$	$9,3\pm0,9$	12±4	112±6	260 ± 7	$26,0\pm3,6$	286 ± 8
SH-S22-6	19±2	55±12	$13,8\pm0,8$	$11,2\pm0,9$	12±4	113±6	257±7	$26,7\pm3,6$	292±8
KB-S22-1	24±2	52±12	$12,9\pm0,8$	$14,1\pm0,9$	$3,5\pm3,6$	99±5	268 ± 8	$22,1\pm3,4$	199±7
KB-S22-2	24±2	48±13	$11,4\pm0,8$	$11,5\pm0,9$	$3,8\pm3,6$	98±5	271 ± 8	$20,8\pm3,3$	188±6
KB-S22-3	25±2	50±13	$13,8\pm0,8$	$16,2\pm0,9$	$3,7\pm3,7$	97±5	273 ± 8	$22,3\pm3,3$	181±6
KB-S22-4	23±2	49±13	$12,1\pm0,8$	$11,6\pm0,9$	$3,6\pm3,6$	98±5	273 ± 8	$20,6\pm3,4$	191±6
KB-S22-5	24±2	52±13	$12,8\pm0,8$	$11,1\pm0,9$	$3,8\pm 3,7$	98±5	272 ± 8	$20,7\pm3,3$	188±6
KB-S22-6	22±2	50±13	$12,3\pm0,8$	$10,3\pm0,9$	$4\pm3,6$	99±5	277 ± 8	$20,6\pm3,4$	194±7
TA-S22-1	29±2	76 ± 13	$10,5\pm0,9$	$11,7\pm1$	$12,1\pm 4,1$	104±6	294 ± 8	$22,4\pm3,4$	146 ± 6
TA-S22-2	31±2	79 ± 13	$12,6\pm0,9$	15±1	$11,7\pm4,1$	105±6	302 ± 8	$23,0\pm3,5$	144 ± 6
TA-S22-3	29±2	66 ± 14	$11,8\pm0,9$	$14,7\pm1$	$12,5\pm4,2$	105±6	306 ± 8	$22,1\pm3,4$	145 ± 6
TA-S22-4	31 ± 2	72 ± 14	$12,7\pm0,9$	11±1	$13,6\pm4,2$	105±6	305 ± 8	$22,8\pm3,5$	147 ± 6
TA-S22-5	29±2	63 ± 14	$12,2\pm0,9$	$13,5\pm1$	$11,4\pm 4,1$	105±6	313±8	$20,9\pm3,5$	148 ± 6
TA-S22-6	30 ± 2	66±14	$11,7\pm0,9$	$12,8\pm1$	$12,9\pm4,2$	104±6	306 ± 8	$23,5\pm3,4$	149±6
SD-S22-1	21±2	46±13	$9,3\pm0,8$	$8,6\pm1,0$	$14,2\pm 4,3$	72±5	513±11	$22,7\pm3,3$	208 ± 8
SD-S22-2	20±2	49±13	$8,4{\pm}0,8$	6±1	$13,6\pm4,3$	73±5	497±11	$22,0\pm3,4$	199±7
SD-S22-3	20 ± 2	46 ± 13	$10,7\pm0,9$	$17,7\pm0,9$	$8,8\pm 4,1$	80 ± 5	440 ± 10	$24,5\pm3,4$	220±8
SD-S22-4	23 ± 2	53 ± 13	$10,1\pm0,9$	13±1	$9,7\pm4,1$	81±5	450 ± 10	$25,6\pm3,5$	211 ± 7
SD-S22-5	20±2	48 ± 13	$9,9{\pm}0,9$	$9,4{\pm}1,0$	5±4	76 ± 5	594 ± 12	$24,8\pm3,4$	213 ± 8
SD-S22-6	21±2	43±13	$10,1\pm0,9$	$10,9\pm1,0$	6,3±3,9	80±5	406±10	25,0±3,5	232±8

Образец	Nb,	Mo,	Pd,	Cd,	Ba,	Pb,	Th,	U,
	мкг/г	мкг/г	мкг/г	мкг/г	мкг/г	мкг/г	мкг/г	мкг/г
IL-S22-1	11,7±2,1	1,8±0,3	$0,7\pm0,2$	3,8±0,5	388±19	11,0±1,2	8,5±1,0	3,0±0,5
IL-S22-2	12,5±2,1	$1,6\pm0,3$	$0,3\pm0,2$	$2,8\pm0,5$	300±20	12,0±1,2	9,3±0,9	$3,4\pm0,5$
IL-S22-3	12,6±2,1	$1,9\pm0,3$	1,0±0,2	$3,6\pm0,5$	270±20	13,0±1,3	9,2±0,9	$3,1\pm0,5$
IL-S22-4	$12,3\pm2,1$	$1,9\pm0,3$	$0,3\pm0,2$	$3,1\pm0,5$	294±20	$14,0\pm1,3$	8,0±0,9	$3,5\pm0,5$
IL-S22-5	$11,9\pm2,1$	$1,6\pm0,3$	$0,2\pm0,2$	$2,2\pm0,4$	329±20	$11,0\pm1,2$	$7,5\pm0,9$	$3,4\pm0,5$
IL-S22-6	$12,6\pm2,1$	$1,8\pm0,3$	$0,9\pm0,2$	$4,1\pm0,5$	282±20	$13,0\pm1,3$	$8,7\pm0,9$	$2,6\pm0,5$
TK-S22-1	$9,8\pm1,9$	$1,6\pm0,3$	$0,4\pm0,2$	$3,1\pm0,5$	441±19	$20,0\pm1,3$	$9,8\pm0,9$	$3,9\pm0,5$
TK-S22-2	11±2	$1,6\pm0,3$	$0,7\pm0,2$	$2,8\pm0,5$	365±19	$22,0\pm1,3$	$10,3\pm0,9$	$3,4\pm0,5$
TK-S22-3	10±2	$1,5\pm0,3$	< 0,1	$3,5\pm0,5$	359±19	$22,0\pm1,3$	$9,2\pm0,9$	$2,9\pm0,5$
TK-S22-4	10±2	$1,5\pm0,3$	$0,6\pm0,2$	$3,7\pm0,5$	394±19	$19,0\pm1,3$	$9,1\pm0,9$	$3,1\pm0,5$
TK-S22-5	11±2	$1,9\pm0,3$	$0,6\pm0,2$	$2,8\pm0,5$	394±19	$21,0\pm1,3$	$10,3\pm0,9$	$2,7\pm0,5$
TK-S22-6	11±2	$1,4\pm0,3$	$0,5\pm0,2$	$2,6\pm0,5$	294 ± 20	$19,0\pm1,3$	$11,2\pm0,9$	$3,6\pm0,5$
SH-S22-1	12±2	$1,9\pm0,3$	$1,2\pm0,2$	$3,8\pm0,5$	388 ± 19	$13,0\pm1,2$	$10,9\pm0,9$	$4,2\pm0,5$
SH-S22-2	12±2	$2,2\pm0,3$	$0,6\pm0,2$	$3,2\pm0,5$	382 ± 19	$15,0\pm1,2$	$11,3\pm0,9$	$3,6\pm0,5$
SH-S22-3	13±2	$1,9\pm0,3$	$0,7\pm0,2$	$3,6\pm0,5$	423±19	$15,0\pm1,2$	$10,3\pm0,9$	$4,2\pm0,5$
SH-S22-4	$12,3\pm2,1$	$1,9\pm0,3$	$0,6\pm0,2$	$2,8\pm0,4$	400 ± 19	$17,0\pm1,3$	$12,1\pm0,9$	$4,6\pm0,5$
SH-S22-5	12±2	$2,1\pm0,3$	$0,9\pm0,2$	$3,4\pm0,5$	400 ± 19	$18,0\pm1,2$	$11,3\pm1,0$	$4,3\pm0,5$
SH-S22-6	13±2	$2,1\pm0,3$	$0,9\pm0,2$	$3,7\pm0,5$	429±19	$16,0\pm1,2$	$10,8\pm1,0$	$4,1\pm0,5$
KB-S22-1	$10\pm1,9$	$2,4\pm0,3$	$0,4\pm0,2$	$2,7\pm0,5$	459±21	$9,0\pm1,2$	$9,1\pm0,9$	$3,2\pm0,5$
KB-S22-2	$9,9\pm1,9$	$2,3\pm0,3$	$0,7\pm0,2$	$2,7\pm0,4$	406 ± 21	$10,0\pm1,2$	$9,2\pm0,9$	$4,1\pm0,5$
KB-S22-3	$10\pm1,9$	$2,3\pm0,3$	$0,4\pm0,2$	$2,7\pm0,4$	465 ± 21	$10,0\pm1,2$	$10,7\pm0,9$	$4,0\pm0,5$
KB-S22-4	$10,4\pm1,9$	$2,3\pm0,3$	$0,3\pm0,2$	$2,7\pm0,4$	482 ± 21	$8,0\pm1,2$	$10,1\pm0,9$	$3,6\pm0,5$
KB-S22-5	$9,9\pm1,9$	$2,3\pm0,3$	$0,2\pm0,2$	$2,4\pm0,4$	476 ± 21	$8,0\pm1,2$	$9,3\pm0,9$	$3,2\pm0,5$
KB-S22-6	$10,1\pm 1,9$	$2,2\pm0,3$	$0,3\pm0,2$	$3,2\pm0,4$	423 ± 20	$10,0\pm1,2$	$10,4\pm0,9$	$3,5\pm0,5$
TA-S22-1	$10,3\pm1,9$	$1,4\pm0,3$	$0,2\pm0,2$	$3,3\pm0,5$	282 ± 19	$21,0\pm1,3$	$9,3\pm0,9$	$2,3\pm0,4$
TA-S22-2	$10,1\pm1,9$	$1,5\pm0,3$	$0,6\pm0,2$	$3,7\pm0,5$	300±19	$20,0\pm1,3$	$9,3\pm0,9$	$3,4\pm0,4$
TA-S22-3	$10,1\pm1,9$	$1,8\pm0,3$	$0,7\pm0,2$	$3,7\pm0,5$	253±19	$17,0\pm1,3$	$8,8\pm0,9$	$2,3\pm0,4$
TA-S22-4	$10,2\pm1,9$	$1,2\pm0,3$	$1,0\pm0,2$	$3,3\pm0,5$	265 ± 19	$21,0\pm1,3$	$10,1\pm0,9$	$3,5\pm0,4$
TA-S22-5	$9,9{\pm}1,9$	$1,7\pm0,3$	$0,7\pm0,2$	$3,6\pm0,5$	318 ± 19	$19,0\pm1,3$	$7,9\pm0,9$	$2,9\pm0,4$
TA-S22-6	$9,8\pm1,9$	$1,4\pm0,3$	< 0,1	$2,8\pm0,4$	394 ± 20	$19,0\pm1,3$	$8,7\pm0,9$	$3,3\pm0,4$
SD-S22-1	10 ± 2	$2,0\pm0,3$	$0,5\pm0,2$	$2,8\pm0,5$	300±19	$10,0\pm1,3$	$6,9\pm1,0$	$3,9\pm0,5$
SD-S22-2	10 ± 2	$1,9\pm0,3$	$0,2\pm0,2$	$2,7\pm0,5$	447 ± 20	$11,0\pm1,3$	$7,6\pm1,0$	$3,8\pm0,5$
SD-S22-3	11±2	$2,9\pm0,3$	$0,8\pm0,2$	$3,5\pm0,5$	288±19	$9,0\pm1,3$	$8,9\pm1,0$	$3,6\pm0,5$
SD-S22-4	11±2	$3,0\pm0,3$	<0,1	2,5±0,4	335±21	$7,0\pm1,3$	$8,9\pm1,0$	$3,8\pm0,5$
SD-S22-5	$10,7\pm2,1$	$3,6\pm0,3$	$0,7\pm0,2$	$2,8\pm0,5$	329±20	$6,0\pm1,3$	$9,0\pm1,1$	$6,8\pm0,5$
SD-S22-6	11±2	$3,4\pm0,3$	$0,9\pm0,2$	$3,7\pm0,5$	323±19	$9,0\pm1,3$	$8,7\pm1,0$	$7,0\pm0,5$

Результаты определения методом РФА элементного состава послойных проб почвы, отобранных в бассейне трансграничной реки Урал осенью 2017 г.

Образец	K,	Ca,	Ti,	V,	Cr,	Mn,	Fe,	Co,
-	%	%	%	$MK\Gamma/\Gamma$	$MK\Gamma/\Gamma$	%	%	$MK\Gamma/\Gamma$
UR-S22-A1	$1,81\pm0,46$	$1,29\pm0,02$	$0,321\pm0,046$	90 ± 22	370 ± 13	$0,0600\pm0,0089$	$2,820\pm0,065$	< 4
UR-S22-A2	$1,82\pm0,47$	$1,09\pm0,02$	$0,341\pm0,047$	110 ± 22	370 ± 13	$0,0606\pm0,0089$	$2,817\pm0,066$	< 4
UR-S22-A3	$1,56\pm0,48$	$0,77\pm0,02$	$0,256\pm0,044$	70 ± 21	360 ± 13	$0,0510\pm0,0083$	$2,047\pm0,048$	$13\pm 9,6$
UR-S22-A4	$1,50\pm0,48$	$0,69\pm0,02$	$0,242\pm0,044$	60 ± 21	260 ± 12	$0,0572\pm0,0085$	$1,881\pm0,043$	< 4
UR-S22-A5	$1,60\pm0,48$	$0,66\pm0,02$	$0,261\pm0,045$	70 ± 22	340 ± 13	$0,0502\pm0,0085$	$2,140\pm0,049$	< 4
UR-S22-A6	$1,88\pm0,47$	$0,87\pm0,02$	$0,387\pm0,049$	120 ± 23	340 ± 13	$0,0571\pm0,0091$	$3,143\pm0,073$	10 ± 12
UR-S22-A7	$1,90\pm0,47$	$1,09\pm0,02$	$0,41\pm0,05$	100 ± 23	340 ± 13	$0,0608\pm0,0094$	$3,381\pm0,081$	10 ± 13
UR-S22-A8	$1,75\pm0,47$	$1,48\pm0,02$	$0,40\pm0,05$	100 ± 23	500 ± 14	$0,0722\pm0,0099$	$2,928\pm0,069$	< 4
UR-S22-A9	$1,68\pm0,47$	$3,48\pm0,03$	$0,395\pm0,051$	110 ± 24	410 ± 14	$0,08\pm0,01$	$2,850\pm0,064$	10 ± 12
UR-S22-A10	$1,48\pm0,42$	$5,24\pm0,03$	$0,410\pm0,053$	110±25	390 ± 14	$0,08\pm0,01$	$3,007\pm0,064$	10 ± 13
UR-S22-A11	$1,43\pm0,41$	$4,97\pm0,03$	$0,366\pm0,051$	60±24	480 ± 14	$0,0610\pm0,0095$	$2,723\pm0,058$	10 ± 12
UR-S22-B1	$2,11\pm0,47$	$1,11\pm0,02$	$0,41\pm0,05$	100 ± 23	300 ± 13	$0,0706\pm0,0097$	$3,731\pm0,089$	< 4
UR-S22-B2	$2,12\pm0,47$	$1,28\pm0,02$	$0,41\pm0,05$	120±23	280 ± 13	$0,0698\pm0,0096$	$3,764\pm0,089$	10 ± 13
UR-S22-B3	$1,99\pm0,47$	$2,21\pm0,02$	$0,411\pm0,051$	110±23	380 ± 13	$0,0678\pm0,0098$	$3,435\pm0,077$	10±13
UR-S22-B4	$1,68\pm0,45$	$4,34\pm0,03$	$0,392\pm0,051$	80±24	420 ± 14	$0,0623\pm0,0095$	$2,923\pm0,062$	20±12
UR-S22-B5	$1,43\pm0,45$	$4,40\pm0,03$	$0,35\pm0,05$	100 ± 23	610±14	$0,0562\pm0,0093$	$2,560\pm0,055$	10±11
UR-S22-B6	$1,32\pm0,45$	$4,42\pm0,03$	$0,334\pm0,049$	60 ± 23	750±15	$0,0511\pm0,0092$	$2,371\pm0,051$	10±11
UR-S22-B7	$1,31\pm0,45$	$3,94\pm0,03$	$0,311\pm0,047$	60 ± 23	710±15	$0,0530\pm0,0091$	$2,268\pm0,048$	< 4
UR-S22-B8	$1,38\pm0,45$	$4,48\pm0,03$	$0,290\pm0,047$	90±23	380 ± 13	$0,0556\pm0,0091$	$2,470\pm0,053$	10±11
UR-S22-B9	$1,41\pm0,45$	$4,21\pm0,03$	$0,275\pm0,046$	100 ± 22	260 ± 13	$0,0570\pm0,0089$	$2,592\pm0,054$	10±11
UR-S22-B10	$1,35\pm0,44$	$3,78\pm0,03$	$0,259\pm0,045$	100 ± 22	390±13	$0,0542\pm0,0088$	$2,483\pm0,054$	< 4
UR-S22-B11	$1,39\pm0,44$	$4,36\pm0,03$	$0,305\pm0,048$	80 ± 23	330 ± 13	$0,0731\pm0,0096$	$2,712\pm0,058$	10±12
UR-S22-C1	$1,90\pm0,48$	$1,12\pm0,02$	$0,41\pm0,05$	100 ± 23	400 ± 14	$0,0631\pm0,0094$	$3,01\pm0,07$	10±12
UR-S22-C2	$1,88\pm0,48$	$0,97\pm0,02$	$0,424\pm0,051$	80 ± 23	440 ± 13	$0,0638\pm0,0094$	$2,942\pm0,069$	< 4
UR-S22-C3	$1,84\pm0,48$	$0,86\pm0,02$	$0,423\pm0,051$	0 ± 23	500±14	$0,0647\pm0,0095$	$2,97\pm0,07$	< 4
UR-S22-C4	$1,85\pm0,48$	$2,03\pm0,03$	$0,393\pm0,051$	60±24	540±14	$0,0642\pm0,0097$	$2,929\pm0,067$	10±12
UR-S22-C5	$1,75\pm0,47$	$2,65\pm0,03$	$0,404\pm0,051$	140 ± 24	500±14	$0,0576\pm0,0093$	$2,762\pm0,061$	10±12
UR-S22-C6	$1,78\pm0,47$	$2,66\pm0,03$	$0,404\pm0,051$	90±24	400 ± 14	$0,0642\pm0,0095$	$2,935\pm0,065$	10±12
UR-S22-C7	$1,57\pm0,45$	$5,35\pm0,03$	$0,389\pm0,052$	100±24	520±14	$0,0565\pm0,0095$	$2,619\pm0,055$	10±12
UR-S22-C8	$1,47\pm0,45$	$6,53\pm0,03$	$0,374\pm0,052$	80±25	490±14	$0,0582\pm0,0096$	$2,531\pm0,052$	10±12
UR-S22-C9	$1,37\pm0,40$	$8,35\pm0,04$	$0,331\pm0,051$	70±24	450±14	$0,0588\pm0,0096$	$2,368\pm0,048$	20±11
UR-S22-C10	$1,35\pm0,40$	$7,78\pm0,04$	$0,341\pm0,051$	100±24	470 ± 14	$0,0560\pm0,0095$	$2,314\pm0,048$	< 4
UR-S22-C11	$1,35\pm0,45$	$6,28\pm0,03$	$0,352\pm0,051$	70 ± 24	510±14	$0,0582\pm0,0095$	$2,293\pm0,049$	10 ± 11
UR-S22-D1	1,92±0,47	$0,91\pm0,02$	$0,415\pm0,049$	100 ± 23	380 ± 13	$0,0507\pm0,0087$	3,130±0,069	< 4
UR-S22-D2	1,87±0,47	$0,88\pm0,02$	$0,41\pm0,05$	120±23	410±13	$0,0592\pm0,0091$	$3,094\pm0,073$	< 4
UR-S22-D3	1,87±0,48	$0,84\pm0,02$	$0,42\pm0,05$	80 ± 23	470±13	$0,0534\pm0,0089$	$2,860\pm0,068$	< 4
UR-S22-D4	1,87±0,48	$0,79\pm0,02$	$0,42\pm0,05$	120±23	530±14	$0,0401\pm0,0084$	$2,728\pm0,063$	< 4
UR-S22-D5	1,87±0,49	$0,74\pm0,02$	$0,437\pm0,051$	80±23	540±14	$0,0518\pm0,0088$	2,511±0,057	10±11

UR-S22-D6	$1,78\pm0,49$	$0,70\pm0,02$	$0,454\pm0,052$	100 ± 24	530±14	$0,0354\pm0,0082$	$2,320\pm0,053$	< 4	
UR-S22-D7	$1,81\pm0,49$	$0,64\pm0,02$	$0,440\pm0,051$	100±24	550 ± 14	$0,0466\pm0,0086$	$2,417\pm0,057$	< 4	
UR-S22-D8	$1,84\pm0,48$	$0,67\pm0,02$	$0,440\pm0,051$	100±24	480 ± 13	$0,0615\pm0,0095$	$2,917\pm0,068$	10±12	
UR-S22-D9	$1,72\pm0,49$	$0,64\pm0,02$	$0,386\pm0,049$	110 ± 23	530±14	$0,0466\pm0,0086$	$2,620\pm0,065$	10 ± 11	
UR-S22-D10	$1,73\pm0,49$	$0,59\pm0,02$	$0,40\pm0,05$	80 ± 23	560 ± 14	$0,0413\pm0,0087$	$2,739\pm0,064$	10 ± 11	
UR-S22-D11	$1,66\pm0,48$	$0,61\pm0,02$	$0,41\pm0,05$	80 ± 23	630 ± 14	$0,0488\pm0,0089$	$2,664\pm0,064$	< 4	

	NT: - /	Cu,	Zn,	Ga,	As,	Br,	Rb,	Sr,	Υ,
Образец	Ni, мкг/г	$MK\Gamma/\Gamma$							
UR-S22-A1	72±27	28±16	71±13	7,9±0,7	< 1	7,7±3,4	59,9±3,9	129±5	16,1±2,7
UR-S22-A2	67±27	27 ± 16	62±12	$8,5\pm0,7$	$2,3\pm0,8$	$6,6\pm3,3$	$59,6\pm3,9$	124 ± 5	$16,5\pm2,7$
UR-S22-A3	49±26	21 ± 15	26 ± 11	$5,6\pm0,7$	< 1	$4,7\pm3,1$	$42,6\pm3,3$	100±4	$12\pm 2,3$
UR-S22-A4	47 ± 26	17 ± 15	30 ± 10	$3,7\pm0,7$	< 1	4 ± 3	$40\pm 3,2$	93±4	$10,6\pm2,2$
UR-S22-A5	56±26	23 ± 15	34 ± 11	$5,7\pm0,7$	< 1	$4,8\pm3,1$	$48,9\pm3,5$	106±4	$14,2\pm2,4$
UR-S22-A6	74 ± 28	34 ± 17	61±13	$9,6\pm0,8$	< 1	$6,4\pm3,4$	$71,9\pm4,3$	133 ± 5	21±3
UR-S22-A7	75±29	40 ± 17	73 ± 13	$10,9\pm0,8$	$1,9\pm0,9$	$7,6\pm3,5$	$76,3\pm4,5$	145 ± 5	$21,2\pm 3,1$
UR-S22-A8	87 ± 29	32 ± 17	59±13	$8,4\pm0,8$	$1,8\pm0,9$	$8,1\pm3,5$	$66,8\pm4,2$	158±6	22±3
UR-S22-A9	82±29	25 ± 17	44 ± 12	$8,1\pm0,8$	$11,7\pm0,8$	$7,2\pm3,6$	$61,3\pm4,2$	198±6	20±3
UR-S22-A10	80±30	23 ± 17	35 ± 12	$9,0\pm0,8$	$9,0\pm0,9$	$5,3\pm3,7$	$53\pm4,1$	283 ± 8	$23,6\pm3,1$
UR-S22-A11	78 ± 29	21 ± 16	32 ± 11	$8,5\pm0,8$	$4,5\pm0,8$	$4,9\pm3,4$	$48,7\pm3,9$	242 ± 7	$17,4\pm2,8$
UR-S22-B1	87 ± 29	38 ± 17	76 ± 13	$10,4\pm0,8$	< 1	$10,1\pm3,6$	$84,8\pm4,6$	125±5	$23,4\pm3,1$
UR-S22-B2	89±29	35 ± 17	72 ± 13	$11,9\pm0,8$	$7,8\pm0,9$	$9,9\pm3,7$	$84,2\pm4,6$	131±5	$22,5\pm3,2$
UR-S22-B3	81±29	33 ± 17	62±13	$10,8\pm0,8$	$14,3\pm0,8$	$9,5\pm3,7$	$75,7\pm4,5$	150±5	$22,1\pm3,2$
UR-S22-B4	79 ± 29	24 ± 17	45±12	$8,4\pm0,8$	$8,6\pm0,9$	$8,8\pm3,7$	$61,8\pm4,2$	187±6	22±3
UR-S22-B5	75±29	20±16	27±12	$7,0\pm0,8$	$5,9\pm0,8$	$5,1\pm3,4$	$48,4\pm3,8$	174 ± 6	$18,7\pm2,8$
UR-S22-B6	77 ± 29	17±16	28 ± 11	$6,5\pm0,8$	$2,4\pm0,8$	$5,2\pm3,4$	$43,2\pm3,6$	175±6	$16\pm 2,7$
UR-S22-B7	68 ± 28	17 ± 15	20 ± 10	$5,5\pm0,7$	< 1	$3,9\pm3,3$	$39,5\pm3,3$	142 ± 5	$13\pm 2,5$
UR-S22-B8	71±28	21±16	26±11	$7,1\pm0,7$	$7\pm0,8$	$4,5\pm3,3$	$45,5\pm3,6$	154 ± 5	$14,2\pm2,6$
UR-S22-B9	70 ± 28	19±16	32 ± 11	$6,6\pm0,7$	$3,9\pm0,8$	$3,4\pm3,2$	$48,3\pm3,6$	148 ± 5	$13,3\pm2,6$
UR-S22-B10	68 ± 27	21 ± 15	30 ± 10	$6,7\pm0,7$	$5,6\pm0,8$	$4\pm 3,2$	$43,1\pm3,4$	135±5	$12,5\pm2,5$
UR-S22-B11	77 ± 28	22±16	33±11	$7,0\pm0,7$	$8,2\pm0,8$	$4,8\pm3,4$	$49,6\pm3,7$	157±5	$15,8\pm2,6$
UR-S22-C1	71±28	26±16	46±12	$8,8{\pm}0,8$	$2,1\pm0,9$	$5,9\pm3,4$	$67,3\pm4,2$	146 ± 5	20±3
UR-S22-C2	75±29	25 ± 17	30±12	$8,5\pm0,8$	$7,8\pm0,8$	$6,6\pm3,5$	$65,7\pm4,2$	142 ± 5	22±3
UR-S22-C3	74±29	25±17	36±12	$8,5\pm0,8$	$3,0\pm0,8$	$7,4\pm3,5$	$66,3\pm4,2$	142 ± 5	20±3
UR-S22-C4	80 ± 29	23±16	42 ± 12	$8,9\pm0,8$	$6,7\pm0,8$	$10,2\pm3,7$	$66,8\pm4,3$	153±5	$20,8\pm3,1$
UR-S22-C5	70±29	22 ± 17	35±12	$7,9\pm0,8$	< 1	$10,3\pm3,7$	$63,6\pm4,2$	164 ± 6	19±3
UR-S22-C6	75±29	24 ± 17	42±12	$7,6\pm0,8$	$2,9\pm0,9$	$10,3\pm3,7$	$64,9\pm4,2$	168 ± 6	21±3
UR-S22-C7	65±29	21 ± 17	32±12	$8,3\pm0,8$	$6,5\pm0,9$	$10,8\pm3,8$	$57,1\pm4,1$	220±7	19±3
UR-S22-C8	67±29	19±17	28±12	$6,7\pm0,8$	$3,8\pm0,9$	$11,3\pm3,9$	$53,6\pm4,1$	263 ± 7	20±3
UR-S22-C9	70 ± 30	18 ± 17	34 ± 11	$6,9\pm0,8$	$1,5\pm0,9$	$10,5\pm3,9$	48±4	321±8	$17,6\pm2,9$
UR-S22-C10	68±29	17±17	27 ± 11	$6,7\pm0,8$	$6,7\pm0,9$	$9,6\pm3,8$	47±4	327 ± 8	$17,9\pm2,9$
UR-S22-C11	75±29	19±16	26 ± 11	$6,6\pm0,8$	$4,1\pm0,9$	$7,4\pm3,6$	$47,6\pm3,9$	309 ± 8	$17,7\pm2,9$
UR-S22-D1	72 ± 28	39±17	69±13	$10,1\pm0,8$	$1,3\pm0,8$	$5,8\pm3,3$	$73,1\pm4,3$	140 ± 5	22±3
UR-S22-D2	66 ± 28	37 ± 17	66±12	$9,5\pm0,8$	$1,1\pm0,8$	$5,4\pm3,3$	$71\pm4,3$	142 ± 5	22 ± 3
UR-S22-D3	69 ± 28	36 ± 17	50±12	$10,3\pm0,8$	$9,0\pm0,8$	$5,7\pm3,4$	$70,3\pm 4,3$	146 ± 5	21±3
UR-S22-D4	60 ± 27	33 ± 16	49 ± 12	$8,8 \pm 0,8$	$3,1\pm0,8$	$5,3\pm3,3$	$68,2\pm4,2$	144 ± 5	20±3
UR-S22-D5	58 ± 27	34 ± 17	40 ± 11	$8,5\pm0,7$	$6,0\pm0,8$	$4,7\pm3,3$	$64,7\pm4,1$	146 ± 5	22±3
UR-S22-D6	56±27	32±16	36 ± 11	$8,4\pm0,7$	$1,0\pm0,8$	$4,6\pm3,3$	63±4	144±5	20±3

UR-S22-D7	54±27	26±16	27±11	$7,2\pm0,8$	< 1	4,1±3,3	62±4	143±5	20±3
UR-S22-D8	68 ± 28	23±16	42 ± 11	$9,2\pm0,8$	$4,6\pm0,8$	$5\pm 3,4$	$64 \pm 4,1$	137 ± 5	21±3
UR-S22-D9	69 ± 28	21±16	38 ± 11	$8,0\pm0,8$	$3,7\pm0,8$	$4,7\pm3,3$	59±4	135 ± 5	$20,1\pm2,9$
UR-S22-D10	73 ± 28	21±16	36 ± 11	$8,3\pm0,7$	$3,1\pm0,8$	$4,8\pm3,3$	$58,2\pm3,9$	128 ± 5	$19,4\pm2,9$
UR-S22-D11	73 ± 28	22±16	33 ± 11	$8,2\pm0,7$	$3,8\pm0,8$	$4,7\pm3,3$	$56,7\pm3,9$	128±5	$19,3\pm2,9$

Образец	Zr,	Nb,	Mo,	Pd,	Cd,	Ba,	Pb,	Th,	U,
	мкг/г	мкг/г	мкг/г	мкг/г	мкг/г	мкг/г	мкг/г	мкг/г	мкг/г
UR-S22-A1	193±6	$6,7\pm1,6$	$1,4\pm0,3$	$0,6\pm0,2$	$3,7\pm0,4$	171±17	$8,0\pm1,1$	$3,4\pm0,7$	1,6±0,4
UR-S22-A2	194±6	$6,5\pm1,6$	$1,4\pm0,3$	$0,8\pm0,2$	$3,6\pm0,4$	118±18	$10,0\pm 1,1$	$4,2\pm0,7$	$1,7\pm0,4$
UR-S22-A3	126±5	$4,5\pm1,4$	$1,3\pm0,2$	$0,8\pm0,2$	$3,5\pm0,4$	159±17	< 1	$2,6\pm0,6$	$1,4\pm0,4$
UR-S22-A4	104 ± 4	$4,1\pm1,3$	< 1	< 0,1	$3,8\pm0,4$	223 ± 17	< 1	$1,6\pm0,6$	$1,1\pm0,4$
UR-S22-A5	139±5	$4,7\pm1,4$	$1,3\pm0,2$	$0,5\pm0,2$	$3,3\pm0,4$	235 ± 18	2±1	$3,2\pm0,6$	$1,3\pm0,4$
UR-S22-A6	225±6	$7,6\pm1,7$	$1,6\pm0,3$	< 0,1	$1,7\pm0,4$	165 ± 18	$8,0\pm1,1$	$4,7\pm0,8$	$2,2\pm0,4$
UR-S22-A7	255±7	$8,5\pm1,8$	$1,3\pm0,3$	$0,1\pm0,2$	$3,2\pm0,4$	135±18	$10,0\pm 1,1$	$6,0\pm0,8$	$3,2\pm0,4$
UR-S22-A8	285 ± 7	$8,3\pm1,8$	$1,9\pm0,3$	$0,1\pm0,2$	$3,5\pm0,4$	100 ± 18	$9,0\pm1,1$	$4,8\pm0,8$	$1,7\pm0,5$
UR-S22-A9	298 ± 8	$8,9\pm1,8$	$1,3\pm0,3$	$0,4\pm0,2$	$3,3\pm0,4$	135±19	$6,0\pm1,1$	$3,2\pm0,9$	$2,3\pm0,5$
UR-S22-A10	310 ± 8	$9,2\pm1,9$	$1,5\pm0,3$	$0,3\pm0,2$	$3,5\pm0,4$	123±19	$5,0\pm1,2$	$4,6\pm1,0$	$2,0\pm0,5$
UR-S22-A11	210±6	$7,2\pm1,7$	$1,3\pm0,3$	$0,4\pm0,2$	$3,0\pm0,4$	135±19	$2,0\pm1,1$	$4,0\pm0,8$	$2,8\pm0,4$
UR-S22-B1	215±6	$9,4\pm1,8$	$1,3\pm0,3$	$0,4\pm0,2$	$3,5\pm0,4$	112±19	$12,0\pm1,1$	$5,5\pm0,8$	$2,0\pm0,4$
UR-S22-B2	222±6	$9,3\pm1,8$	$1,2\pm0,3$	< 0,1	$2,9\pm0,4$	106 ± 18	$12,0\pm1,1$	$6,0\pm0,8$	$2,1\pm0,4$
UR-S22-B3	245 ± 7	$9,1\pm1,8$	$1,1\pm0,3$	$0,6\pm0,2$	$3,9\pm0,4$	106 ± 18	$12,0\pm1,2$	$5,3\pm0,8$	$1,7\pm0,4$
UR-S22-B4	278 ± 7	$8,3\pm1,8$	$1,3\pm0,3$	$0,4\pm0,2$	$3,4\pm0,4$	106±19	$6,0\pm1,1$	$5,3\pm0,9$	$1,5\pm0,5$
UR-S22-B5	265 ± 7	$7,2\pm1,7$	$1,0\pm0,3$	< 0,1	$2,1\pm0,4$	118 ± 18	$2,0\pm1,1$	$4,1\pm0,8$	$2,3\pm0,4$
UR-S22-B6	249 ± 7	$6,6\pm1,7$	$1,8\pm0,3$	$0,8\pm0,2$	$4,4\pm0,5$	129±18	$1,0\pm 1,1$	$3,7\pm0,8$	$2,1\pm0,4$
UR-S22-B7	211±6	$5,2\pm1,5$	< 1	$0,4\pm0,2$	$3,2\pm0,4$	176 ± 18	< 1	$2,4\pm0,7$	$1,9\pm0,4$
UR-S22-B8	135 ± 5	$5,6\pm1,6$	< 1	$0,8\pm0,2$	$4,0\pm0,4$	129±18	< 1	$2,7\pm0,7$	$1,0\pm0,4$
UR-S22-B9	100 ± 4	$5,2\pm1,5$	$1,0\pm0,2$	$0,8\pm0,2$	$3,7\pm0,4$	65±18	< 1	$3,5\pm0,7$	$1,5\pm0,4$
UR-S22-B10	91±4	$4,8\pm1,5$	$1,0\pm0,2$	$0,2\pm0,2$	$3,5\pm0,4$	118 ± 18	< 1	$3,4\pm0,6$	$1,5\pm0,4$
UR-S22-B11	101±5	$5,4\pm1,6$	$1,2\pm0,2$	$0,7\pm0,2$	$3,6\pm0,4$	112±19	$1,0\pm 1,1$	$3,7\pm0,7$	$1,5\pm0,4$
UR-S22-C1	307 ± 8	$8,2\pm1,7$	$1,6\pm0,3$	$0,2\pm0,2$	$3,1\pm0,4$	200±18	$5,0\pm1,1$	$4,0\pm0,8$	$1,2\pm0,5$
UR-S22-C2	327 ± 8	$8,5\pm1,8$	$1,6\pm0,3$	< 0,1	$3,5\pm0,4$	147±19	$4,0\pm1,1$	$5,8\pm0,8$	$2,1\pm0,5$
UR-S22-C3	313 ± 8	$8,7\pm1,8$	$1,5\pm0,3$	< 0,1	$3,0\pm0,4$	94±18	$5,0\pm1,1$	$3,6\pm0,8$	$2,0\pm0,5$
UR-S22-C4	320 ± 8	$8,4\pm1,8$	$1,5\pm0,3$	$0,4\pm0,2$	$2,5\pm0,4$	123±19	$4,0\pm1,1$	$4,6\pm0,9$	$2,1\pm0,5$
UR-S22-C5	307 ± 8	$8,3\pm1,8$	$1,7\pm0,3$	$0,9\pm0,2$	$3,7\pm0,4$	265±19	$5,0\pm1,1$	$3,5\pm0,8$	$0,9\pm0,5$
UR-S22-C6	309 ± 8	$8,6\pm1,8$	$1,4\pm0,3$	$1,0\pm0,2$	$4,1\pm0,5$	171±19	$5,0\pm1,1$	$3,9\pm0,9$	$1,3\pm0,5$
UR-S22-C7	285 ± 7	$7,8\pm1,8$	$1,2\pm0,3$	$0,7\pm0,2$	$3,1\pm0,5$	129±19	$5,0\pm1,1$	$4,5\pm0,9$	$2,1\pm0,5$
UR-S22-C8	275±7	$7,5\pm1,8$	$1,2\pm0,3$	$0,2\pm0,2$	$3,3\pm0,4$	188±19	$5,0\pm1,1$	$3,8\pm0,9$	$2,4\pm0,5$
UR-S22-C9	261 ± 7	$7,1\pm1,8$	$1,2\pm0,3$	$0,3\pm0,2$	$3,4\pm0,4$	165±19	$3,0\pm1,2$	$3,5\pm0,9$	$2,5\pm0,5$
UR-S22-C10	276 ± 8	$6,8\pm1,7$	$1,4\pm0,3$	$0,9\pm0,2$	$3,6\pm0,5$	212±19	$3,0\pm1,1$	$3,3\pm0,9$	$2,0\pm0,5$
UR-S22-C11	296 ± 8	$7,7\pm1,7$	$1,5\pm0,3$	$0,6\pm0,2$	$2,7\pm0,4$	212±19	$2,0\pm1,1$	$3,2\pm0,9$	$1,7\pm0,5$
UR-S22-D1	271±7	$8,4\pm1,7$	$1,5\pm0,3$	< 0,1	$2,5\pm0,4$	171±18	$8,0\pm1,1$	$5,5\pm0,8$	$2,7\pm0,4$
UR-S22-D2	274±7	$8,3\pm1,8$	$1,0\pm0,3$	$0,6\pm0,2$	$3,5\pm0,4$	171±18	$6,0\pm1,1$	$4,1\pm0,8$	$2,5\pm0,4$
UR-S22-D3	294±7	$8,9\pm1,8$	$1,7\pm0,3$	$0,8\pm0,2$	$3,9\pm0,4$	147±18	$7,0\pm1,1$	$4,8\pm0,8$	$2,1\pm0,5$
UR-S22-D4	311±8	$9,1\pm1,8$	$1,8\pm0,3$	$1,0\pm0,2$	$3,5\pm0,4$	206±18	$6,0\pm1,1$	5,0±0,8	$3,0\pm0,5$
UR-S22-D5	331±8	$9,2\pm1,8$	$1,7\pm0,3$	$0,5\pm0,2$	$3,3\pm0,4$	200±18	$4,0\pm1,1$	$5,0\pm0,8$	$2,1\pm0,5$
UR-S22-D6	345±8	9±1,8	$1,5\pm0,3$	$0,7\pm0,2$	$3,1\pm0,4$	188±18	< 1	$3,4\pm0,8$	$1,8\pm0,5$
		*							

UR-S22-D7	343±8	9.4±1.8	1.5±0.3	1.0±0.2	4.3±0.4	247±18	5.0±1.1	4.2±0.8	2.3±0.5
UR-S22-D8	331±8	8.5 ± 1.8	1.8 ± 0.3	0.5 ± 0.2	3.3 ± 0.4	218±19	6.0 ± 1.1	4.7 ± 0.8	1.9 ± 0.5
UR-S22-D9	325±8	8±1.7	1.6 ± 0.3	0.6 ± 0.2	3.2 ± 0.4	159±19	5.0 ± 1.1	2.8 ± 0.8	1.5 ± 0.5
UR-S22-D10	315±8	7.4 ± 1.7	1.4 ± 0.3	0.3 ± 0.2	2.9 ± 0.4	112±19	3.0 ± 1.1	3.8 ± 0.8	1.6 ± 0.5
UR-S22-D11	303±8	7,7 \pm 1,7	$1,6\pm0.3$	0.6 ± 0.2	3.8 ± 0.4	147±19	< 1	3.0 ± 0.8	1.1 ± 0.5