МИНИСТЕРСТВО ЭНЕРГЕТИКИ РЕСПУБЛИКИ КАЗАХСТАН

РЕСПУБЛИКАНСКОЕ ГОСУДАРСТВЕННОЕ ПРЕДПРИЯТИЕ "КАЗГИДРОМЕТ"

ИНФОРМАЦИОННЫЙ БЮЛЛЕТЕНЬ О ТРАНСГРАНИЧНОМ ПЕРЕНОСЕ ТОКСИЧНЫХ КОМПОНЕНТОВ В ОБЪЕКТАХ ОКРУЖАЮЩЕЙ СРЕДЫ

за 2018 год

Астана 2018

	СОДЕРЖАНИЕ						
1	Состояние качества вод трансграничных рек Республики	3					
	Казахстан по гидрохимическим показателям за 2018 год						
2	Результаты радионуклидного и макро-микроэлементного анализа						
	компонентов окружающей среды за 2018 год						
3	Основные результаты и выводы						
4	Приложение	36					

1. Состояние качества вод трансграничных рек Республики Казахстан по гидрохимическим показателям за 2018 год

Данные мониторинга загрязнения поверхностных вод обработаны по 35 гидрохимическим створам на 31 трансграничных реках (таблица 1.1): Ертис — с. Боран, с. Прииртышское, Есиль — с. Долматово, Тобыл — с. Милютинка и п. Аккарга, Айет — с.Варваринка, Тогызак — ст. Тогузак, Обаган — с. Аксуат, Уй — с. Уйское, Жайык — с.Январцево, Улькен Кобда — п. Кобда, Шаган — п. Чувашинский (п. Каменный), Караозен — с. Жалпактал, Сарыозен — с. Бостандыксий, Елек — с. Целинный и с. Шилик, Орь — с. Богетсай, проток Шаронова — с. Ганюшкино, рукав Кигаш — с.Котяевка, Иле - пр. Добын, Текес — с. Текес, Коргас — с. Баскуншы и с. Ынталы, Емель — с. Кызылту, Каркара — у выхода из гор, Баянкол — с. Баянколь, Сырдария — с. Кокбулак, Шу — с.Благовещенское, Талас — с. Жасоркен, Асса — жд. ст. Маймак, Аксу — с. Аксу, Токташ — п. Жаугаш батыр, Карабалта — на границе с Кыргызстаном, Сарыкау — на границе с Кыргызстаном, Желкуар — п. Чайковское.

Республика Казахстан – Российская Федерация

реки Ертис — с. Прииртышское, Есиль — с. Долматово, Тобыл — с. Милютинка, Тобыл — п. Аккарага, Желкуар — п. Чайковское, Айет — с. Варваринка, Тогызак — ст. Тогызак, Обаган — с. Аксуат, Уй — с. Уйское, Жайык — с. Январцево, Шаган — п. Чувашинский, Караозен (Большая Узень) — с. Жалпактал, Сарыозен (Малая Узень) — с.Бостандыксий, Елек — с. Целинный и с. Шилик, р. Улькен Кобда — п. Кобда, Орь — с.Богетсай, проток Шароновка — с. Ганюшкино, рукав Кигаш — с. Котяевка.

Качество воды трансграничных рек РК-Р Φ оценивается следующим образом: вода *«нормативно-чистая»* — река Кигаш, проток Шаронова;

вода *«умеренного уровня загрязнения»* – реки Айет, Тобыл, Ертис, Жайык, Елек – с. Шилик, Есиль, Шаган, Улькен Кобда, Караозен и Сарыозен, Уй, Тогызак, Орь;

вода «высокого уровня загрязнения» — река Обаган, Желкуар, Елек — п. Целинный.

На границе с территорией России качество воды **р. Ертис в створе Прииртышское** характеризуется как «умеренного уровня загрязнения» (КИЗВ-1,50). Температура воды составила 8,0 °C; среднее значение водородного показателя составило 8,17, концентрация растворенного в воде кислорода 11,10 мг/дм³, БПК $_5$ 1,87 мг/дм³. Превышение ПДК было зафиксировано по веществам из группы тяжелых металлов (медь (2+)-1,5 ПДК).

Качество воды **р. Есиль** – **с. Долматово** (Есильский водохозяйственный бассейн) относится к степени «умеренного уровня загрязнения» (КИЗВ – 1,89). Температура воды колебалась от 0,2 до 22,5 °C; среднее значение водородного показателя составило 7,67, концентрация растворенного в воде кислорода 11,28 мг/дм3, БПК₅ – 2,92 мг/дм3. При этом отмечено превышение ПДК по веществам из групп главных ионов (сульфаты – 1,2 ПДК), биогенных веществ (железо общее – 1,9 ПДК), тяжелых металлов (медь (2+) – 2,6 ПДК).

Качество воды **р. Тобыл** – **с. Милютинка** (Тобыл–Торгайский водохозяйственный бассейн) характеризуется как «умеренного уровня загрязнения» КИЗВ–2,21. Температура воды 8,1 °C, водородный показатель равен 7,85, концентрация растворенного в воде кислорода 7,47 мг/дм³, БПК₅ 1,76 мг/дм³. Превышения ПДК были зафиксированы по веществам из групп главных ионов (сульфаты 3,2 ПДК, магний 1,2 ПДК), биогенных

веществ (азот нитритный 1,1 ПДК, аммоний солевой 1,2 ПДК, железо общее 1,7 ПДК), тяжелых металлов (медь 1,5 ПДК, цинк 2,7 ПДК, никель 5,6 ПДК, марганец 2,6 ПДК).

Качество воды **р. Тобыл** – **п. Аккарга** (Тобыл–Торгайский водохозяйственный бассейн) характеризуется как «умеренного уровня загрязнения», КИЗВ – 2,29. Температура воды 8,4 °C, водородный показатель равен 7,81, концентрация растворенного в воде кислорода $10,16 \text{ мг/дм}^3$, БПК₅ $3,47 \text{ мг/дм}^3$. Превышения ПДК были зафиксированы по веществам из групп главных ионов (сульфаты 1,2 ПДК, магний 1,2 ПДК, хлориды 1,1 ПДК), биогенных веществ (аммоний солевой 1,2 ПДК, железо общее 2,6 ПДК), тяжелых металлов (медь 1,7 ПДК, цинк 1,7 ПДК, никель 6,8 ПДК, марганец 5,0 ПДК).

Качество воды **р. Желкуар** – **п. Чайковское** (Тобыл–Торгайский водохозяйственный бассейн) характеризуется как «высокого уровня загрязнения» (КИЗВ–4,10). Температура воды 7,9 °C, водородный показатель равен 7,67, концентрация растворенного в воде кислорода 9,15 мг/дм³, БПК₅ 3,02 мг/дм³. Превышения ПДК были зафиксированы по веществам из групп главных ионов (сульфаты 2,4 ПДК, магний 1,3 ПДК), биогенных веществ (железо общее 2,5 ПДК, аммоний солевой 1,1 ПДК), тяжелых металлов (медь 6,2 ПДК, никель 5,1 ПДК, цинк 3,6 ПДК, марганец 30,8 ПДК), органические вещества (нефтепродукты -1,3ПДК).

р. Айет — с. Варваринка (Тобыл—Торгайский водохозяйственный бассейн) относится по качеству воды к степени «умеренного уровня загрязнения» КИЗВ—2,35. Температура воды 7,6 °C, водородный показатель равен 7,72, концентрация растворенного в воде кислорода 9,01 мг/дм³, БПК $_5$ 2,94 мг/дм³. Превышения ПДК были зафиксированы по веществам из групп главных ионов (сульфаты 1,9 ПДК, магний 1,2 ПДК), биогенных веществ (аммоний солевой 1,5 ПДК, железо общее 3,1 ПДК), тяжелых металлов (медь 1,4 ПДК, цинк 3,0 ПДК, никель 5,9 ПДК, марганец 2,5 ПДК).

Качество воды **р. Тогызак** – **ст. Тогызак** (Тобыл–Торгайский водохозяйственный бассейн) характеризуется как «умеренного уровеня загрязнения» (КИЗВ-2,84). Температура воды 7,5 °C, водородный показатель равен 7,86, концентрация растворенного в воде кислорода $11,04 \text{ мг/дм}^3$, БПК₅ $4,20 \text{ мг/дм}^3$. Превышения ПДК были зафиксированы по веществам из групп главных ионов (сульфаты 2,8 ПДК, магний 1,6 ПДК), биогенных веществ (железо общее 2,9 ПДК, аммоний солевой 1,4 ПДК), тяжелых металлов (медь 2,5 ПДК, цинк 3,9 ПДК, никель 7,3 ПДК, марганец 3,0 ПДК).

Качество воды **р. Обаган** – **с. Аксуат** (Тобыл–Торгайский водохозяйственный бассейн) оценивается как вода «высокого уровеня загрязнения» КИЗВ–4,12. Температура воды 7,3 °C, водородный показатель равен 7,92, концентрация растворенного в воде кислорода 9,93 мг/дм³, БПК $_5$ 3,43 мг/дм³. Превышения ПДК были зафиксированы по веществам из групп главных ионов (кальций 1,1 ПДК, сульфаты 8,2 ПДК, магний 5,3 ПДК, хлориды 5,4 ПДК), биогенных веществ (аммоний солевой 2,8 ПДК, железо общее 3,2 ПДК), тяжелых металлов (медь 4,0 ПДК, цинк 2,6 ПДК, никель 6,7 ПДК, марганец 4,1 ПДК).

Качество воды **р. Уй – с. Уйское** (Тобыл—Торгайский водохозяйственный бассейн) оценивается как вода «умеренного уровеня загрязнения» (КИЗВ-2,69). Температура воды 7,7 °С, водородный показатель равен 7,80, концентрация растворенного в воде кислорода 7,41 мг/дм³, БПК₅ 3,05 мг/дм³. Превышения ПДК были зафиксированы по веществам из групп главных ионов (сульфаты 2,8 ПДК, магний 1,2 ПДК), биогенных веществ (азот нитритный 1,3 ПДК, железо общее 2,6 ПДК, аммоний солевой 1,2 ПДК), тяжелых металлов (медь 3,0 ПДК, цинк 2,0ПДК, никель 6,3 ПДК, марганец 6,2 ПДК).

В Актюбинской области **р. Елек – с. Целинный** (Жайык–Каспийский водохозяйственный бассейн) качество воды относится к степни «высокого уровня загрязнения» (КИЗВ-4,76). температура воды составила 0–30°C, среднее значение водородный показатель составило 7,32, концентрация растворенного в воде кислорода – 9,40 мг/дм3, БПК $_5$ – 2,23 мг/дм3. Превышения ПДК были зафиксированы по веществам из групп биогенных веществ (бор (3+) – 7,6 ПДК, аммоний солевой – 1,9 ПДК), тяжелых металлов металдар (медь (2+) – 5,7 ПДК, хром (6+) – 4,6 ПДК, марганец (2+) – 4,0 ПДК).

Качество воды **р.** Елек – **с.** Шилик (Жайык–Каспийский водохозяйственный бассейн) качество воды относится к степени «умеренного уровня загрязнения» (КИЗВ-1,50). Температура воды отмечена в пределах от 0,1 до 14° C; среднее значение водородного показателя составило 7,39, концентрация растворенного в воде кислорода – 9,32 мг/дм3, БПК₅ – 2,17 мг/дм3. Превышения ПДК были зафиксированы по веществам из группы биогенных веществ (азот нитритный -1,1ПДК, железо общее-1,9 ПДК).

Индекс загрязненности воды **р. Жайык** – **п. Январцево** (Жайык–Каспийский водохозяйственный бассейн) Качество воды относится к степени *«умеренного уровня загрязнения»* (КИЗВ-1,70). Температура воды отмечена в пределах от 0,1 до 24 °C; водородный показатель составило 7,33, концентрация растворенного в воде кислорода – 9,14мг/дм3, БПК₅ – 2,26 мг/дм3. Превышение ПДК было зафиксировано по веществу из группы биогенных веществ (азот нитритный -1,3ПДК, железо общее-2,1 ПДК).

В Актюбинской области **р. Орь** – **с. Богетсай** (Жайык–Каспийский водохозяйственный бассейн) качество воды относится к степени *«умеренного уровня загрязнения»* (КИЗВ-2,62). Температура воды составила 5 - 24°C, водородный показатель 7,81, концентрация растворенного в воде кислорода 9,82 м/дм3, БПК₅ – 2,22 мг/дм3. Превышения ПДК было зафиксировано по веществам из групп биогенных веществ (аммоний солевой – 2,3 ПДК), тяжелых металлов (медь(2+) – 4,4 ПДК, марганец (2+) – 4,3 ПДК), органические вещества (фенолы – 1,2 ПДК).

В Актюбинской области **р. Улькен Кобда** – **п. Кобда** (Жайык–Каспийский водохозяйственный бассейн) качество воды относится к степени «умеренного уровня загрязнения» (КИЗВ-2,90). Температура воды составила 4 - 25°C, водородный показатель 7,74, концентрация растворенного в воде кислорода 9,10 мг/дм3, БПК₅ 2,0 мг/дм3. Превышения ПДК были зафиксированы по веществам из групп биогенных веществ (аммоний солевой – 1,3 ПДК), тяжелых металлов (медь (2+) – 6,0 ПДК, марганец (2+) – 3,0 ПДК).

Качество воды **р. Шаган** — **п. Чувашинский** (Жайык–Каспийский водохозяйственный бассейн) относится к степени качества воды «умеренного уровня загрязнения» (КИЗВ-1,75). Температура воды отмечена в пределах от 0,1 до 21°С; водородный показатель составило 7,30, концентрация растворенного в воде кислорода — 9,24 мг/дм3, БПК₅ — 2,56 мг/дм3. Превышения ПДК были зафиксированы по веществам из группы биогенных веществ (азот нитритный -1,4 ПДК, железо общее-2,1 ПДК).

Комплексный индекс загрязненности воды **р. Караозен – с. Жалпактал** (Жайык—Каспийский водохозяйственный бассейн) Качество воды соответствует к степени *«умеренного уровня загрязнения»* (КИЗВ-1,20). Температура воды отмечена в пределах от 0,1 до 23° С; водородный показатель составило 7,48, концентрация растворенного в воде кислорода – 8,04 мг/дм3, БПК₅ – 2,48 мг/дм3. Превышения ПДК были зафиксированы по веществам из групп главных ионов (магний-1,1ПДК), биогенных веществ (азот нитритный -1,4ПДК, железо общее-1,2 ПДК).

Комплексный индекс загрязнения воды **р. Сарыозен** – **с. Бостандыкский** (Жайык–Каспийский водохозяйственный бассейн) Качество воды соответствует к степени *«умеренного уровня загрязнения»* (КИЗВ-1,15). Температура воды отмечена в пределах от 0,1 до 23°С; водородный показатель составило 7,47, концентрация растворенного в воде кислорода – 8,16мг/дм3, БПК5 – 2,30 мг/дм3. Превышения ПДК было зафиксировано по веществу из группы биогенных веществ (азот нитритный-1,2ПДК, железо общее-1,1 ПДК).

Качество воды протока **Шаронова** (бассейн реки Волга) характеризуется как «нормативно чистая» (КИЗВ-0,0). Температура воды составила — 9,35 °C, среднее значение водородного показателя составило -10,3, концентрация растворенного в воде кислорода-6,6 мг/дм³, БПК₅-3,2 мг/дм³. Превышения ПДК не зафиксированы. Качество воды рукава **Кигаш** (бассейн реки Волга) характеризуется как «нормативно чистая» (КИЗВ-0,0). Температура воды составило 9,63 °C; водородный показатель-7,76,

концентрация растворенного в воде кислорода-6,34мг/дм³, БПК₅ – 2,8мг/дм³.

Превышения ПДК не зафиксированы.

Республика Казахстан – Республика Узбекистан

р. Сырдария – с. Кокбулак (Арало – Сырдаринский водохозяйственный бассейн) по качеству воды относится к степени *«умеренного уровня загрязнения»* (КИЗВ – 2,50). Температура воды колебалась от 3,5°C до 29,0°C, среднее значение водородного показателя составила 8,04, концентрация растворенного в воде кислорода в среднем 10,36 мг/дм³, БПК₅ в среднем 1,97 мг/дм³. Превышения ПДК были зафиксированы по веществам из групп главных ионов (сульфаты 4,8 ПДК, магний 1,5 ПДК), биогенных веществ (азот нитритный 3,4 ПДК), тяжелых металлов (медь 1,4 ПДК) и органических веществ (нефтепродукты 1,3 ПДК, фенолы 2,8 ПДК).

Республика Казахстан – Кыргызская Республика

реки Шу — с. Благовещенское, Талас — с. Жасоркен, Асса — жд. ст. Маймак, Аксу — с. Аксу, Токташ — п. Жаугаш батыр, Карабалта — на границе с Кыргызстаном, Сарыкау — на границе с Кыргызстаном, Каркара — у выхода из гор.

По качеству воды все водные объекты оцениваются *«умеренного уровня загрязнения»*.

Качество воды **реки Шу** – **с. Благовещенское** (Шу–Таласский водохозяйственный бассейн) относится к степени «умеренного уровня загрязнения» КИЗВ-1,51. Температура воды колебалась от 2,4 до 25,4 $^{\circ}$ С, водородный показатель равен 7,71, концентрация растворенного в воде кислорода 9,09 мг/дм³, БПК₅ 3,29 мг/дм³. Превышение ПДК были зафиксированы по веществам из групп главных ионов (сульфаты – 1,5 ПДК), биогенных веществ (азот нитритный – 1,9 ПДК, железо общее – 1,7 ПДК), тяжелых металлов (медь (2+)-1,8 ПДК, цинк (2+)-1,1 ПДК), органических веществ (фенолы – 1,3 ПДК).

Комплексный индекс загрязненности воды **р. Талас** – **с. Жасоркен** составляет 1,55, по качеству, вода «умеренного уровня загрязнения». Температура воды колебалась от 2,0 до 24,6 $^{\circ}$ С, водородный показатель равен 8,00 , концентрация растворенного в воде кислорода 10,0 мг/дм³, БПК₅ 3,39 мг/дм³. Превышение ПДК были зафиксированы по веществам из групп тяжелых металлов (медь (2+) – 1,9 ПДК, цинк (2+) – 1,1 ПДК), органических веществ (фенолы – 1,8 ПДК, нефтепродукты – 1,4 ПДК).

Для реки Асса – жд. ст. Маймак КИЗВ-1,45 и относится к степени качества, вода «умеренного уровня загрязнения». температура воды колебалась от 1,6 до $18,8^{0}$ С,

водородный показатель равен 7,96, концентрация растворенного в воде кислорода 9,04 мг/дм³, БПК₅ 2,01 мг/дм³. Превышение ПДК были зафиксированы по веществам из групп тяжелых металлов (медь (2+) - 1,8 ПДК, цинк (2+) - 1,1 ПДК).

Комплексный индекс загрязненности воды **р. Аксу** – **с. Аксу** составил 1,91 и классифицируется как вода «умеренного уровня загрязнения». Температура воды колебалась от 1,2 до 24,0 $^{\circ}$ С, водородный показатель р авен 7,96, концентрация растворенного в воде кислорода 10,1 мг/дм³, БПК₅ 3,65 мг/дм³. Превышение ПДК были зафиксированы по веществам из групп главных ионов (сульфаты – 2,3 ПДК), биогенных веществ (фториды – 1,2 ПДК, железо общее – 2,6 ПДК), тяжелых металлов (медь (2+) – 2,3 ПДК), органических веществ (фенолы – 1,2 ПДК, нефтепродукты – 1,1 ПДК).

Река Токташ – **п. Жаугаш Батыр** (Шу–Таласский водохозяйственный бассейн) относится к степени «умеренного уровня загрязнения» КИЗВ-1,9. Температура воды колебалась от 1,4 до $24,4^{\circ}$ С, водородный показатель равен 7,99, концентрация растворенного в воде кислорода 10,0 мг/дм³, БПК $_5$ 2,34 мг/дм³. Превышение ПДК были зафиксированы по веществам из групп главных ионов (сульфаты – 3,2 ПДК), биогенных веществ (железо общее – 1,3 ПДК), тяжелых металлов (медь(2+) – 2,4 ПДК, цинк (2+) – 1,1 ПДК, марганец(2+)–1,3 ПДК), органических веществ (фенолы – 1,8 ПДК, нефтепродукты – 1,2 ПДК).

Река Карабалта — на границе с Кыргызстаном (Шу–Таласский водохозяйственный бассейн) характеризуется по качеству воды как «умеренного уровня загрязнения» КИЗВ - 2,05, температура воды колебалась от 1,2 до $24,0^{\circ}$ С, водородный показатель равен 8,00, концентрация растворенного в воде кислорода 10,0 мг/дм³, БПК₅ 2,69 мг/дм³. Превышение ПДК были зафиксированы по веществам из групп главных ионов (магний – 1,2 ПДК, сульфаты – 5,4 ПДК), биогенных веществ (фториды – 1,3 ПДК, железо общее – 1,4 ПДК), тяжелых металлов (медь (2+) – 2,4 ПДК, марганец (2+) – 1,6 ПДК), органических веществ (фенолы – 1,7 ПДК, нефтепродукты – 1,4 ПДК).

Река Сарыкау — на границе с Кыргызстаном (Шу—Таласский водохозяйственный бассейн) характеризуется по качеству воды как «умеренного уровня загрязнения» КИЗВ — 2,19. Температура воды колебалась от 1,2 до 25,0 $^{\circ}$ С, водородный показатель равен 8,01, концентрация растворенного в воде кислорода 10,1 мг/дм 3 , БПК $_{5}$ 5,39 мг/дм 3 . Превышение ПДК были зафиксированы по веществам из групп главных ионов (магний — 1,4 ПДК, сульфаты — 4,2 ПДК), биогенных веществ (фториды — 1,5 ПДК, железо общее — 2,3 ПДК), тяжелых металлов (медь (2+) — 3,3 ПДК, цинк (2+) — 1,4 ПДК, марганец (2+) — 2,8 ПДК), органических веществ (фенолы — 1,9 ПДК, нефтепродукты — 1,2 ПДК).

Река Каркара – у выхода из гор (Балхаш–Алакольский водохозяйственный бассейн) характеризуется по качеству воды как «умеренного уровня загрязнения» с КИЗВ-1,43. Температура воды колебалась в пределах 0 до 15,4 °C, водородный показатель 8,19, концентрация растворенного в воде кислорода -11,9 мг/дм3, БПК $_5$ -1,05 мг/дм3. Превышения ПДК были зафиксированы по веществам из группы биогенных веществ (железо общее–1,7 ПДК), главные ионы (сульфаты–1,1 ПДК) и тяжелых металлов (медь (2+) – 1,5 ПДК).

Республика Казахстан – Китайская Народная Республика

реки Кара Ертис — с. Боран, Иле — пр. Добын, Текес — с. Текес, Коргас — с. Баскуншы и с. Ынталы, Емель — с. Кызылту, Баянкол — с. Баянколь.

Во всех водных объектах качество воды – «умеренного уровня загрязнения».

На трансграничной **реке Кара Ертис** в створе **с. Боран** (Ертисский водохозяйственный бассейн) качества воды, поступающая с территории КНР относится к к степени «умеренного уровня загрязнения» КИЗВ -1,7, температура воды находилась в пределах 0.1 °C -21.0 °C, водородный показатель 7.30 концентрация растворенного в воде кислорода 11.77 мг/дм³, БПК₅ 2.23 мг/дм³. Превышение ПДК было зафиксировано по веществу из группы тяжелых металлов (медь (2+) 1.7 ПДК).

По реке Иле – пр. Добын (Балхаш–Алакольский водохозяйственный бассейн) с территории КНР поступает вода, относящаяся по качеству к степени «умеренного уровня загрязнения» КИЗВ-2,03. Температура воды 0 до 22,6 °C; среднее значение водородного показателя составило 7,93, концентрация растворенного в воде кислорода 10,1 мг/дм3, БПК₅ 0,66 мг/дм3. Превышения ПДК были зафиксированы по веществам из группы тяжелых металлов (медь (2+) – 1,7 ПДК), биогенных веществ (железо общее – 3,1 ПДК, азот нитритный – 2,8 ПДК, аммоний солевой – 1,2 ПДК).

Качество воды **реки Текес – с. Текес** (Балхаш–Алакольский водохозяйственный бассейн) относится к степени «умеренного уровня загрязнения» КИЗВ-1,9. Температура воды колебалась 0 до 14,0 °C, водородный показатель 8,00, концентрация растворенного в воде кислорода–11,8 мг/дм3, БПК₅–1,06 мг/дм3. Превышения ПДК были зафиксированы по веществам из групп тяжелых металлов (медь (2+) – 1,9 ПДК, марганец (2+)–2,3 ПДК) и биогенных веществ (железо общее–1,7 ПДК, азот нитритный–1,7 ПДК).

Качество воды **реки Коргас** – **с.** Баскуншы (Балхаш–Алакольский водохозяйственный бассейн) относится к степени «умеренного уровня загрязния», КИЗВ-1,2. температура воды 0,6 до 23,2 °C; среднее значение водородного показателя составило 8,03, концентрация растворенного в воде кислорода 11,0 мг/дм3, БПК $_5$ 1,22 мг/дм3. Превышения ПДК было зафиксировано по веществам из группы биогенных веществ (железо общее -1,2 ПДК).

Качество воды **реки Коргас** – **с. Ынталы** (Балхаш–Алакольский водохозяйственный бассейн) относится к степени «умеренного уровня загрязнения», КИЗВ-2,2. Температура воды колебалась от $0.6\,^{\circ}\text{C}$ до $17.0\,^{\circ}\text{C}$; среднее значение водородного показателя составило 7.86, концентрация растворенного в воде кислорода $9.98\,\text{мг/дм3}$, БПК₅ $1.17\,\text{мг/дм3}$. Превышения ПДК были зафиксированы по веществам из групп тяжелых металлов (медь (2+)– $2.1\,$ ПДК, марганец (2+)– $2.2\,$ ПДК) и биогенных веществ (железо общее– $3.4\,$ ПДК, азота нитритного- $1.1\,$ ПДК).

По реке Емель – п. Кызылту (Балхаш–Алакольский водохозяйственный бассейн) по результатам анализа качество воды относится к степени «умеренного уровня загрязнения». Комплексный индекс загрязненности воды составил 1,38. Температура воды находилась в пределах $0,1~^{\circ}\text{C}-25,3~^{\circ}\text{C}$, водородный показатель 8,28 концентрация растворенного в воде кислорода 8,73~мг/дм3, БПК5 1,20~мг/дм3. Превышения ПДК были зафиксированы по веществам из групп главных ионов (сульфаты 1,5~ПДК), тяжелых металлов (медь (2+)~1,4~ПДК, марганец (2+)~1,1~ПДК).

По реке Баянкол – с. Баянколь (Балхаш–Алакольский водохозяйственный бассейн) с территории КНР поступает вода, относящаяся по качеству к степени «умеренного уровня загрязнения» КИЗВ-1,55. Температура воды колебалась в пределах 0 до 13,8 °C, водородный показатель 8,06, концентрация растворенного в воде кислорода-11,3 мг/дм3, БПК $_5$ - 1,53 мг/дм3. Превышения ПДК было зафиксировано по веществам из группы биогенных веществ (железо общее–1,9 ПДК, фториды–1,2 ПДК).

Отмечаются следующие изменения качества трансграничных рек по сравнению с 2017 годом (таблица 1):

- состояние качества трансграничных рек Есиль (с. Долматово), Иле (пр. Добын), Текес (с.Текес), р. Баянкол (с. Баянколь), Каркара (у выхода из гор), Коргас (с. Баскуншы), Емель (п. Кызыл ту), Кара Ертис (с. Боран), Шу (с. Благовещенское), Талас (с. Жасоркен), Асса (жд. ст. Маймак), Аксу (с. Аксу), Токташ (п. Жаугаш Батыр), Сарыкау (на границе с Кыргызской Республикой), Елек (п. Шилик), р. Жайык (п. Январцево), Караозен (с. Жалпактал), Ертис (с. Прииртышское), р. Шаган п. Чувашинский (п. Каменный), Обаган (с. Аксуат), Тогызак (ст. Тогызак), Уй (с. Уйское), Сарыозен (с. Бостандыкский), Шаронова (с. Гонюшкино), Улькен Кобда (п. Кобда) значительно не изменилось;
 - Елек (п. Целинный), Желкуар (п. Чайковское), ухудшилось;
- Орь (с. Богетсай), Айет (с. Варваринка), Кигаш (с. Котяевка), Сырдария (с. Кокбулак), Коргас (с. Ынталы), Тобыл (с. Милютинка), Тобыл (п. Аккарга), Карабалта (на границе с Кыргызской Республикой) улучшилось;
- На 3 трансграничных реках Республики Казахстан было отмечено 4 случая высокого загрязнения (ВЗ) 1 случай экстремально высокого загрязнения (ЭВЗ). (таблица 1.2).

Таблица 1.1 Характеристика степени загрязненности поверхностных вод трансграничных рек

Наименование		атели загрязнения объектов	Содержание заг	рязняющих в 2018 г.	еществ за	
водного объекта (бассейн, река, гидрохимический створ)	2017 г.	2018 г.	Показатели качества воды	Средняя концентра -ция, мг/дм ³	Кратност ь превыше ния	
	10,44	11,77	Растворенный	11,77	-	
	(нормативно чистая)	(нормативно чистая)	кислород			
р. Кара Ертис – с. Боран	1,85 (нормативно чистая)	2,23 (нормативно чистая)	БПК5	2,23	-	
с. Боран	2,10	1,7	тяжел	ые металлы		
	(умеренного уровня загрязнения)	(умеренного уровня загрязнения)	Медь (2+)	0,0017	1,7	
	10,77 (нормативно чистая)	11,10 (нормативно чистая)	Растворенный кислород	11,10	-	
р. Ертис — с. Прииртышское	1,83 (нормативно чистая)	1,87 (нормативно чистая)	БПК-5	1,87	-	
	1,60	1,50	тяжел	ые металлы	аллы	
	(умеренного уровня загрязнения)	1,30 (умеренного уровня загрязнения)	Медь (2+)	0,0015	1,5	
	11,02 (нормативно чистая)	11,28 (нормативно-чистая)	Растворенный кислород	11,28	-	
— Болун	2,09 (нормативно-чистая)	2,92 (нормативно-чистая)	БПК5	2,92	-	
р. Есиль –	2,02	1,89	глаг	вные ионы		
с. Долматово	(умеренного уровня	(умеренного уровня	Сульфаты	123	1,2	
	загрязнения)	загрязнения)	биоген	ные вещества	1	
			Железо общее	0,19	1,9	
			тяжел	ые металлы		

			Медь (2+)	0,0026	2,6	
	9,11	7,47	Растворенный	7,47		
	(нормативно-чистая)	(нормативно-чистая)	кислород	7,47	_	
	1,72 (нормативно-	1,76				
	1,72 (нормативно-	(нормативно-чистая)	БПК₅	1,76	-	
	-истал)					
				зные ионы	2.2	
			Сульфаты	321,4	3,2	
р. Тобыл –			Магний	46,6	1,2	
с.Милютинка				ные вещества 0,022	1 1	
	3,23	2,21	Азот нитритный Железо общее	0,022	1,1	
	(высокого уровня	(умеренного уровня	Аммоний	0,17	1,/	
	загрязнения)	загрязнения)	солевой	0,63	1,2	
	Sur pastrettia)	sur phonemia)		ые металлы		
			Медь	0,0015	1.5	
			Цинк	0,027		
			Никель	0,056	-	
			Марганец	0,026		
	7,74	10,16	Растворенный	10,16	1,7 1,2 1,5 2,7 5,6 2,6 - 1,2 1,2 1,1 2,6 1,2 1,7 1,7 6,8 5,0	
	(нормативно-чистая)	(нормативно-чистая)	кислород	10,10	-	
	2,77	3,47	EFFIC	2.45		
	(нормативно-чистая)	(умеренного уровня	БПК ₅	3,47	-	
		загрязнения)				
				зные ионы	1.2	
T. 6			Магний	47,6		
р. Тобыл -			Сульфаты Хлориды	123,0 330,867		
п. Аккарга			•	ные вещества	1,1	
	3,39	2,29	Железо общее	0,26	2.6	
	(высокого	(умеренного уровня	Аммоний	·		
	уровня загрязнения)	загрязнения)	солевой	0,60	1,2	
		1 /		ые металлы		
			Медь	0,0017	1,7	
			Цинк	0,017	1,7	
			Никель	0,068	6,8	
			Марганец	0,050	5,0	
	9,15	9,01	Растворенный			
	(нормативно-чистая)	(нормативно-чистая)	кислород	9,01	-	
	` *	201	шыред			
	3,06	2,94	БПИ	2.04		
	(умеренного уровня	(умеренного уровня	БПК5	2,94	-	
	загрязнения)	загрязнения)	FHOR			
			Сульфаты	з ные ионы 188,3	1,9	
р. Айет –			Магний	48,7	1,2	
с.Варваринка				ные вещества	- , -	
	2.21	2.25	Железо общее	0,31	3,1	
	3,31	2,35	Аммоний	·		
	(высокого уровня	(умеренного уровня	солевой	0,76	1,5	
	загрязнения)	загрязнения)	тяжел	ые металлы		
			Медь	0,0014	1,4	
			Цинк	0,030	3,0	
			Никель	0,059	5,9	
			Марганец	0,025	2,5	
р. Тогызак –	9,93		Растворенный	11,04	-	

ст.Тогузак	(нормативно-чистая)	11,04 (нормативно-чистая)	кислород				
	3,35 (умеренного уровня загрязнения)	4,20 (умеренного уровня загрязнения)	БПК ₅	4,20	-		
			глав	вные ионы			
			Сульфаты	277,8	2,8		
			Магний	62,7	1,6		
			биогені	ные вещества			
	2.51	2,84	Железо общее	0,29	2,9		
	2,61 (умеренного уровня загрязнения)	(умеренного уровня загрязнения)	Аммоний солевой	0,72	1,4		
	oai pronchini)			ые металлы			
			Медь	0,0025	2,5		
			Цинк	0,039	3,9		
			Никель	0,073	7,3		
			Марганец	0,030	3,0		
	6,15	9,93	Растворенный	0.02	·		
	(нормативно-чистая)	(нормативно-чистая)	кислород	9,93	-		
	2,46 (нормативно-чистая)	3,43 (умеренного уровня загрязнения)	БПК₅	3,43	-		
			глан	вные ионы			
			Кальций	193,9	1,1		
			Магний	212,5	5,3		
			Сульфаты	815,9	8,2		
р. Обаган – с.Аксуат			Хлориды	1634,3			
				ные элементы			
	3,71	4,12	Железо общее	0,32			
	(высокого уровня загрязнения)	(высокого уровня загрязнения)	Азот аммонийный	1,41	5,4 3,2 2,8		
				ые металлы			
			Медь	0,004	3,2 2,8		
			Цинк	0,026	2,6		
			Никель	0,020	6,7		
				0,067	4,1		
			Марганец	0,041	4,1		
	8,00 (нормативно-чистая)	9,15 (нормативно-чистая)	Растворенный кислород	9,15	-		
	2,30 (нормативно-чистая)	3,02 (нормативно-чистая)	БПК₅	3,02	-		
n Walleyon				вные ионы			
р. Желкуар – п.Чайковское			Сульфаты	241,4	2,4		
11. TANKUBUKUC			Магний	52,7	1,3		
		4,10	биогенн	ные элементы			
	2,32	·	Железо общее	0,25	2,5		
	(умеренного уровня загрязнения)	(высокого уровня загрязнения)	Аммоний солевой	0,56	1,1		
				ые металлы			
			Медь	0,0062	6,2		
			Марганец	0,308	30,8		
			Цинк	0,036	3,6		
				0,030	5,0		

			Никель	0,051	5,1
			органич	еские вещест	ва
			Нефтепродукты	0,07	1,3
	10,80	11,9	Растворенный	11.0	
	(нормативно чистая)	(нормативно-чистая)	кислород	11,9	-
	1,37	1,05		1.05	
	(нормативно чистая)	(нормативно-чистая)	БПK ₅	1,05	-
р. Каркара –	1,30	1,43	биоген	ные веществ:	a
у выхода из гор	(умеренного уровня	(умеренного уровня	Железо общее	0,17	1,7
J	загрязнения)	загрязнения)	·	ые металлы	
	,	,	Медь (2+)	0,0015	1,5
			` ′	вные ионы	1,0
			Сульфаты	110	1,1
		7,41	Сульфиты	110	1,1
	7,54 (нормативно-чистая)	(нормативно-чистая)	Растворенный кислород	7,41	-
	3,12 (умеренного уровня загрязнения)	3,05 (умеренного уровня загрязнения)	БПК₅	3,05	-
			Ела	вные ионы	1
			Сульфаты	279,9	2,8
р. Уй – с.Уйское			Магний	46,5	1,2
				ные веществ:	
			Азот нитритный	0,026	1,3
	2,68	2,69	Железо общее	0,026	2,6
	(умеренного уровня	(умеренного уровня	Аммоний	0,20	2,0
	загрязнения)	загрязнения)	солевой	0,58	1,2
				ые металлы	
			Медь	0,003	3,0
			Цинк	0,020	2,0
			Марганец	0,062	6,2
			Никель	0,063	6,3
	10,08	10,1	Растворенный	10,1	
	(нормативно чистая)	(нормативно-чистая)	кислород		_
	0,66	0,66	$Б\Pi K_5$	0,66	
	(нормативно чистая)	(нормативно-чистая)			_
	2,57	2,03	тяжел	ые металлы	
р. Иле – пр. Добын	(умеренного уровня	(умеренного уровня	Медь (2+)	0,0017	1,7
p. m. Accen	загрязнения)	загрязнения)	биоген	ные веществ:	a
			Азот нитритный	0,056	2,8
			Железо общее	0,31	3,1
			Аммоний солевой	0,58	1,2
	10,7	11,8	Растворенный	11,8	
	(нормативно чистая)	(нормативно-чистая)	кислород	,-	-
	1,29	1,06	•		
	(нормативно чистая)	(нормативно-чистая)	БПК ₅	1,06	-
T. T.	2,03	1,9	тажел	 іые металлы	ı
р. Текес – с. Текес	(умеренного уровня	(умеренного уровня	Медь (2+)	0,0019	1,9
	загрязнения)	загрязнения)	Марганец (2+)	0,0019	2,3
	Sai prononni	Sai prononni		ные вещества	
			Железо общее	0,17	1,7
				0,17	1,7
n Voness s	10.4	9,98	Азот нитритный Растворенный		
р. Коргас – с.	10,4	7,70	т астворенный	9,98	-

Ынталы	(нормативно чистая)	(нормативно-чистая)	кислород					
Difficulti	1,42	1,17	БПК5	1 17				
	(нормативно чистая)	(нормативно-чистая)	DITICS	1,17	-			
	3,80	2,2	TOVAL	LIA MATAUULI				
	(высокого уровня	(умеренного уровня	Марганец (2+)	1	2.2			
	загрязнения)	загрязнения)	Марганец (2+) Медь (2+)					
	загрязнения)	Sai pasiiciina)		0,0021 2,1				
			Железо общее					
	11,31	11,0	Азот нитритный		1,1			
	,	,	Растворенный	11,0	2,1 3,4 1,1 1,2 - 1,5 1,4 1,1 4,8 1,5 4,8 1,5 1,4 1,5 1,5 1,4 1,5			
	(нормативно чистая)	(нормативно-чистая)	кислород	1.22				
р. Коргас-	1,20	1,22	БПК₅	1,22	-			
с.Баскуншы	(нормативно чистая)	(нормативно-чистая)						
	1,50	1,2						
	(умеренного уровня	(умеренного уровня	Железо общее	0,12	1,2 1,5 1,4 1,1 TBA 1,9 1,2 4,8			
	загрязнения)	загрязнения)	n v					
	8,81	8,73	Растворенный кислород 8,73 - стая) БПК ₅ 1,20 - главные ионы					
	(нормативно чистая)	(нормативно чистая)	кислород					
	1,73	1,20	БПК5	1,20	-			
р. Емель-п. Кызыл	(нормативно чистая)	(нормативно чистая)	-					
ту	1,67	1,38						
- 7	(умеренного уровня	(умеренного уровня	Сульфаты	150	1,5			
	загрязнения)	загрязнения)		1	r			
			Медь (2+)					
			Марганец (2+)	0,011	1,1			
	11,0	11,3	Растворенный	0,011 1,1 11,3 - 1,53 -				
	(нормативно чистая)	(нормативно-чистая)	кислород	,-				
р.Баянкол-с.	1,72	1,53	БПК5	1.53	_			
Баянколь	(нормативно чистая)	(нормативно-чистая)		· ·				
	1,25	1,55						
	(умеренного уровня	(умеренного уровня	Железо общее	<u> </u>				
	загрязнения)	загрязнения)	Фториды	0,86	1,2			
	9,87 (нормативно	10,36 (нормативно	Растворенный	10.36	_			
	чистая)	чистая)	кислород	,				
	1,62 (нормативно	1,97 (нормативно	БПК5	1,97	-			
	чистая)	чистая)						
					4.0			
река Сырдария			Сульфаты					
(с. Кокбулак)			Магний		· · · · · · · · · · · · · · · · · · ·			
, ,	2.15 /	2,50						
	3,15 (высокого	(умеренного уровня	Азот нитритный		3,4			
	уровня загрязнения)	загрязнения)						
		, ,	Медь					
			Нефтепродукты					
			Фенолы	0,0028	2,8			
	9,61	9,09	Растворённый	9.09	_			
	(нормативно чистая)	(нормативно чистая)	кислород	7,07				
	3,59	3,29						
	(умеренного уровня	(умеренного уровня	$Б\Pi K_5$	3,29	-			
	загрязнения)	загрязнения)						
р. Шу –					T			
с. Благовещенское			Сульфаты					
	1,83	1,51		ные вещества				
	(умеренного уровня	(умеренного уровня	Азот нитритный	0,037				
	загрязнения)	загрязнения)	Железо общее	0,168	1,7			
				ые металлы				
			Медь(2+)	0,0018	1,8			

			Цинк(2+)	0,011	1,1		
			, , ,	еские вещести			
			Фенолы	0,0013	1,3		
	10,0	10,0	Растворённый		1,3		
	(нормативно чистая)	(нормативно чистая)	кислород	10,0	-		
	3,06	3,39	Кислород				
	(умеренного уровня	(умеренного уровня	БПК5	3,39	_		
_	загрязнения)	загрязнения)		- ,			
р. Талас –	•	1	тяжел	ые металлы			
с. Жасоркен	2.5		Медь(2+)	0,0019	1,9		
	2,7	1,55	Цинк(2+)	0,011	1,1		
	(умеренного уровня	(умеренного уровня	· · · · · · · · · · · · · · · · · · ·	еские вещести	sa .		
	загрязнения)	загрязнения)	Фенолы	0,0018	1,8		
			Нефтепродукты	0,07	1,4		
	9,83	9,04	Растворённый	0.04	·		
	(нормативно чистая)	(нормативно чистая)	кислород	9,04	-		
	1,95	2,01	_	2.01			
p. Acca – ct.	(нормативно чистая)	(нормативно чистая)	БПК ₅	2,01	-		
Маймак	1,9	1,45	тяжёл	ые металлы			
	(умеренного уровня	(умеренного уровня	Медь(2+)	0,0018	1,8		
	загрязнения)	загрязнения)	Цинк(2+)	0,011	1,1		
	10,3	10,1	Растворённый	10.1			
	(нормативно чистая)	(нормативно чистая)	кислород	10,1	-		
	3,76	3,65					
	(умеренного уровня	(умеренного уровня	БПК ₅	3,65	-		
	загрязнения)	загрязнения)					
			глав	зные ионы			
			Сульфаты	231,2	2,3 a 1,2 2,6		
р. Аксу – с. Аксу			биогені	ные вещества	1,2 2,6		
	1,99	1,91	Фториды	0,866	1,2 2,6		
	(умеренного уровня	(умеренного уровня	Железо общее	0,263	2,6		
	загрязнения)	загрязнения)	тяжел	ые металлы	ты		
			Медь(2+)	0,0023	2,3 ства 1,2 2,6 лы 3 2,3 цества 2 1,2		
			органиче	еские вещести	за		
			Фенолы	0,0012	1,2		
			Нефтепродукты	0,054	1,1		
	10,2	10,0	Растворённый	10,0			
	(нормативно чистая)	(нормативно чистая)	кислород	10,0	_		
	3,25	2,34					
	(умеренного уровня	(нормативно чистая)	БПК₅	2,34	-		
	загрязнения)	(пормативно инстах)					
				вные ионы			
			Сульфаты	323,9	3,2		
р. Токташ –				ные вещества			
п. Жаугаш Батыр			Железо общее	0,133	1,3		
	2,28	1,9		ые металлы			
	(умеренного уровня	(умеренного уровня	Медь(2+)	0,0024	2,4		
	загрязнения)	загрязнения)	<u>Цинк(2+)</u>	0,011	1,1		
			Марганец(2+)	0,013	1,3		
				еские вещести			
			Фенолы	0,0018	1,8		
	10 =	10.0	Нефтепродукты	0,06	1,2		
	10,7	10,0	Растворённый	10,0	_		
р. Карабалта – на	(нормативно чистая)	(нормативно чистая)	кислород	- , -			
границе с	3,63	2,69	БПИ	2.60			
Кыргызской	(умеренного уровня	(нормативно чистая)	БПК ₅	2,69	-		
Республикой	загрязнения)	` *					
	3,15	2,05	глав	вные ионы			

	(1.4 ×	47.0	1.0
	(высокого уровня	(умеренного уровня	Магний	47,0	1,2
	загрязнения)	загрязнения)	Сульфаты	537,5	5,4
				ные вещества	
			Фториды	0,95	1,3
			Железо общее	0,137	1,4
			тяжёл	ые металлы	
			Медь(2+)	0,0024	2,4
			Марганец(2+)	0,016	1,6
			_ ` ` ′	еские вещесть	
			Фенолы	0,0017	1,7
				· · · · · · · · · · · · · · · · · · ·	-
	10.1	10.1	Нефтепродукты	0,07	1,4
	10,4	10,1	Растворённый	10,1	_
	(нормативно чистая)	(нормативно чистая)	кислород	- 7	
	6,54	5,39			
	(умеренного уровня	(умеренного уровня	БП K_5	5,39	-
	загрязнения)	загрязнения)			
	,	•	глан	вные ионы	
			Магний	54,9	1,4
n Contuction Ho			Сульфаты	423,9	4,2
р. Сарыкау – на			_ *	ные вещества	-
границе с					
Кыргызской		2.10	Фториды	1,09	1,5
Республикой	2,5	2,19	Железо общее	0,23	2,3
	(умеренного уровня	(умеренного уровня		ые металлы	
	загрязнения)	загрязнения)	Медь(2+)	0,0033	3,3
			Цинк(2+)	0,014	1,4
			Марганец(2+)	0,028	2,8
			_ ` ` ′	еские веществ	-
			Фенолы	0,0019	1,9
				0,06	
	0.00	0.40	Нефтепродукты	0,00	1,2
	9,99	9,40	Растворенный	9,40	-
	(нормативно чистая)	(нормативно чистая)	кислород	- , -	
	1,91	2,23	БПК5	2,23	_
	(нормативно чистая)	(норматино чистая)	DIIIC	2,23	
			биогени	ные вещества	l
p.Елек $ c$.			Бор(3+)	0,129	7,6
Целинный	3,08	4,76	Аммоний	0,938	1,9
,	(умеренного	(высокого	солевой	7	7-
	уровня	уровня		ые металлы	
	загрязнения)	загрязнения)	Медь(2+)	0,0057	5,7
	эш ризнения)	загризнении)	` /	· · · · · · · · · · · · · · · · · · ·	
			Хром(6+)	0,092	4,6
	10.00	0.22	Марганец(2+)	0,0040	4,0
	10,28	9,32	Растворенный	9,32	_
	(нормативно чистая)	(нормативно чистая)	кислород	,,,,,,	
	2,98	2,17	БПК ₅	2,17	_
р.Елек – с. Шилик	(нормативно чистая)	(нормативно чистая)	אוווע	4,17	<u>-</u>
	1,53	1,50	биоген	ные вещества	
	(умеренного уровня	(умеренного уровня	Азот нитритный	0,023	1,1
	загрязнения)	загрязнения)	Железо общее	0,188	1,9
	10,22	9,14	Растворенный		-,-
	(нормативно чистая)	(нормативно чистая)	кислород	9,14	-
			кислород		
р. Жайык-с.	2,33	2,26	БП K_5	2,26	-
Январцево	(нормативно чистая)	(нормативно чистая)	•	·	
r	1,30	1,70		ные вещества	
	(умеренного уровня	(умеренного уровня	Азот нитритный	0,027	1,3
	загрязнения)	загрязнения)	Железо общее	0,21	2,1
	9,35	0.10	Растворенный	9,10	
р. Улькен Кобда –	(нормативно	9,10	кислород		
п. Кобда	чистая)	(нормативно чистая)			
	чистая)				

	2,59	2,0	БПК5	2,0		
	· · · · · · · · · · · · · · · · · · ·	, ,	DIIKJ	2,0		
	(нормативно	(нормативно чистая)				
	чистая)	чистая)	_		1,3 6,0 3,0 TBA 2,3 H 4,4 4,3 CTBA 1,2 - - TBA 1,4 2,1 TBA 1,4 - - - - - - - - - - - - -	
		• • • •		ые вещества		
	2,33	2,90	Аммоний	0,646		
	(умеренного	(умеренного	солевой			
	уровня	уровня		ые металлы		
	загрязнения)	загрязнения)	Медь(2+)	0,0060		
			Марганец(2+)	0,030	3,0	
	11,09	9,82	Растворенный	9,82		
	(нормативно	(нормативно чистая)	кислород			
	чистая)	(пормативно пистая)				
	2,49	2,22	$Б\Pi K_5$	2,22		
	(нормативно	(нормативно чистая)			2,3 31 4,4 4,3 2TBa 1,2 - - Ba 1,4	
	чистая)	(нормативно чистая)				
л Олг - Галалай			биогенн	ые вещества		
р. Орь – с. Богетсай			БПК5 2,22 биогенные вещества ТЯЖЕЛЫЕ МЕТАЛЛЫ Медь (2+) 0,0044 4,4 Марганец (2+) 0,043 4,3 Фенолы 0,0012 1,2 Растворенный кислород 9,24 - БПК5 2,56 - биогенные вещества Азот нитритный 0,027 1,4 Железо общее 0,207 2,1 Растворенный кислород 8,04 БПК5 2,48 главные ионы			
	3,65	2,62	солевой			
	(высокого	(умеренного	тяжел	ые металлы		
	уровня	уровня			4.4	
	загрязнения)	загрязнения)			4 3	
		<i>F)</i>	*			
	10,76	9,24		0,0012	1,2	
	, , , , , , , , , , , , , , , , , , ,	· ·	-	9,24	-	
	(нормативно чистая)	(нормативно чистая)	кислород			
р. Шаган –	2,60	2,56	$Б\Pi K_5$	2,56	-	
п. Чувашинский	(нормативно чистая)	(нормативно чистая)	_			
,	1,15	1,75			1.1	
	(умеренного уровня	(умеренного уровня		-		
	загрязнения)	загрязнения)		0,207	2,1	
	9,56	8,04	_	8.04		
	(нормативно чистая)	(нормативно чистая)	кислород	0,01	-,1	
	2,87	2,48	БПК-	2.48		
n Vanaanay	(нормативно чистая)	(нормативно чистая)	DIIKS	2,40		
р.Караозен – с. Жалпактал	1,25	1,20	глав	главные ионы		
C. Majiliaktaji	(умеренного уровня	(умеренного уровня	Магний	43,31	1,1	
	загрязнения)	загрязнения)	биогени	ные вещества		
			Азот нитритный	0,028	1,4	
			Железо общее	0,12		
	9,68	8,16	Растворенный		,	
	(нормативно чистая)	(нормативно чистая)	кислород	8,16	-	
	3,08	2,30				
р.Сарыозен –	(умеренного уровня	(нормативно чистая)	БПК5	2,30	_	
с. Бостандыкский	загрязнения)			_,		
2. Dourangmounn	1,12	1,15	билген	ные вещества		
	(умеренного уровня	(умеренного уровня	Азот нитритный	0,024		
	загрязнения)	загрязнения)	Железо общее	0,024	· · · · · · · · · · · · · · · · · · ·	
	9,48	5агрязнения) 6,6	Растворенный	6,6	1,1	
	·	· ·	_	0,0		
	(нормативно	(нормативно	кислород			
	чистая)	чистая)			-	
111						
	2.1	2.0		2.2		
проток Шаронова –	3,1	3,2	БПК ₅	3,2		
с. Гонюшкино	(умеренного	(умеренного			_	
	уровня	уровня				
	загрязнения)	загрязнения)				
	0,0	0,0				
	(нормативно	(нормативно	I	1		
				1		
	чистая)	чистая)				

	9,2 (нормативно чистая)	6,34 (нормативно чистая)	Растворенный кислород	6,34	-
р. Кигаш – с. Котяевка	3,2 (умеренного уровня загрязнения)	2,8 (нормативно чистая)	БПК 5	2,8	-
	1,1 (умеренного уровня загрязнения)	0,0 (нормативно чистая)			

Сведения о случаях экстремально высокого (ЭВЗ) и высокого загрязнения (ВЗ) поверхностных вод за 2018 год

На 3 трансграничных реках Республики Казахстан было отмечено 4 случая высокого загрязнения (ВЗ) 1 случай экстремально высокого загрязнения: река Елек (Актюбинская) – 3 случаев ВЗ, река Уй (Костанайская область) – 1 случай ВЗ, река Желкуар (Костанайская) – 1 случай ЭВЗ (таблица 1.2).

Таблица 1.2

Помилоновом		Гот тото	For	Заг	рязняющие вещест	за
Наименование водного объекта, область, пункт наблюдения, створ	Кол-во случаев ВЗ и ЭВЗ	Год, число, месяц отбора проб	Год, число, месяц проведе ния анализа	Наименование	Концен трация, мг/дм3	ТВа Кратность превышения ПДК 12,9 18,7 13,3 167,0 26,5
река Елек, Актюбинская область, п. Целинный, 1,0 км на юго-восток от п. Целинное на лев. берегу р. Елек	1 B3	03.04.18	04.04.18	Бор (3+)	0,220	12,9
река Елек, Актюбинская область, п. Целинный 1,0 км на юго- восток, на левом берегу р. Елек	1 B3	26.04.18г.	27.04.18г.	Бор (3+)	0,318	18,7
река Елек, Актюбинская область, п. Целинный 1,0 км на юго- восток, на левом берегу р. Елек.	1 B3	03.09.2018г.	05.09.2018Γ.	Бор	0,227	13,3
река Желкуар, Костанайская область, п. Чайковское, 0,5 км к ЮВ от села в створе г/п	1 ЭB3	18.03.18	20.03.18	Марганец (2+)	1,670	167,0
река Уй, Костанайская область, с. Уйское, 0,5 км к В от с. Уйское, в створе г/п Всего: 4 случая ВЗ и 1 случа	1 B3	19.04.18	20.04.18	Марганец (2+)	0,265	26,5

2. Результаты радионуклидного и макро-микроэлементного анализа компонентов окружающей среды за 2018 год

РГП «Институт ядерной физики» Министерства энергетики Республики Казахстан выполнил лабораторно-аналитические работы методами радионуклидного и элементного анализа, отобранных РГП «Казгидромет» Министерства энергетики Республики Казахстан, проб объектов окружающей среды весной и осенью 2018 г.

На рисунке 1 приведены точки в бассейнах трансграничных рек Казахстана, на которых проводился отбор проб объектов окружающей среды.

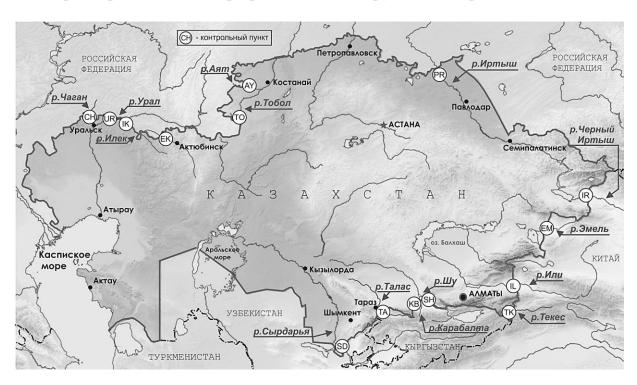


Рис. 1. Схема размещения контрольных пунктов на трансграничных реках Казахстана

Проведены работы по предварительной подготовке всех проб объектов окружающей среды, отобранных весной и осенью 2018 г. для исследования их радионуклидного и элементного состава следующими аналитическими методами:

- 1. Инструментальная гамма-спектрометрия (ИГС) для исследования радионуклидного состава образцов почвы, донных отложений, а также растворимых (WD) и нерастворимых (WS) компонентов воды.
- 2. Радиохимический анализ (РХА) для исследования радионуклидного состава растворимых (WD) компонентов воды.
- 3. Рентгенофлуоресцентный анализ (РФА) для исследования макро- и микроэлементного состава образцов почвы и донных отложений.
- 4. Нейтроноактивационный анализ (HAA) для исследования микроэлементного состава образцов почвы, донных отложений, растворимых (WD) и нерастворимых (WS) компонентов воды.

5. Масс-спектрометрия с индуктивно-связанной плазмой (МС-ИСП) — для исследования микроэлементного состава растворимых (WD) компонентов воды.

В Приложениях 1 и 2 приведены результаты радионуклидного анализа методом ИГС проб почвы, отобранных на всех контрольных пунктах весной (23-я экспедиция) и осенью (24-я экспедиция) 2018г., соответственно.

В Приложениях 3 и 4 приведены результаты радионуклидного анализа методом ИГС донных отложений, отобранных на всех контрольных весной (23-я экспедиция) и осенью (24-я экспедиция) 2018г., соответственно.

В Приложениях 5 и 6 приведены результаты элементного анализа методом РФА проб почвы, отобранных на всех контрольных пунктах весной (23-я экспедиция) и осенью (24-я экспедиция) 2018г., соответственно.

В Приложениях 7 и 8 приведены результаты элементного анализа методом РФА донных отложений, отобранных на всех контрольных пунктах весной (23-я экспедиция) и осенью (24-я экспедиция) 2018г., соответственно.

В Приложении 9 и 10 приведены результаты элементного анализа методом НАА проб почвы, отобранных на всех контрольных пунктах весной (23-я экспедиция) и осенью (24-я экспедиция) 2018г., соответственно.

В Приложении 11 и 12 приведены результаты элементного анализа методом НАА проб донных отложений, отобранных на всех контрольных пунктах весной (23-я экспедиция) и осенью (24-я экспедиция) 2018г., соответственно.

В Приложениях 13 и 14 приведены результаты радионуклидного анализа методом ИГС растворимых компонентов проб воды (WD), отобранных на всех контрольных пунктах весной (23-я экспедиция) и осенью (24-я экспедиция) 2018г., соответственно.

В Приложениях 15 и 16 приведены результаты радионуклидного анализа методом ИГС нерастворимых компонентов проб воды (WS), отобранных на всех контрольных пунктах весной (23-я экспедиция) и осенью (24-я экспедиция) 2018г., соответственно.

В Приложении 17 и 18 приведены результаты элементного анализа методом НАА растворимых компонентов проб воды (WD), отобранных на всех контрольных пунктах весной (23-я экспедиция) и осенью (24-я экспедиция) 2018г., соответственно.

В Приложении 19 и 20 приведены результаты элементного анализа методом НАА нерастворимых компонентов проб воды (WS), отобранных на всех контрольных пунктах весной (23-я экспедиция) и осенью (24-я экспедиция) 2018г., соответственно.

В Приложениях 21 и 22 приведены результаты радионуклидного анализа методом РХА растворимых компонентов проб воды (WD), отобранных на всех контрольных пунктах весной (23-я экспедиция) и осенью (24-я экспедиция) 2018г., соответственно.

В Приложениях 23 и 24 приведены результаты элементного анализа методом МС-ИСП растворимых компонентов проб воды (WD), отобранных

на всех контрольных пунктах весной (23-я экспедиция) и осенью (24-я экспедиция) 2018г., соответственно.

Рассмотрим некоторые особенности радионуклидного и элементного состава объектов окружающей среды, отобранных на всех контрольных пунктах (КП) в бассейнах трансграничных рек Казахстана в 2018 г.

На основе данных, полученных методом ИГС, построены графики, отражающие содержание отдельных радионуклидов в почве и донных отложениях на всех 15-ти мониторинговых КП весной и осенью 2018 г. (рисунки 2 и 3).

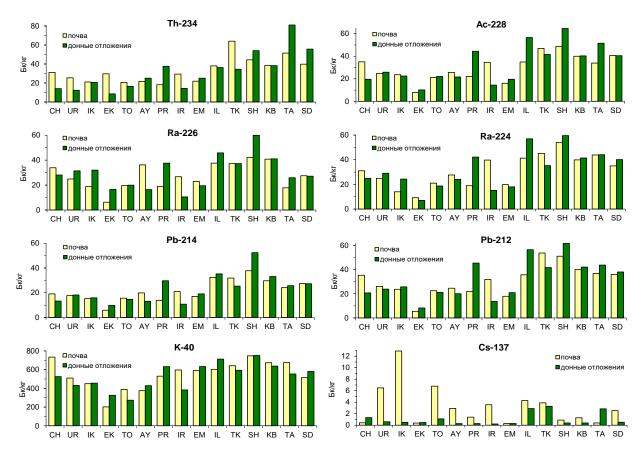


Рис.2. Концентрации отдельных радионуклидов в почве и донных отложениях на контрольных пунктах трансграничных рек Казахстана (23-я экспедиция).

Приведенные в Приложениях (1-4) данные и представленные на рис. 2, 3 графики в значительной степени подтверждают выводы, сделанные на основе данных всех предыдущих экспедиций. Наибольшие значения концентрации ЕРН наблюдаются в прибрежной почве и донных отложениях рек Юго-Восточного и Южного Казахстана (Или, Текес, Шу, Карабалта, Сырдарья). Уровень концентрации радионуклидов в этих объектах рек Западного (Чаган, Урал, Илек), Северо-Западного (Тобол, Аят) и Восточного (Черный Иртыш, Эмель) Казахстана заметно ниже. Наименьшие значения концентрации всех ЕРН соответствуют реке Илек (ЕК, Актюбинская область). В весенний и осенний сезоны, кроме рек Южного и Юго-Восточного Казахстана, наблюдается повышенное содержание отдельных ЕРН (²³⁴Th, ²²⁶Ra, ²¹⁴Pb,

 228 Ac, 224 Ra, 212 Pb и др.) в донных отложениях низовья реки Иртыш (КП - PR) (рис. 2, 3). На этом КП концентрация в донных отложениях практически всех ЕРН семейств 238 U и 232 Th примерно в 2 раза больше, чем в верховье этой реки на контрольном пункте IR. Это означает, что р. Иртыш загрязняется этими ЕРН на территории Казахстана. Необходимо выявить источник (или источники) этого загрязнения.

Наиболее высокие (но опасные) не значения концентрации искусственного радионуклида (ИРН) ¹³⁷Cs установлены в прибрежной почве рек Илек (IK, 12.9 Бк/кг), Урал (UR, 6.5 Бк/кг) и Тобол (TO, 6.8 Бк/кг) – в весенний сезон, а также Урал (UR, 13.0 Бк/кг) и Иртыш (IR, 8.5Бк/кг) – в осенний сезон. В донных отложениях большинства изученных рек уровень концентрации этого ИРН незначителен, в основном, в пределах 1.5 Бк/кг. Вместе с тем, можно отметить повышенное значение концентрации этого радионуклида в донных отложениях рек Талас (ТА, 2.85 Бк/кг), Или (IL, 2.9 $Бк/к\Gamma$), Текес (ТК, 3.3 $Бк/к\Gamma$) – в весенний сезон и Текес (ТК, 3.2 $Бк/к\Gamma$), Талас $(TA, 2.7 \, \text{Бк/кг}) - \text{в осенний сезон.}$

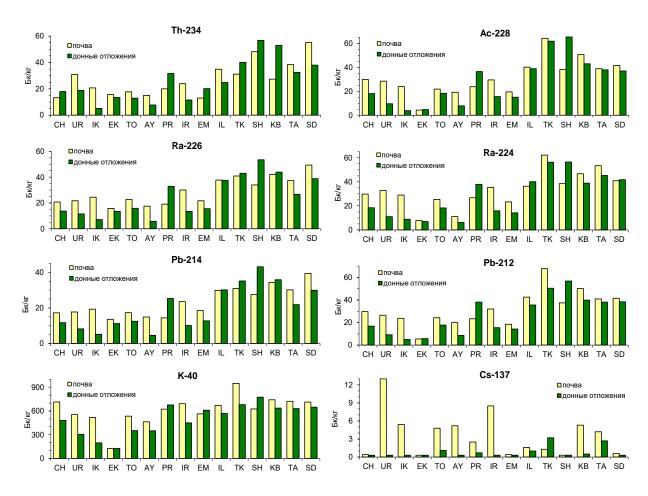


Рис.3. Концентрации отдельных радионуклидов в почве и донных отложениях на контрольных пунктах трансграничных рек Казахстана (24-я экспедиция).

На основе данных, полученных методом РФА, выполнены графические построения (рисунки 4-5), отражающие распределение отдельных элементов (Са, Rb, Ba, Sr, Zn, Y, Th, U, Nb, Pb, Zr, Cr) в почве и донных отложениях, отобранных весной и осенью 2018 г. на мониторинговых контрольных пунктах всех трансграничных рек Казахстана. Из этих графиков и табличных данных, полученных методами РФА и НАА (Приложения 5-12), следует (как было установлено раньше), что наиболее высокие значения концентрации щелочных и щелочноземельных элементов (К, Са, Rb, Cs, Sr, Ba) наблюдаются в почве и донных отложениях рек Юго-Восточного и Южного Казахстана. Эта особенность наглядно отражена на примере распределения бария и стронция. Видно, что наибольшие значения концентрации этих элементов соответствуют следующим рекам: Эмель, Текес, Или, Шу Карабалта, Талас и Сырдарья. Кроме того, в донных отложениях этих рек присутствуют в значительных концентрациях такие элементы как Nb, Pb, Th, U и все редкоземельные металлы (РЗМ).

Сравнение результатов элементного анализа проб донных отложений р. Иртыш, отобранных на КП «IR» (вход реки на территорию Казахстана) и на КП «PR» (выход реки с территории Казахстана), показывает, что на этой протяженности реки содержание многих элементов (Ti, Cu, Zn, Ga, As, Rb, Y, Zr, Th, U, Sb, Co, Sc, Hf, Ta, La, Ce, Nd, Sm, Eu, Tb, Yb, Lu) увеличивается в (2-4) раза, а содержание Pb повышается более, чем в 10 раз. Это означает, что река Иртыш загрязняется на территории Казахстана не только радионуклидами, но и многими химическими элементами. Установленная особенность свидетельствует о необходимости проведения исследования, направленного на выявление источников и установление механизмов этого загрязнения.

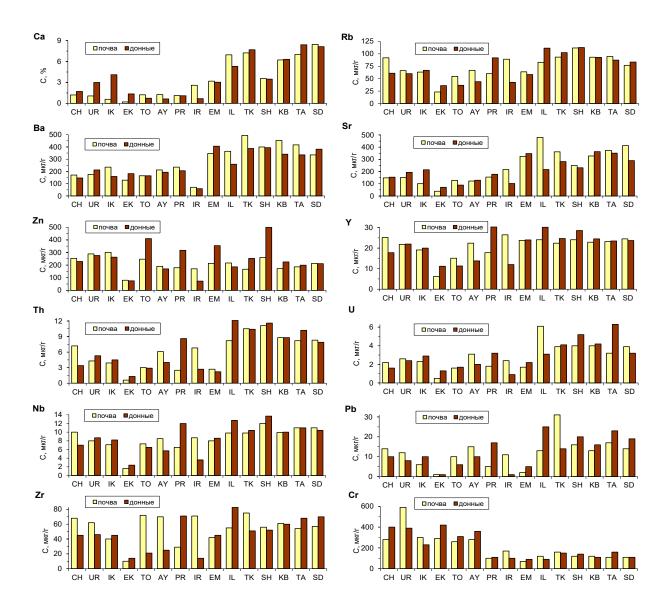


Рис. 4. Концентрации отдельных элементов в почве и донных отложениях на контрольных пунктах трансграничных рек Казахстана (данные РФА, 23-я экспедиция)

В весенний период наибольшее содержание отдельных элементов установлено (по данным РФА) в донных отложениях следующих рек, мкг/г:

• р. Чаган: Cr - 400, Mn - 0.075 %, Ni - 48, As - 19, Br - 12.6;

р. Урал: Cr – 390, Ni – 83;

р. Илек (IK): Mn − 0.075 %, Ni − 48;

р. Илек (ЕК): Cr – 420;

р. Тобол: Br − 12.6, Zr − 410;

• р. Аят: Cr – 360;

• р. Иртыш (Pr): Ti - 0.455 %, Cu - 28, Zn - 71, Ga - 15.5, Y - 30.3, Nb - 12, U - 3.2;

• р. Емель: Ti – 0.533 %, V – 160, Fe – 3,55 %, Zr – 354, Ba – 406, Pb – 25,

 $\begin{array}{lll} & Th-12.1; \\ \bullet & \text{ p. Или:} & K-2.15~\%,\, V-130,\, Mn-0.077~\%,\, Fe-3.83~\%,\, Cu-32,\, Zn-83,\, Ga-15.8,\, As-22.9,\, Rb-112,\, Y-30.2,\, Nb-12.7,\, Pb-25,\, Th-12.1,\, U-3.1; \\ \bullet & \text{ p. Tekec} & K-2.14~\%,\, Ca-7.69~\%,\, Br-12.7,\, Pb-103,\, Ba-388,\, Th-10.4,\, U-4.1; \end{array}$

• p. IIIy: K – 2.32 %, Rb – 113, Y – 28.6, Zr – 500, Nb – 13.7, Ba – 394, Pb – 20, Th – 11.6, U – 5.2;

• р. Карабалта: K-2.0 %, Ca-6.3 %, V-120, Mn-0.07 %, Fe-3.23 %, As-20.3, Sr-363, Nb-10, U-4.2;

• р. Талас: Ca - 8.39 %, Cu - 29, Zn - 68, Br - 15.5, Sr - 351, Nb - 11, Mo - 3.6, Pb - 23, Th - 10.2, U - 6.3;

 \bullet р. Сырдария: Ca - 8.13 %, Zn - 70, Nb - 10.4, Ba - 382, Pb - 19, U - 3.2.

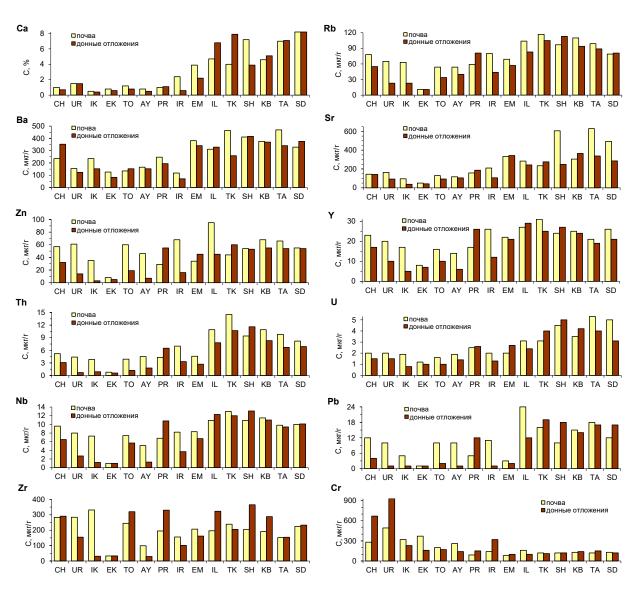


Рис. 5. Содержание отдельных элементов в почве и донных отложениях на контрольных пунктах трансграничных рек Казахстана (данные РФА, 24-я экспедиция)

В осенний период наибольшее содержание отдельных элементов установлено (по данным РФА) в донных отложениях следующих рек:

- р. Чаган: Cr 670 мкг/г, Ba 353 мкг/г;
- р. Урал: Cr − 930 мкг/г, Ni − 65 мкг/г;
- р. Тобол: Zr − 320 мкг/г;
- р. Иртыш (Павлодарская область): Ti-0,4 %; Y-26 мкг/г, Zr-330 мкг/г, Zn-55 мкг/г;
- р. Эмель: Fe 3.07 %, Ga 14.1 мкг/г, As 17.8 мкг/г, Sr 343 мкг/г;
- р. Или: Ca 6.8 %, Zr 323 мкг/г, Y 29 мкг/г;
- р. Текес: K-2.1 %, Ca-7.9 %, Br-14.5 мкг/г, Zn-60 мкг/г, Pb-19 мкг/г, U-4.0 мкг/г, Th-10.7 мкг/г;
- p. IIIy: K-2.3 %, Fe -3.04 %, Ga -14.6 Mkg/r, Rb -113 Mkg/r, Y -27 Mkg/r, Nb -13.1 Mkg/r, Ba -417 Mkg/r, Pb -18 Mkg/r, Th -11.6 Mkg/r, U -5.0 Mkg/r;
- р. Карабалта: K 2.06 %, Ca 5.1 %, V- 150 мкг/г, Fe 3.42 %, Zn 55 мкг/г, Ga 13.8 мкг/г, As 17 мкг/г, Sr 365 мкг/г, U 4.2 мкг/г;
- р. Талас: Ca 7.1 %, Zn 54 мкг/г, Br 11.9 мкг/г, Sr 338 мкг/г, U 4.0 мкг/г;
- р. Сырдарья: Ca 8.2 %, Zn 54 мкг/г, Pb 17мкг/г.

Из приведенных данных следует, что в отчетный период наиболее загрязненными химическими элементами являлись русла следующих рек: р. Иртыш (PR, весенний сезон) - источником загрязнения, вероятнее всего, являются хранилища отходов промышленных предприятий Восточно-Казахстанской области; трансграничные с КНР реки (весенний сезон) Эмель, Или, Текес — источники загрязнения не известны; реки Шу, Карабалта (весенний и осенний сезоны) - источником загрязнения, наиболее вероятно, являются отходы промышленной переработки руды на месторождении Ак-Тюз и хранилище радиоактивных отходов на ГРК «Кара-Балта»; а также р. Талас (весенний сезон) - источник загрязнения не известен.

На рисунке 6 в виде графиков представлены значения концентрации изотопов урана U-238 и U-234 в водах всех контролируемых трансграничных рек Казахстана весной и осенью 2018г. Видно, что наибольшие значения концентрации этих радионуклидов соответствуют рекам Южного и Юго-Восточного Казахстана: р. Шу, р. Эмель, р. Сырдарья и, особенно, р. Карабалта. Тем не менее, необходимо отметить, что их содержание по радиационному признаку не представляет опасности для живых организмов и окружающей среды, поскольку наибольшее значение концентрации радионуклида U-234 в р. Карабалта весной (416 мБк/л) и осенью (684 мБк/л) 2018 г. составляют весьма незначительную долю (0.149 и 0.244, соответственно) от санитарного норматива РК «Уровень вмешательства» для этого радионуклида в воде (2.8 Бк/л). Вместе с тем, учитывая значительное количество радиоактивных отходов, наработанных специализированными

предприятиями (Кара-Балта, Ак-Тюз, Востокредмет и др.), находящимися в бассейнах этих рек, необходим постоянный контроль радионуклидного и элементного состава их вод.

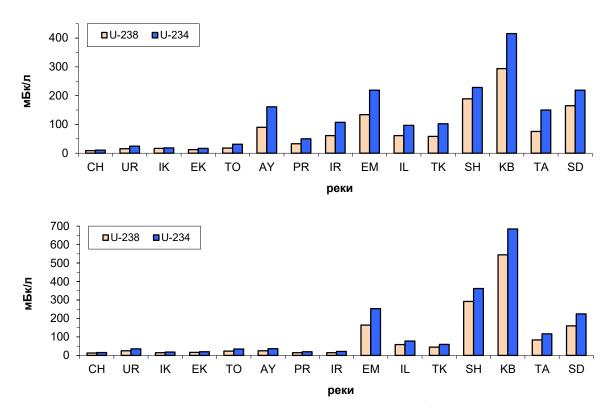


Рис. 6. Результаты радиохимического анализа проб воды, отобранных в бассейнах трансграничных рек Казахстана весной (вверху) и осенью (внизу) 2018 г

Результаты микроэлементного анализа методами МС-ИСП и НАА проб воды, отобранных весной и осенью 2018 г. на всех КП (Приложения 17,18, 23, 24), показали, что воды многих рек содержат в себе изученные элементы на уровне, соответствующем их естественной распространенности. Вместе с тем, можно отметить, что наибольшее содержание U (до 43 мкг/л), Мо (до 30 мкг/л), Sr (до 5280 мкг/л) и Ва (до 95 мкг/л) наблюдается в водах рек Южного и Юго-Восточного Казахстана: р. Эмель, р. Шу, р. Карабалта, р. Сырдарья (рисунки 7, 8).

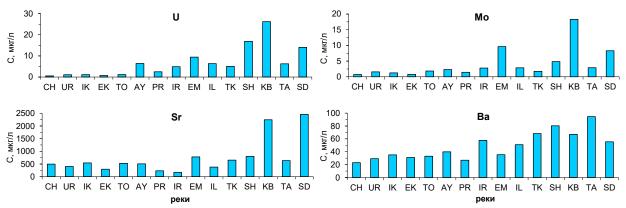


Рис. 7. Содержание U, Mo, Sr, Ba в водах трансграничных рек Казахстана весной 2018 г. (данные МС-ИСП, 23-я экспедиция)

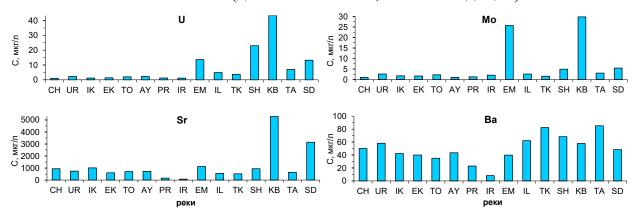


Рис. 8. Содержание U, Mo, Sr, Ba в водах трансграничных рек Казахстана осенью 2018 г. (данные МС-ИСП, 24-я экспедиция)

По данным МС-ИСП установлено, что в весенний период воды следующих рек содержат в себе большие значения концентрации элементов – примесей, отдельные из которых сопоставимы со значениями ПДКРК [Об правил "Санитарно-эпидемиологические утверждении Санитарных требования к водоисточникам, местам водозабора для хозяйственноцелей. хозяйственно-питьевому водоснабжению культурно-бытового водопользования и безопасности водных объектов" Приказ Министра национальной экономики Республики Казахстан от 16 марта 2015 года № 209. Зарегистрирован в Министерстве юстиции Республики Казахстан 22 апреля 2015 года № 10774] и (или) ПДКвоз [Guidelines for Drinking Water Quality: incorporating first addendum, Third Edition, World Health Organization. Recommendations – Switzerland, 2013, 595 р.], мкг/г:

- р. Урал (UR): P 57.1, $Zn (\Pi \cancel{\Pi} \cancel{K}_{PK}, Zn^{2+} = 5000, \Pi \cancel{\Pi} \cancel{K}_{BO3} = 10) 11.6$,
 - B (ПД K_{PK} = 500, ПД K_{BO3} = 2400) 178;
- \circ р. Илек (IK): As (ПДК $_{PK} = 50$, ПДК $_{BO3} = 10$) -2.97, P-131, B-141,
 - Li 13.7, K 6.53 мг/л;
- \circ р. Илек (ЕК): Се (ПДК нет) -0.75, Со (ПДК $_{PK} = 100$) -0.95, La (ПДК нет) -
 - 0.34, Nd (ПДК нет) 0.39, P 76.3, Al (ПДК $_{PK}$ = 500) 143, Fe (ПДК нет) 422, Mn (ПДК $_{PK}$ = 100, ПДК $_{BO3}$ = 400) 162;
- р. Тобол (ТО): Co -0.49, Cr (ПДК_{РК}, Cr⁶⁺ = 50, ПДК_{ВОЗ} = 50) -4.36,
 - Ni (ПД $K_{PK} = 100$, ПД $K_{BO3} = 70$) 5.97, Mn 389;
- p. Ast (AY): Fe -226, Mn -57.9;
- р. Иртыш (IR): Ce -0.23, Cu -6.7, La -0.12, Pb (ПДК_{РК} = 30, ПДК_{ВОЗ} = 10) -15.7, Zn -12.7, Al -108, Fe -140;
- р. Эмель (ЕМ): As -2.75, Mo -9.63, U (ПДК_{ВОЗ} = 30) -9.44, B -205, Sr (ПДК_{РК}, Sr²⁺ = 7000) -781, Ca (ПДК нет) -76.6 мг/л;
- р. Или (IL): Cr 4.16, Al 55.3, Ba 51;
- p. Tekec (TK): Ba − 68.2;
- p. IIIy (SH): U 16.9, Ba 80.4, Sr 800, Ca 74.6 MF/ π ;
- р. Карабалта (КВ): As -3.41, Mo -18.3, U -26.2, Al -59.5, B -153, Ba -66.9, Li -24.9, Sr -2243, Ca -94.7 мг/л, K -6.46 мг/л, Mg (ПДК нет) -61.4 мг/л;
- р. Талас (TA): Ag 0.45, Ba 94.6;
- р. Сырдарья (SD): Cr 6.4, Mo 8.31, U 14, Li 23.2, Sr 2454, Mg 59.2 мг/л.

В осенний период воды следующих рек содержат в себе отдельные элементыпримеси на уровне их концентраций, близких к значению ПДК:

- р. Чаган (CH): As $(\Pi \coprod K_{PK} = 50 \text{ мкг/л}, \Pi \coprod K_{BO3} = 10 \text{ мкг/л}) 4.97 \text{ мкг/л},$
 - Li $(\Pi \coprod K_{PK} = 30 \text{ мкг/л}) 34.6 \text{ мкг/л},$
 - $P (\Pi \coprod K_{PK}, \phi o c \phi o p элементарный = 0.1 мкг/л) 178 мкг/л,$
 - Zn (ПД K_{PK} , Zn²⁺ = 5000 мкг/л, ПД K_{BO3} = 10 мкг/л) 8.0 мкг/л;
- р. Урал (UR): Zn 6.85 мкг/л;
- р. Илек (ІК): $Cr (\Pi Д K_{PK}, Cr^{6+} = 50 \text{ мкг/л}, \Pi Д K_{BO3} = 50 \text{ мкг/л}) 9.04 \text{ мкг/л};$
 - Sr (ПДК_{РК}, $Sr^{2+} = 7000 \text{ мкг/л}$) -1014 мкг/л, Li -28.9 мкг/л;
- р. Илек (ЕК): Al (ПД K_{PK} , Al³⁺ = 500 мкг/л) 48 мкг/л,
 - Mn (ПДК $_{PK}=100$ мкг/л, ПДК $_{BO3}=400$ мкг/л) 72 мкг/л;
 - Fe (ПД $K_{PK} = 300 \text{ мкг/л}$, ПД $K_{BO3} = 2000 \text{ мкг/л}$) 102 мкг/л;
- р. Тобол (ТО): Al -35.8 мкг/л, Li -28.1 мкг/л, P -205 мкг/л;
- р. Эмель (EM): В (ПД $K_{PK} = 500 \text{ мкг/л}$, ПД $K_{BO3} = 500 \text{ мкг/л}$) 392 мкг/л,
 - $Mo (\Pi \coprod K_{PK}) = 250 \text{ мкг/л}, \Pi \coprod K_{BO3} = 70 \text{ мкг/л}) 25.7 \text{ мкг/л},$
 - U (ПД $K_{BO3} = 30 \text{ мкг/л}) 13.6 \text{ мкг/л};$
 - Sr 1129 мкг/л, Fe 80.1 мкг/л, As 4.25 мкг/л;
- р. Текес (ТК): Ва (ПД K_{PK} , Ва²⁺ = 100 мкг/л, ПД K_{BO3} = 700 мкг/л) 82.4 мкг/л;

• p. Шу (SH): U - 23 мкг/л;

• р. Карабалта (КВ): As -4.87 мкг/л, B -367 мкг/л, Li -63.8 мкг/л, Mo -29.8 мкг/л, Sr -5280 мкг/л, U -43.3 мкг/л;

• р. Талас (TA): Ba – 85.2 мкг/л, U – 6.93 мкг/л;

• р. Сырдарья (SD): B - 353 мкг/л, Li - 34.7 мкг/л, Sr - 3151 мкг/л, U - 13.2 мкг/л.

Считаем необходимым еще раз отметить следующее важное обстоятельство. В нормативных документах Республики Казахстан не приведено значение ПДК для урана (как химического элемента) в воде. Вместе с тем, в соответствии с рекомендациями Всемирной организации здравоохранения (ВОЗ) по химической опасности уран отнесен к 1-му классу и для его содержания в питьевой воде установлено значение ПДК=30 мкг/л. Принимая во внимание этот норматив, следует отметить, что (по данным анализа методом МС-ИСП проб воды 24-ой экспедиции, Приложение 24) содержание урана в воде реки Карабалта (43.3 мкг/л) в 1.44 раза превышает значение ПДК=30 мкг/л.

В соответствии с Санитарными правилами РК вещества 1-го и 2-го классов опасности обладают свойством суммации, то есть при наличии нескольких веществ опасного класса вычисляется суммарный показатель загрязнения - лимитирующий показатель вредности

$$K_{\Pi\Pi B} = \sum_{i=1}^{n} C_i / \Pi \coprod K_i$$
,

для которого сумма отношений обнаруженных концентраций элементов 1-го и 2-го класса опасности к значению их ПДК в воде не должна быть более 1.0. Следуя этому требованию, нами рассчитаны значения К_{ЛПВ} для вод, отобранных весной и осенью во всех изученных источниках. При этом во внимание принимался ограниченный список элементов 2-го класса опасности: Ag, Al, As, Sr, Mo, Ba, Pb, Sb, Li, B, V. Результаты приведены в таблицах 1 и 2.

Таблица 1. Значения $K_{_{ЛПВ}}$ вод трансграничных рек Казахстана по нормативам Республики Казахстан (данные МС-ИСП), 23 экспедиция

Код	Ag	Al	As	Sr	Mo	Ba	Pb	Sb	Li	В	V	Клп
проб	С/ПД	В										
Ы	К	К	K	K	К	К	К	К	К	К	К	(PK)
CH-	0,018											
23	0,016	0,023	0,039	0,071	0,003	0,23	0,004	0,232	0,41	0,157	0.043	1,23
UR-												
23		0,048	0,048	0,058	0,006	0,292	0,006		0,241	0,356	0.059	1,12
IK- 23			0,059	0,077	0,005	0,351	0,004	0,015	0,457	0,282	0.062	1,31
EK-												
23		0,286	0,029	0,042	0,003	0,311	0,029		0,246	0,191	0.041	1,18
TO-												
23		0,046	0,027	0,075	0,007	0,331	0,004		0,867	0,157	0.034	1,55
AY-												
23		0,039	0,029	0,072	0,009	0,399	0,004		0,33	0,097	0.029	1,01
PR-23		0,015	0,026	0,033	0,006	0,268			0,118	0,028	0.022	0,51

IR- 23 EM-		0,216	0,019	0,024	0,011	0,576	0,523	0,015	0,093	0,051	0.026	1,56
23			0,055	0,112	0,039	0,354	0,003	0,028	0,251	0,41	0.052	1,30
IL-23		0,111	0,036	0,054	0,011	0,51	0,004		0,165	0,102	0.045	1,05
TK-23		0,054	0,019	0,093	0,007	0,682	0,004		0,219	0,063	0.018	1,16
SH- 3		0,032	0,039	0,114	0,019	0,804	0,007	0,017	0,332	0,208	0.038	1,61
KB-												
23		0,119	0,068	0,32	0,073	0,669	0,003		0,83	0,306	0.042	2,43
TA-23	0,009	0,03	0,015	0,09	0,012	0,946			0,183	0,103	0.018	1,41
SD-23			0,041	0,351	0,033	0,554			0,773	0,362	0.052	2,16
ПДК,												
мкг/л	50	500	50	7000	250	100	30	50	30	500		

Таблица 2. Значения $K_{_{ЛПВ}}$ вод трансграничных рек Казахстана по нормативам Республики Казахстан (данные МС-ИСП), 24 экспедиция

Код пробы	Al, С/ПД К	As, С/ПД К	Sr, C/ПД К	Мо, С/ПДК	Ва, С/ПДК	Рь, С/ПДК	Sb, С/ПДК	Li, С/ПДК	В, С/ПДК	V, С/ПДК	К _{ЛП} В (РК)
CH-WD-24	0,016	0,099	0,135	0,004	0,500	0,008		1,153	0,458	0,0283	2,40
UR-WD-24	0,014	0,035	0,106	0,011	0,582	0,007		0,443	0,256	0,0331	1,49
IK-WD-24		0,012	0,145	0,007	0,423			0,963	0,442	0,0346	2,03
EK-WD-24	0,097	0,039	0,086	0,007	0,400	0,006	0,030	0,653	0,468	0,0211	1,81
TO-WD-24	0,072	0,092	0,101	0,009	0,350			0,937	0,352	0,0317	1,94
AY-WD-24		0,044	0,104	0,004	0,434			0,753	0,33	0,0248	1,69
PR-WD-24		0,034	0,023	0,005	0,230			0,099	0,0574	0,0168	0,47
IR-WD-24	0,013		0,012	0,009	0,081			0,059	0,046	0,0081	0,23
EM-WD-24	0,013	0,085	0,161	0,103	0,399	0,004	0,014	0,760	0,784	0,0339	2,36
IL-WD-24	0,016	0,055	0,079	0,011	0,622	0,003		0,267	0,1678	0,0179	1,24
TK-WD-24	0,061	0,017	0,075	0,006	0,824			0,214	0,055	0,0071	1,26
SH-WD-24		0,037	0,135	0,020	0,684			0,370	0,302	0,0214	1,57
KB-WD-24	0,041	0,097	0,754	0,119	0,578			2,127	0,734	0,0366	4,49
TA-WD-24	0,046	0,023	0,092	0,012	0,852		0,010	0,248	0,114	0,0149	1,41
SD-WD-24	0,045	0,054	0,450	0,022	0,483	0,003		1,157	0,706	0,0231	2,94
ПДК, мкг/л	500	50	7000	250	100	30	50	30	500	100	

Для сравнения такие же расчеты выполнены по значениям ПДК $_{\rm BO3}$ для следующих элементов 1-го и 2-го класса опасности: Ag, B, Pb, U, Sb, As, Mo, B (таблицы 3 и 4).

Таблица 3. Значения $K_{_{ЛПВ}}$ вод трансграничных рек Казахстана по нормативам ВОЗ (данные МС-ИСП), 23 экспедиция

	Ag	As	Mo	Ba	Pb	Sb	В	U	Клпв
Код пробы	С/ПДК	(BO3)							
CH-WD-23	0,455	0,193	0,011	0,033	0,013	0,58	0,033	0,018	1,335
UR-WD-23		0,242	0,022	0,042	0,019		0,074	0,036	0,435
IK-WD-23		0,297	0,018	0,05	0,013	0,038	0,059	0,037	0,512
EK-WD-23		0,147	0,011	0,044	0,086		0,04	0,024	0,353
TO-WD-23		0,136	0,027	0,047	0,013		0,033	0,039	0,295
AY-WD-23		0,147	0,033	0,057	0,012		0,02	0,214	0,483
PR-WD-23		0,129	0,021	0,038			0,006	0,083	0,277
IR-WD-23		0,096	0,04	0,082	1,57	0,039	0,011	0,162	1,999
EM-WD-23		0,275	0,138	0,051	0,009	0,069	0,085	0,315	0,941
IL-WD-23		0,181	0,041	0,073	0,012		0,021	0,211	0,539

TK-WD-23		0,093	0,025	0,097	0,013		0,013	0,168	0,41
SH-WD-23		0,195	0,069	0,115	0,021	0,043	0,043	0,563	1,049
KB-WD-23		0,341	0,261	0,096	0,009		0,064	0,873	1,644
TA-WD-23	0,225	0,075	0,042	0,135			0,021	0,208	0,707
SD-WD-23		0,205	0,119	0,079			0,075	0,467	0,945
ПДК, мкг/л	2	10	70	700	10	20	2400	30	

Таблица 4. Значения $K_{_{ЛПВ}}$ вод трансграничных рек Казахстана по нормативам ВОЗ (данные МС-ИСП), 24 экспедиция

	As,	Mo,	Ba,	Pb,	Sb,	В,	U,	Клпв
Код пробы	С/ПДК	(BO3)						
CH-WD-24	0,497	0,014	0,071	0,024		0,095	0,031	0,733
UR-WD-24	0,177	0,038	0,083	0,022		0,053	0,075	0,448
IK-WD-24	0,062	0,026	0,06			0,092	0,04	0,28
EK-WD-24	0,193	0,025	0,057	0,017	0,076	0,098	0,046	0,511
TO-WD-24	0,46	0,032	0,05			0,073	0,068	0,683
AY-WD-24	0,218	0,015	0,062			0,069	0,074	0,438
PR-WD-24	0,17	0,019	0,033			0,012	0,042	0,275
IR-WD-24		0,03	0,012			0,01	0,039	0,09
EM-WD-24	0,425	0,367	0,057	0,012	0,036	0,163	0,453	1,513
IL-WD-24	0,277	0,038	0,089	0,01		0,035	0,162	0,611
TK-WD-24	0,086	0,023	0,118			0,011	0,125	0,363
SH-WD-24	0,185	0,071	0,098			0,063	0,767	1,183
KB-WD-24	0,487	0,426	0,083			0,153	1,443	2,592
TA-WD-24	0,117	0,044	0,122		0,025	0,024	0,231	0,562
SD-WD-24	0,269	0,078	0,069	0,01		0,147	0,44	1,013
ПДК, мкг/л	10	70	700	10	20	2400	30	

Результаты, представленные в Таблицах 1-4, свидетельствуют о том, что по показателю $K_{\it лпв}$ воды трансграничных рек РК находятся в критическом состоянии. По нормативам РК показатель $K_{\it лпв}$ для вод этих рек весной на 14-ти контрольных пунктах (КП) и осенью — на 13-ти КП из 15-ти превышает санитарное значение 1.0. По нормам вОЗ превышение показателя $K_{\it лпв}$ наблюдается весной и осенью на 4-х КП трансграничных рек Казахстана. При этом существенный вклад в показатель $K_{\it лпв}$ вносит уран. Существенное различие в показателях $K_{\it лпв}$ воз и РК объясняется введением вОЗ новых временных нормативов ПДК для U (30 мкг/л, вместо 15 мкг/л) и в (2400 мкг/л, вместо 500 мкг/л).

К изложенному следует добавить, что по данным элементного анализа, полученным методом РФА, послойных проб почвы, отобранных в процессе 21-ой и 22-ой экспедиций, было установлено изменение концентрации хрома по мере продвижения в глубину почвы на побережье р. Урал (UR). В связи с этим, по согласованию заказчика и исполнителя, было принято решение о необходимости продолжения изучения характера его распределения (как по глубине, так и по площади) на берегу этой реки. Для этого, в процессе 23-ей и 24-ой экспедиций, были заложены 4 шурфа глубиной до 1 м, из которых были отобраны пробы почвы по следующим 11 слоям, см: 0-5, 5-10, 10-20, 20-30, 30-40, 40-50, 50-60, 60-70, 70-80, 80-90, 90-100. При этом, основной

шурф «А» был заложен на месте отбора проб почвы. Второй шурф «В» был размещен на расстоянии ~ 50 м от шурфа «А» выше по течению и вдоль р. Урал, третий шурф «С» — также на расстоянии 50 м от шурфа «А» вдоль р. Урал, но ниже по течению. Четвертый шурф «D» был заложен на расстоянии 50 м от шурфа «А» в направлении, противоположном р. Урал.

Результаты анализа методом РФА этих проб почвы, отобранных весной и осенью 2018 г. (23 и 24 экспедиции) представлены в Приложениях 25 и 26.

На рисунке 9 приведено распределения Cr по глубине почвенного слоя в каждом из четырех шурфов в весенний и осенний сезоны 2018 г.

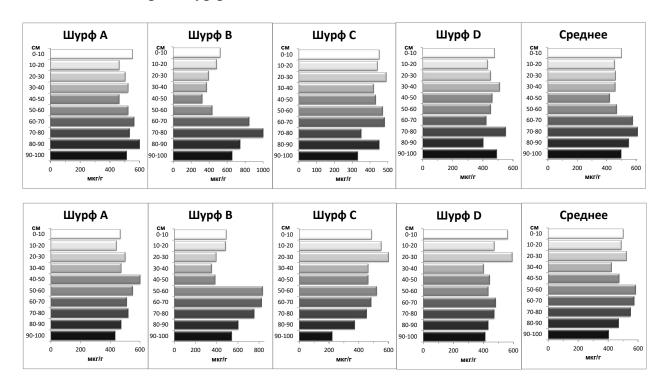


Рис.9 – Распределение хрома по глубине почвенного слоя в отдельных шурфах на берегу р. Урал весной (вверху) и осенью (внизу) 2018 г.

Значительных сезонных различий в характере распределения этого элемента (для каждого шурфа) не наблюдается. Вместе с тем, можно отметить существенное отличие характера распределений Сr по глубине почвы в шурфе «В», по сравнению с другими шурфами.

Желательно продолжить это исследование весной и осенью 2019 г. Для этого в процессе 25-ой и 26-ой экспедиций нужно заложить 4 шурфа глубиной до 1 м, их которых отобрать пробы почвы по следующим по следующим 11 слоям, см: 0-5, 5-10, 10-20, 20-30, 30-40, 40-50, 50-60, 60-70, 70-80, 80-90, 90-100. Основной шурф «В» необходимо заложить близ того места, где он был заложен в 2018 г. Второй шурф «Е» нужно заложить на расстоянии ~ 50 м от шурфа «В» вдоль реки Урал и выше по течению (на расстоянии от берега примерно таком же, на котором находится шурф «В»). Третий шурф «Г» - также на расстоянии 50 м от от шурфа «Е» и выше по течению р. Урал (расстояние от берега такое же, как у шурфов «В» и «Е»). Четвертый шурф «G» необходимо заложить на расстоянии ~ 50 м от шурфа

«Е» в направлении, противоположном берегу р. Урал. Продолжение исследования в соответствии с этим планом будет способствовать выявлению источников и пониманию механизмов, сформировавших аномальное содержание хрома на той территории.

3. Основные результаты и выводы

- 1. Методом инструментальной гамма-спектрометрии (ИГС) выполнен радионуклидный анализ образцов почвы, донных отложений, а также растворимых и нерастворимых компонентов образцов воды, отобранных на 15-ти КП в бассейнах трансграничных рек Казахстана весной (23-я экспедиция) и осенью (24-я экспедиция) 2018 г.
- 2. Методом рентгенофлуоресцентного анализа (РФА) выполнено определение элементного состава образцов почвы и донных отложений, отобранных на 15-ти КП в бассейнах трансграничных рек Казахстана весной (23-я экспедиция) и осенью (24-я экспедиция) 2018 г.
- 3. Методом нейтроноактивационного (HAA) анализа выполнено определение элементного образцов почвы состава И донных отложений, а также растворимых (WD) и нерастворимых (WS) компонентов образцов воды, отобранных на 15-ти КП в бассейнах трансграничных рек Казахстана весной (23-я экспедиция) и осенью (24я экспедиция) 2018 г.
- 4. Методом радиохимического анализа (РХА) определены концентрации радионуклидов U-234, U-238 и Ra-226 в растворимых компонентах (WD) образцов воды, отобранных на 15-ти КП в бассейнах трансграничных рек Казахстана весной (23-я экспедиция) и осенью (24-я экспедиция) 2018 г.
- 5. Методом масс-спектрометрии с индуктивно-связанной плазмой (МС-ИСП) выполнен элементный анализ растворимых (WD) компонентов образцов воды, отобранных на 15-ти КП в бассейнах трансграничных рек Казахстана весной (23-я экспедиция) и осенью (24-я экспедиция) 2018 г.
- 6. На основе новых данных, полученных методом ИГС, подтвержден ранее сделанный вывод о том, что среди мониторинговых КП наибольшие значения концентрации естественных радионуклидов соответствуют почвам и донным отложениям рек Южного и Юго-Восточного Казахстана: Текес, Или, Шу, Карабалта, Талас, Сырдарья. Кроме того, значительное содержание ЕРН обнаружено в донных отложениях р. Иртыш (PR) близ границы с Россией. На этом КП содержание в донных отложениях практически всех ЕРН семейств ²³⁸U и ²³²Th примерно в 2 раза больше, чем в верховье этой реки на

- контрольном пункте IR. Это означает, что р. Иртыш загрязняется этими EPH на территории Казахстана.
- 7. На основе новых данных, полученных методами РФА и НАА, подтвержден ранее сделанный вывод о том, что наибольшее содержание щелочных и щелочноземельных элементов (K, Ca, Rb, Cs, Sr, Ba) наблюдается в почве и донных отложениях рек Южного и Юго-Восточного Казахстана. В донных отложениях, отобранных в р. Иртыш на контрольном пункте PR, обнаружено наличие в повышенных (в 2-4 раза больше, чем на контрольном пункте IR) концентрациях более 20-ти элементов, включая РЗМ и такие токсичные элементы, как As, Zn, Sb, U. Показано также, что наиболее загрязненными химическими элементами являются русла рек Иртыш (Павлодарская область), р. Эмель, р. Или, р. Текес, р. Шу, р. Карабалта и р. Талас. Для выявления источников и выяснения механизмов загрязнения всех этих рек необходимо проведение специальных дополнительных исследований.
- 8. На основе новых данных, полученных методом радиохимического анализа (РХА), подтвержден ранее сделанный вывод о том, что наибольшее значение содержания изотопов урана U-234 и U-238 соответствует водам рек Южного, Восточного и Юго-Восточного Казахстана: р. Карабалта, р. Шу, р. Эмель, р. Сырдарья. Вместе с тем, показано, что по радиационному признаку это загрязнение не представляет опасности для живых организмов и окружающей среды.
- 9. На основе новых данных, полученных методами НАА и МС-ИСП, подтвержден ранее сделанный вывод о том, что водам рек Южного и Юго-Восточного Казахстана (Эмель, Шу, Карабалта и Сырдарья) соответствует значительное содержания таких токсичных элементов, как Li, B, Sr, Мо и U. Установлено также, что, в соответствии с нормативами РК, показатель суммарной токсичности речных вод на многих контрольных пунктах превышает нормативное значение, предусмотренное Санитарными правилами РК. Такие воды не могут быть использованы для питья без согласования с соответствующими надзорными органами РК.
- 10.Методом РФА определен элементный состав проб почвы, отобранных (шурфы) весной и осенью на 4-х участках побережья р. Урал. Во всех изученных пробах почвы установлено повышенное содержание хрома. Обнаружены отдельные особенности вертикального и площадного распределения Сг на обследованном пространстве. Для выяснения природы и механизмов, сформировавших выявленные аномалии, намечен план продолжения этого исследования.

Приложение 1 Результаты гамма-спектрометрического анализа проб почвы, отобранных в бассейнах трансграничных рек Казахстана весной 2018 г. (23-я экспедиция)

Образец	Th-234, Бк/кг	Ra-226, Бк/кг	Pb-214, Бк/кг	Ві-214, Бк/кг	Pb-210, Бк/кг	Ас-228, Бк/кг	Ra-224, Бк/кг	Pb-212, Бк/кг	Ві-212, Бк/кг	Tl-208, Бк/кг
CH-S23	$31,1 \pm 9,1$	33.9 ± 5.4	$19,1 \pm 2,6$	$18,4 \pm 2,3$	< 47	$35,1 \pm 4,0$	$31,0 \pm 5,4$	$35,4 \pm 3,8$	$35,3 \pm 5,8$	$42,2 \pm 3,6$
UR-S23	$25,5 \pm 3,1$	24.9 ± 3.1	$17,7 \pm 1,8$	$19,3 \pm 2,7$	37 ± 10	24.8 ± 3.2	$24,9 \pm 3,8$	$26,2 \pm 3,4$	$20,4 \pm 2,9$	$25,8 \pm 2,9$
IK-S23	$21,1\pm3,5$	$18,8\pm8,4$	$15,3 \pm 2,6$	$15,3 \pm 2,2$	$49,5 \pm 5,5$	$23,6 \pm 4,3$	< 14,0	23.8 ± 3.8	< 8,7	$25,2 \pm 3,8$
EK-S23	$29,7\pm10,3$	< 6,3	$5,9 \pm 1,8$	$5,1 \pm 2,9$	89 ± 37	$7,9 \pm 3,3$	$9,2 \pm 4,2$	$5,5 \pm 3,4$	$8,8 \pm 4,5$	$12,4 \pm 2,9$
TO-S23	$20,6\pm3,7$	$19,6 \pm 3,7$	$15,6 \pm 2,0$	$14,9 \pm 2,8$	31 ± 12	$21,1 \pm 3,4$	$21,0 \pm 4,4$	$22,6 \pm 3,5$	$16,8 \pm 4,7$	$22,7 \pm 3,1$
AY-S23	$21{,}7\pm6{,}9$	$36,2\pm3,7$	$19,9 \pm 2,1$	$18,9 \pm 2,2$	48 ± 27	$25,6 \pm 3,2$	$27,6 \pm 3,9$	$24,7 \pm 3,5$	$30,0 \pm 4,2$	$31,3 \pm 3,0$
PR-S23	< 18,2	$19,0\pm4,6$	$13,9 \pm 2,3$	$13,0 \pm 2,1$	83 ± 38	$22,1 \pm 3,6$	$18,9 \pm 4,8$	$22,0\pm3,7$	$32,7\pm5,5$	$27,8\pm3,3$
IR-S23	$29,\!4\pm10,\!5$	$26,7\pm5,2$	$21,0 \pm 2,7$	$20,2 \pm 2,3$	< 66	$34,5\pm4,0$	$39,7 \pm 5,6$	$31,9 \pm 3,8$	$45,2 \pm 5,2$	$36,8 \pm 3,6$
EM-S23	$21,9\pm3,4$	$22,9\pm3,3$	$17,1 \pm 1,9$	$17,\!4\pm2,\!8$	29 ± 11	$16,0 \pm 3,1$	$19,8\pm4,0$	$18,0 \pm 3,4$	$15,5\pm4,1$	$16,3 \pm 2,9$
IL-S23	$38,0 \pm 5,5$	$37,6 \pm 5,5$	$32,4 \pm 2,7$	$31,3 \pm 2,4$	49 ± 17	$34,9 \pm 4,1$	$41,3\pm5,0$	$35,8 \pm 3,8$	$28,5\pm5,1$	$36,1\pm3,6$
TK-S23	$64,0\pm10,1$	$37,2\pm7,2$	$31,9 \pm 2,9$	$30,\!4\pm2,\!6$	318 ± 43	$46,9 \pm 4,6$	$45,2\pm6,4$	$53,8 \pm 4,1$	$39,8\pm6,0$	$50,2 \pm 2,1$
SH-S23	$44,4\pm5,8$	$42,2 \pm 5,6$	37.8 ± 2.7	$37,1 \pm 2,5$	69 ± 18	$48,6\pm4,2$	$54,0\pm5,3$	$51,2\pm4,9$	$56,2 \pm 5,4$	$53,7\pm3,8$
KB-S23	$38,\!4\pm5,\!5$	$40,8\pm5,3$	$29,7\pm2,5$	$30,9\pm2,4$	41 ± 17	$40,0\pm4,1$	$39,9 \pm 5,9$	$40,1\pm3,8$	$42,7\pm5,2$	$41,\!8\pm3,\!7$
TA-S23	$51,5 \pm 11,8$	$17,8\pm5,1$	$24,1\pm2,7$	$20,9\pm2,3$	< 46	$33,9\pm3,9$	$43,9\pm6,2$	$36,9\pm3,8$	$40,\!4\pm5,\!8$	$45,5\pm3,6$
SD-S23	$39,8 \pm 10,6$	$27,5 \pm 5,4$	$27,4 \pm 2,8$	$26,5 \pm 2,5$	< 46	$40,6\pm4,1$	$35,0 \pm 5,6$	$36,1 \pm 3,8$	$42,7\pm5,1$	$44,6 \pm 3,7$

Образец	TH-227,	U-235,	Cs-137,	K-40,
	Бк/кг	Бк/кг	Бк/кг	Бк/кг
CH-S23	< 1,94	$1,\!30\pm0,\!32$	< 0,43	734 ± 47
UR-S23	< 1,1	$1,21 \pm 0,19$	$6,5 \pm 0,3$	510 ± 41
IK-S23	$3,7 \pm 1,8$	$1,02 \pm 0,52$	$12,9 \pm 0,6$	450 ± 48
EK-S23	$1,95 \pm 1,00$	$1,30 \pm 0,26$	< 0,38	202 ± 41
TO-S23	< 1,4	$1,00 \pm 0,23$	$6,8 \pm 0,4$	388 ± 43
AY-S23	$1,91 \pm 0,80$	$1,04 \pm 0,22$	$2,93 \pm 0,23$	375 ± 40
PR-S23	< 1,8	$0,64 \pm 0,28$	$1,40 \pm 0,28$	530 ± 45
IR-S23	< 1,93	$1,35 \pm 0,32$	$3,56 \pm 0,36$	596 ± 47
EM-S23	< 1,3	$1,00 \pm 0,20$	< 0,3	590 ± 42
IL-S23	$3,4 \pm 1,2$	$1,71 \pm 0,34$	$4,3 \pm 0,4$	603 ± 49
TK-S23	$4,2 \pm 1,6$	$2,88 \pm 0,46$	$3,9 \pm 0,5$	642 ± 21
SH-S23	$2,3 \pm 1,2$	$2,09 \pm 0,34$	0.9 ± 0.3	748 ± 49
KB-S23	< 1,9	$1,75 \pm 0,32$	$1,3 \pm 0,3$	674 ± 49
TA-S23	$4,2 \pm 1,4$	$1,98 \pm 0,32$	< 0,39	676 ± 56
SD-S23	$2,9 \pm 1,2$	$1,79 \pm 0,33$	$2,54 \pm 0,34$	515 ± 46

Результаты гамма-спектрометрического анализа проб почвы, отобранных в бассейнах трансграничных рек Казахстана осенью 2018 г. (24-я экспедиция)

Образец	Th-234, Бк/кг	Ra226 Бк/кг	Рb-214, Бк/кг	Ві-214, Бк/кг	Рb-210, Бк/кг	Ас-228, Бк/кг	Ra-224, Бк/кг	Pb-212, Бк/кг	Ві-212, Бк/кг	T1-208, Бк/кг	U-235, Бк/кг
CH-S24	$13,3 \pm 7,9$	$20,7 \pm 2,1$	$17,2 \pm 1,7$	$14,7 \pm 1,5$	< 60,9	$29,8 \pm 3$	$29,8 \pm 4,0$	$29,7 \pm 3$	$35,3 \pm 4,5$	$35,5 \pm 3,6$	0.6 ± 0.3
UR-S24	$30,8 \pm 6,2$	$21,7 \pm 2,3$	$17,7 \pm 1,8$	$15,8 \pm 1,6$	$73,4 \pm 12,3$	$28,5 \pm 2,9$	$32,7 \pm 4,3$	$26,5 \pm 2,7$	$24,7 \pm 3,3$	$28,1 \pm 2,8$	$1,4 \pm 0,3$
IK-S24	$20,7 \pm 3,3$	$24,5 \pm 2,5$	$19,3 \pm 1,9$	$18,5\pm1,9$	$21,1 \pm 4,4$	$23,9 \pm 2,4$	$29,0 \pm 4,0$	$23,8 \pm 2,4$	$27,0 \pm 4,4$	$20,3 \pm 2$	$1,0 \pm 0,3$
EK-S24	$15,6 \pm 2,1$	$15,8 \pm 1,6$	$13,6 \pm 1,4$	$10,8\pm1,1$	$18,8 \pm 3,1$	$4,3 \pm 0,4$	$7,7 \pm 2,2$	$5,5 \pm 0,6$	< 3,8	$5,1 \pm 0,5$	$0,7\pm0,2$
TO-S24	$17,7 \pm 4,8$	$22,7 \pm 2,3$	$17,3 \pm 1,7$	$17,7\pm1,8$	$60,0 \pm 15,6$	$21,8 \pm 2,2$	$25,4 \pm 4,9$	$24,3 \pm 2,4$	$32,3 \pm 5,3$	$27,3 \pm 2,7$	0.8 ± 0.3
AY-S24	$15,0 \pm 2,8$	$17,5 \pm 1,8$	$14,9 \pm 1,5$	$12,1 \pm 1,2$	$36,7 \pm 4,4$	$19,2 \pm 1,9$	$11,1 \pm 6,1$	$20,0 \pm 2$	$11,9 \pm 4,6$	$24,7 \pm 2,5$	0.7 ± 0.4
PR-S24	$20,0 \pm 3,1$	$19,1 \pm 1,9$	$14,4 \pm 1,4$	$15,0\pm1,5$	$48,9 \pm 9,8$	$23,8 \pm 2,4$	$26,7 \pm 2,9$	$23,4 \pm 2,3$	$24,3 \pm 3,1$	$22,4 \pm 2,2$	0.9 ± 0.2
IR-S24	$23,9 \pm 4,4$	$30,1 \pm 3$	$23,5 \pm 2,4$	$22,9 \pm 2,3$	$64,2 \pm 14,1$	$29,5 \pm 3$	$35,4 \pm 4,4$	$32,0 \pm 3,2$	$43,2 \pm 4,7$	$32,5 \pm 3,3$	$1,1 \pm 0,3$
EM-S24	$13,0 \pm 7,3$	$21,7 \pm 2,2$	$18,5 \pm 1,9$	$15,0\pm1,5$	$88,6 \pm 36,0$	$19,5 \pm 2$	$23,3 \pm 3,5$	$18,5 \pm 1,9$	$24,8 \pm 3,9$	$25,9 \pm 2,6$	0.6 ± 0.3
IL-S24	$34,8 \pm 3,8$	$37,8 \pm 3,8$	$29,8 \pm 3$	$28,\!4\pm2,\!8$	$53,0 \pm 5,3$	$40,2\pm4$	$36,3 \pm 4,3$	$42,5 \pm 4,3$	$43,1 \pm 4,9$	$41,1\pm4,1$	$1,6 \pm 0,3$
TK-S24	$31,1 \pm 3,8$	$40,9 \pm 4,1$	$30,9 \pm 3,1$	$32,1 \pm 3,2$	$80,3 \pm 5,8$	$64,3 \pm 6,4$	$62,2 \pm 4,8$	$67,8 \pm 6,8$	$61,9 \pm 5,4$	$63,9 \pm 6,4$	$1,4 \pm 0,3$
SH-S24	$48,2 \pm 8,7$	$34,0 \pm 3,4$	$27,5 \pm 2,8$	$24,9 \pm 2,5$	< 64,9	$38,2 \pm 3,8$	$38,5 \pm 4,1$	$37,4 \pm 3,7$	$50,7 \pm 4,6$	$43,8\pm4,4$	$2,2 \pm 0,3$
KB-S24	$27,3 \pm 6,4$	$42,1\pm4,2$	$34,3 \pm 3,4$	$30,6 \pm 3,1$	$50,\!4\pm29,\!4$	$50,7 \pm 5,1$	$46,7 \pm 3,3$	$50,2 \pm 5$	$54,6 \pm 3,6$	$56,\!4\pm5,\!6$	$1,2 \pm 0,2$
TA-S24	$38,3 \pm 4,1$	$37,3 \pm 3,7$	$30,1 \pm 3$	$27,3\pm2,7$	$44,0 \pm 5,4$	$38,9 \pm 3,9$	$53,\!4\pm4,\!9$	$40,9\pm4,1$	$41,5 \pm 5,2$	$40,1\pm4$	$1,7\pm0,3$
SD-S24	$55,1\pm7,2$	$49,\!4\pm4,\!9$	$39,4 \pm 3,9$	$36,7\pm3,7$	$59,2\pm20,6$	$41,6 \pm 4,2$	$40,9\pm6,6$	$41,5 \pm 4,2$	$53,1 \pm 7,1$	$38,7\pm3,9$	$2,5 \pm 0,5$

	TH-227,	K-40,	Cs-137,
Образец	Бк/кг	Бк/кг	Бк/кг
CH-S24	< 1,8	714 ± 71	< 0,4
UR-S24	< 2,4	554 ± 57	$13,0 \pm 0,7$
IK-S24	$2,2 \pm 1,0$	518 ± 52	$5,4\pm0,4$
EK-S24	< 1,0	$125\ \pm 13$	< 0,3
TO-S24	< 2,0	$535\ \pm 54$	$4,8\pm0,5$
AY-S24	< 2,5	$463\ \pm 46$	$5,2\pm0,4$
PR-S24	< 1,2	$623\ \pm 62$	$2,5\pm0,2$
IR-S24	$2,3 \pm 1,1$	$692\ \pm 69$	$8,5\pm0,5$
EM-S24	$1,7\pm1,0$	$564\ \pm 56$	< 0,4
IL-S24	$2,5 \pm 1,1$	$670\ \pm 67$	$1,6 \pm 0,3$
TK-S24	< 1,7	$949\ \pm 95$	$1,3 \pm 0,3$
SH-S24	$3,2 \pm 1,1$	$625\ \pm 63$	< 0,3
KB-S24	$3,1\pm0,8$	$742\ \pm74$	$5,3\pm0,3$
TA-S24	< 1,7	$723\ \pm 72$	$4,2\pm0,4$
SD-S24	$3,5 \pm 1,6$	$713\ \pm71$	< 0,6
•	•	•	<u> </u>

Результаты гамма-спектрометрического анализа проб донных отложений, отобранных в бассейнах трансграничных рек Казахстана весной 2018 г. (23-я экспедиция)

Образец	Th-234, Бк/кг	Ra-226, Бк/кг	Pb-214, Бк/кг	Ві-214, Бк/кг	Pb-210, Бк/кг	Ас-228, Бк/кг	Ra-224, Бк/кг	Рb-212, Бк/кг	Ві-212, Бк/кг	Tl-208, Бк/кг	ТН-227, Бк/кг
CH-B23	$14,1 \pm 7,1$	$28,1 \pm 3,6$	$13,3 \pm 2,0$	$12,4 \pm 2,8$	59 ± 28	$19,6 \pm 3,2$	$24,9 \pm 3,9$	$20,8 \pm 3,5$	$17,2 \pm 4,1$	$26,4 \pm 2,9$	$1,60 \pm 0,81$
UR-B23	< 12,4	$31,\!4\pm5,\!4$	$18,\!2\pm2,\!4$	$19,2\pm2,2$	75 ± 18	$25,9\pm3,9$	$29,0\pm5,9$	$23,9\pm3,7$	$22,7\pm5,1$	$26,0\pm3,5$	< 2,0
IK-B23	$20,7\pm2,0$	$32,0\pm4,8$	$15,9\pm1,9$	$14,8\pm2,7$	$40,2\pm3,1$	$22,5\pm3,3$	$24,3\pm5,9$	$25,8\pm3,5$	$21,8\pm4,2$	$28,3\pm3,0$	$2,8\pm1,0$
EK-B23	< 8,5	$16,5\pm3,0$	9.8 ± 1.9	$10,\!2\pm2,\!7$	< 42	$10,1\pm2,9$	$7,0\pm3,2$	$8,3\pm3,3$	$7,6\pm2,5$	$13,2\pm2,7$	< 1,67
TO-B23	$16,5\pm3,5$	$19,9\pm3,5$	$14{,}7\pm1{,}9$	$14,1\pm2,8$	37 ± 11	$22,1\pm3,3$	$18,7 \pm 4,2$	$21,2\pm3,5$	$12,\!4\pm4,\!3$	$21,\!6\pm3,\!0$	< 1,4
AY-B23	$25,1\pm7,5$	$16,\!4\pm3,\!4$	$13,1\pm2,0$	$10{,}7\pm2{,}8$	< 43	$21,\!6\pm3,\!2$	$24,1\pm3,8$	$20,1\pm3,6$	$20,\!4\pm4,\!0$	$29,\!2\pm3,\!0$	$1,\!95 \pm 0,\!78$
PR-B23	$37,6\pm7,7$	$37,6\pm3,8$	$29{,}7\pm2{,}2$	$27,\!3\pm2,\!0$	< 48	$44,4\pm3,5$	$42,2\pm4,3$	$45,5\pm3,6$	$47,7 \pm 4,6$	$51,9\pm3,2$	$2,\!74 \pm 0,\!86$
IR-B23	$14,3\pm6,5$	$10,5\pm2,8$	$10,\!8\pm1,\!9$	$7,5\pm2,7$	< 39	$14,\!4\pm3,\!0$	$15,1\pm3,2$	$13{,}7\pm3{,}4$	$19,9\pm2,6$	$19,\!2\pm2,\!8$	$1{,}74 \pm 0{,}69$
EM-B23	$25,1\pm3,5$	$19,5\pm3,3$	$19,1\pm1,9$	$20,5\pm2,8$	46 ± 12	$19,6\pm3,2$	$18,0 \pm 4,0$	$21,\!0\pm3,\!4$	$17{,}7\pm4{,}1$	$20,\!4\pm2,\!9$	$1,4\pm0,8$
IL-B23	$36,3\pm3,4$	$45,8\pm3,5$	$35,2\pm2,0$	$35,2\pm2,9$	61 ± 10	$56,6\pm3,5$	$57,0\pm4,3$	$56,6 \pm 3,6$	$61,3\pm4,5$	$58,9 \pm 3,2$	$2,\!7\pm0,\!8$
TK-B23	$34,5\pm5,5$	$37,2\pm5,5$	$25,\!4\pm2,\!5$	$26,0\pm2,\!4$	141 ± 19	$41,6\pm4,3$	$35,2\pm5,0$	$41,8 \pm 3,8$	$34,7\pm5,3$	$42,8\pm3,8$	4.8 ± 1.3
SH-B23	$54,1\pm5,3$	$59,9\pm6,3$	$52,\!4\pm2,\!4$	$51,9\pm2,2$	73 ± 13	$64,6 \pm 3,8$	$59,6 \pm 4,9$	$61,8\pm5,7$	$58,0\pm5,0$	$62,0\pm3,\!4$	$3,0\pm0,9$
KB-B23	$38,3\pm3,9$	$41,0\pm3,9$	$33,1\pm2,2$	$33,1\pm2,0$	51 ± 12	$40,3\pm3,5$	$41,\!4\pm4,\!6$	$42,2\pm3,6$	$36,2\pm4,6$	$40,7\pm3,\!2$	$2,\!4\pm0,\!8$
TA-B23	$81,1\pm8,9$	$25,9\pm4,3$	$25{,}7\pm2{,}3$	$24,6\pm2,0$	< 48	$51,5\pm3,6$	$44,1\pm4,5$	$43,8\pm3,7$	$52,7\pm4,9$	$51{,}7\pm3{,}3$	< 1,4
SD-B23	$55,7\pm6,4$	$27,1\pm5,6$	$27,3\pm2,1$	24.9 ± 2.9	< 44	$40,5\pm3,3$	$40,1\pm4,0$	$38,1\pm3,6$	$33,6\pm4,2$	$45,6\pm3,1$	< 1,3

Образец	U-235,	Cs-137,	K-40,
Образец	Бк/кг	Бк/кг	Бк/кг
CH-B23	$0,65 \pm 0,21$	$1,33 \pm 0,21$	526 ± 41
UR-B23	< 0,53	$0,6 \pm 0,3$	432 ± 47
IK-B23	$0,95\pm0,30$	$0,5 \pm 0,2$	456 ± 41
EK-B23	$0,\!34\pm0,\!18$	$0,\!48 \pm 0,\!17$	326 ± 33
TO-B23	$0,\!82\pm0,\!21$	$1,1 \pm 0,2$	274 ± 42
AY-B23	$1,16 \pm 0,21$	< 0,28	429 ± 40
PR-B23	$1,73 \pm 0,23$	< 0,29	632 ± 41
IR-B23	$0,67 \pm 0,17$	< 0,23	383 ± 33
EM-B23	$1{,}18 \pm 0{,}21$	< 0,3	633 ± 42
IL-B23	$1,60 \pm 0,21$	$2,9 \pm 0,2$	713 ± 42
TK-B23	$1,56 \pm 0,34$	$3,3 \pm 0,4$	593 ± 50
SH-B23	$2,35 \pm 0,26$	< 0,4	751 ± 44
KB-B23	$1,53 \pm 0,24$	< 0,4	638 ± 43
TA-B23	$3,\!20\pm0,\!26$	$2,\!85 \pm 0,\!25$	554 ± 42
SD-B23	$2,\!31\pm0,\!22$	$0,\!53\pm0,\!18$	581 ± 40

Результаты гамма-спектрометрического анализа проб донных отложений, отобранных в бассейнах трансграничных рек Казахстана осенью 2018 г. (24-я экспедиция)

Образец	Th-234, Бк/кг	Ra226 Бк/кг	Pb-214, Бк/кг	Ві-214, Бк/кг	Рb-210, Бк/кг	Ас-228, Бк/кг	Ra-224, Бк/кг	Pb-212, Бк/кг	Ві-212, Бк/кг	T1-208, Бк/кг	U-235, Бк/кг
CH-B24	$17,9 \pm 5,5$	$13,7 \pm 1,4$	$11,7 \pm 1,2$	$9,4 \pm 0,9$	< 42,5	$18,1 \pm 1,8$	$18,4 \pm 2,6$	$16,8 \pm 1,7$	$23,3 \pm 2,8$	$23,1 \pm 2,3$	0.8 ± 0.2
UR-B24	$18,\!8\pm2,\!8$	$11,5 \pm 1,2$	$8,2 \pm 0,8$	$9,6 \pm 1$	$24,0\pm8,8$	$9,6 \pm 1$	$11,0\pm2,5$	$9,2 \pm 0,9$	$12,2 \pm 2,7$	$10,4 \pm 1$	0.8 ± 0.2
IK-B24	$5,2 \pm 1,9$	$7{,}1\pm0{,}7$	$5,2 \pm 0,5$	$5,7 \pm 0,6$	$10,3 \pm 2,9$	3.8 ± 0.4	$8,8 \pm 2,1$	$5,0 \pm 0,5$	< 3,5	$5,3 \pm 0,5$	< 0,3
EK-B24	$13,\!4\pm1,\!7$	$13,5\pm1,4$	$11,2 \pm 1,1$	$9,6 \pm 1$	$15,1 \pm 2,5$	$4,7\ \pm0,5$	$6,9\pm2,4$	$5,8 \pm 0,6$	< 3,2	$4,2\ \pm0,4$	$0,6 \pm 0,1$
TO-B24	$12,9\pm3,0$	$15,9 \pm 1,6$	$12,5 \pm 1,3$	$12,1 \pm 1,2$	$30,6 \pm 9,9$	$18,3 \pm 1,8$	$18,3\pm3,0$	$17,8\pm1,8$	$26,3\pm3,3$	$17,6 \pm 1,8$	$0,6\pm0,2$
AY-B24	$7,7 \pm 1,7$	$5,\!8\pm0,\!6$	$4,6 \pm 0,5$	$4,3 \pm 0,4$	< 4,2	$7,8 \pm 0,8$	< 6,2	$8,6 \pm 0,9$	< 4,6	$11,1\pm1,1$	< 0,4
PR-B24	$31,6 \pm 2,9$	$32,9 \pm 3,3$	$25,3\pm2,5$	$25,\!4\pm2,\!5$	$57,5\pm8,8$	$36,5 \pm 3,7$	$37,9\pm2,8$	$38,1\pm3,8$	$41,9\pm3,0$	$40,5\pm4,1$	$1,5\pm0,2$
IR-B24	$11,5 \pm 2,8$	$13,5 \pm 1,4$	$10,1\pm1$	$10,7\pm1,1$	$32,7\pm9,2$	$15,6 \pm 1,6$	$15,9\pm2,6$	$15,5 \pm 1,6$	$22,2\pm2,8$	$14,9\pm1,5$	$0,5\pm0,2$
EM-B24	$20,1\pm5,3$	$15,6 \pm 1,6$	$12,7\pm1,3$	$11,\!4\pm1,\!1$	< 39,5	$15,0 \pm 1,5$	$14,2 \pm 2,3$	$14,3 \pm 1,4$	$11,8 \pm 2,5$	$20,1\pm2$	$0,9 \pm 0,2$
IL-B24	$24,8 \pm 2,6$	$37,5 \pm 3,8$	$30,1 \pm 3$	$27{,}7\pm2{,}8$	$40,3 \pm 3,7$	$38,9 \pm 3,9$	$40,1\pm4,2$	$35,6 \pm 3,6$	$28,8\pm3,4$	$34,4\pm3,4$	$1,2\pm0,2$
TK-B24	$40,1\pm4,1$	$43\pm4,\!3$	$35,1\pm3,5$	$31,2\pm3,1$	$77,0 \pm 4,6$	$61,9 \pm 6,2$	$56,3 \pm 3,9$	$50,4\pm5$	$50,2\pm4,3$	$51,6 \pm 5,2$	$1,8\pm0,2$
SH-B24	$56,8 \pm 7,2$	$53,5 \pm 5,4$	$43,1\pm4,3$	$39,3 \pm 3,9$	< 50,9	$65,\!4\pm6,\!5$	$56,5 \pm 3,6$	$56,8\pm5,7$	$66,0\pm4,0$	$62,5 \pm 6,3$	$2,6\pm0,3$
KB-B24	$53,0 \pm 6,9$	$43,9 \pm 4,4$	$35,8 \pm 3,6$	$31,8 \pm 3,2$	< 48,5	$43,0\pm4,3$	$38,9 \pm 3,2$	$39{,}9\pm4$	$45,2\pm3,6$	$47,8 \pm 4,8$	$2,5\pm0,2$
TA-B24	$32,\!4\pm3,\!0$	$26,7\pm2,7$	$21,\!8\pm2,\!2$	$19,3\pm1,9$	$53,5\pm4,2$	$37,9\pm3,8$	$45,3\pm3,7$	$38,1\pm3,8$	$34,1\pm4,1$	$40,\!2\pm4$	$1,5\pm0,2$
SD-B24	$38,0 \pm 3,6$	$38,8 \pm 3,9$	$29,9 \pm 3$	$29,9 \pm 3$	$42,6 \pm 10,6$	$37,0 \pm 3,7$	$41,8 \pm 3,5$	$38,4 \pm 3,8$	$51,7 \pm 3,7$	$38,2 \pm 3,8$	$1,7\pm0,2$

Образец	TH-227,	K-40,	Cs-137,
Образец	Бк/кг	Бк/кг	Бк/кг
CH-B24	< 1,1	$481\ \pm 48$	< 0,3
UR-B24	< 1,1	$304\ \pm 30$	< 0,3
IK-B24	< 1,0	$196\ \pm 20$	< 0,3
EK-B24	$1,0\pm0,6$	$126\ \pm 13$	< 0,3
TO-B24	< 1,2	$352\ \pm35$	$1,1\pm0,2$
AY-B24	< 1,6	$349\ \pm 35$	< 0,3
PR-B24	$2,4\pm0,7$	$676\ \pm 68$	$0,7\pm0,2$
IR-B24	$1,\!4\pm0,\!7$	$450\ \pm 45$	< 0,3
EM-B24	$2,9\pm0,7$	$610\ \pm 61$	$0,3\pm0,1$
IL-B24	< 1,2	$568\ \pm57$	$1,\!0\pm0,\!2$
TK-B24	$2,2\pm0,9$	$680\ \pm 68$	$3,2\pm0,3$
SH-B24	$2,9\pm0,9$	$775\ \pm 78$	$0,3\pm0,2$
KB-B24	< 1,4	$637\ \pm 64$	$0,5\pm0,2$
TA-B24	$1,5 \pm 0,9$	$630\ \pm 63$	$2,7\pm0,3$
SD-B24	< 1,3	$648\ \pm 65$	< 0,3

Результаты определения методом РФА элементного состава образцов почвы, отобранных в бассейнах трансграничных рек Казахстана весной 2018 г. (23-ая экспедиция)

06	TZ 0/	G - 0/	Tr: 0/	T 7/-	C/-	N f : 0/	E . 0/	C	N I'/-	C /	7	C	A/-
Образец	K %	Ca %	Ti %	V, мкг/г	Сr, мкг/г	Mn %	Fe %	Со, мкг/г	Ni, мкг/г	Си, мкг/г	Zn, мкг/г	Ga, мкг/г	As, мкг/г
CH-S23	$2,22\pm0,48$	$1,21\pm0,24$	$0,436\pm0,052$	160±24	280±13	$0,096\pm0,011$	$4,05\pm0,1$	< 10	63±3	28±2	68±13	$13,9\pm0,8$	19±0,9
UR-S23	$1,71\pm0,05$	$1,07\pm0,24$	$0,366\pm0,005$	120±23	590±14	$0,048\pm0,009$	$2,62\pm0,06$	< 10	64 ± 28	$28\pm1,6$	62±12	$9,9\pm0,7$	$12,1\pm0,8$
IK-S23	$1,74\pm0,49$	$0,59\pm0,22$	$0,308\pm0,046$	90±22	300±12	$0,05\pm0,008$	$1,82\pm0,04$	< 10	38±3	18±2	40 ± 10	$8,2\pm0,7$	$10,6\pm0,8$
EK-S23	$0,98\pm0,49$	$0,21\pm0,21$	$0,088\pm0,057$	≤ 10	290±12	$0,016\pm0,006$	$0,68\pm0,02$	< 10	20±2	8±1	10±8	$1,9\pm0,6$	$5,3\pm0,6$
TO-S23	$1,54\pm0,46$	$1,23\pm0,24$	$0,338\pm0,047$	50 ± 22	260 ± 12	$0,066\pm0,009$	$2,25\pm0,05$	< 10	44±3	24 ± 2	72±12	$8,6\pm0,7$	$12,4\pm0,8$
AY-S23	$1,44\pm0,44$	$1,26\pm0,23$	$0,380\pm0,049$	150 ± 23	280±13	$0,08\pm0,01$	$4,38\pm0,11$	< 10	71±3	27±2	70±13	$11,1\pm0,8$	$17,8\pm0,9$
PR-S23	$1,82\pm0,5$	$1,12\pm0,25$	$0,254\pm0,045$	60 ± 22	100 ± 11	$0,03\pm0,007$	$1,45\pm0,03$	< 10	12±2	10 ± 1	29±10	$8,3\pm0,7$	$9,5\pm0,8$
IR-S23	$2,00\pm0,47$	$2,59\pm0,29$	$0,389\pm0,051$	130 ± 23	170 ± 13	$0,059\pm0,01$	$3,62\pm0,08$	< 10	52±3	38 ± 2	71±13	$14,2\pm0,8$	$10,2\pm0,9$
EM-S23	$1,90\pm0,48$	$3,18\pm0,3$	$0,333\pm0,074$	120 ± 24	70±12	$0,044\pm0,009$	$2,7\pm0,06$	< 10	19±3	17 ± 2	42 ± 11	$13,6\pm0,8$	$15,7\pm0,8$
IL-S23	$1,84\pm0,46$	$6,95\pm0,39$	$0,312\pm0,075$	110 ± 24	120±13	$0,054\pm0,01$	$2,62\pm0,05$	< 10	24±3	23±2	55±12	$12,6\pm0,8$	$14,6\pm0,9$
TK-S23	$2,13\pm0,46$	$7,23\pm0,39$	$0,281\pm0,073$	100 ± 24	160 ± 13	$0,059\pm0,01$	$2,85\pm0,06$	< 10	34 ± 3	28 ± 2	75±13	$12,8\pm0,8$	$13,8\pm1$
SH-S23	$2,29\pm0,48$	$3,56\pm0,31$	$0,336\pm0,074$	80 ± 24	120±12	$0,053\pm0,009$	$2,82\pm0,06$	< 10	27 ± 3	20±2	56±12	$14,4\pm0,8$	$13,8\pm0,9$
KB-S23	$2,04\pm0,46$	$6,22\pm0,38$	$0,331\pm0,051$	100 ± 25	120±13	$0,06\pm0,01$	$3,1\pm0,07$	< 10	31±3	30±2	61±13	14 ± 0.8	$16,2\pm0,9$
TA-S23	$1,99\pm0,46$	$7\pm0,39$	$0,349\pm0,052$	130 ± 25	110 ± 13	$0,07\pm0,01$	$3,03\pm0,06$	< 10	35±3	24 ± 2	54±12	13 ± 0.8	$16,9\pm0,9$
SD-S23	$1,70\pm0,45$	$8,45\pm0,42$	$0,338\pm0,078$	110±25	110±13	$0,053\pm0,01$	$2,72\pm0,05$	< 10	36±3	22±2	57±13	$10,9\pm0,8$	$17,2\pm0,9$
Образец	Br, мкг/г	Rb, мкг/г	Sr, мкг/г	Y, мкг/г	Zr, мкг/г	Nb, мкг/г	Мо, мкг/г	Pd мкг/г	Cd мкг/г	Ва, мкг/г	Pb, мкг/г	Th мкг/г	U мкг/г
CH-S23	17±4	92±5	148±5	25,2±3,4	253±7	10±1,9	2±0,3	< 0,2	3,1±0,4	171±19	14±1,1	7,2±0,9	2,2±0,5
UR-S23	$7,3\pm0,3$	$66,1\pm0,4$	151±5	$21,8\pm2,9$	289±7	$8\pm 1,7$	$2\pm0,3$	$0,6\pm0,2$	$3,7\pm0,4$	176±18	$12\pm1,1$	$4,3\pm0,8$	$2,6\pm0,4$
IK-S23	$6,1\pm3,1$	$63,3\pm3,9$	101±4	$19,1\pm2,8$	301±7	$7,1\pm1,6$	$2\pm0,3$	< 0,2	$1,6\pm0,4$	235±18	6±1	$3,9\pm0,8$	$2,3\pm0,4$
EK-S23	$3,5\pm2,7$	$23,2\pm2,5$	39±3	$6,2\pm1,8$	80±4	$1,6\pm1,1$	$1,7\pm0,2$	$0,5\pm0,2$	$2,8\pm0,4$	129±16	< 1	$0,6\pm0,5$	$0,5\pm0,3$
TO-S23	$12,5\pm3,4$	$54,6\pm3,7$	128±5	$15,1\pm2,7$	247±6	$7,3\pm1,6$	$2,5\pm0,3$	< 0,2	$3,3\pm0,4$	165±17	10±1	3 ± 0.8	$1,6\pm0,4$
AY-S23	$17,8\pm3,9$	$66,9\pm4,4$	122±5	$22,4\pm3,1$	190±6	$8,5\pm1,8$	$2,3\pm0,3$	$0,7\pm0,2$	$3,5\pm0,4$	212±19	$15\pm1,1$	$6,1\pm0,8$	$3,1\pm0,4$
PR-S23	4±3	$60,2\pm3,9$	155±5	$17,8\pm2,6$	179±6	$6,5\pm1,5$	< 1	$0,4\pm0,2$	$3,5\pm0,4$	235±18	5±1	$2,5\pm0,7$	$1,8\pm0,4$
IR-S23	$12,1\pm3,8$	$89,1\pm4,9$	217±7	$26,5\pm3,4$	171±6	$8,7\pm1,8$	$1,6\pm0,3$	< 0,2	$2,5\pm0,4$	71±19	$11\pm1,2$	$6,8\pm0,8$	$2,4\pm0,4$
EM-S23	$5,1\pm3,4$	$63,9\pm4,3$	324 ± 8	$23,8\pm3,1$	214±7	8 ± 1.8	$1,9\pm0,3$	$0,4\pm0,2$	$3,2\pm0,4$	347±19	$2\pm1,1$	$2,7\pm0,9$	$1,7\pm0,4$
IL-S23	$15,4\pm4,1$	83±5,1	480±10	24,1±3,4	217±7	9,8±1,9	2±0,3	$1,1\pm0,2$	$3,8\pm0,5$	365 ± 20	13±1,2	8,2±1	$6,1\pm0,5$
TK-S23	13,1±3,9	$93,4\pm5,2$	362±9	22,4±3,3	167±6	$9,8\pm1,9$	$1,7\pm0,3$	$0,4\pm0,2$	$3,2\pm0,4$	494±19	31±1,3	10,5±0,9	$3,9\pm0,4$
SH-S23	$13,5\pm3,8$	111,9±5,5	249±7	24,1±3,5	260±7	12±2	2±0,3	$0,9\pm0,2$	$3,1\pm0,4$	400±19	16±1,2	11,1±0,9	4±0,5
KB-S23	$7,8\pm3,7$	93,3±5,2	328 ± 8	22,9±3,4	172±6	$9,9{\pm}1,9$	$2,8\pm0,3$	$0,8\pm0,2$	4±0,5	453±20	13±1,2	$8,8\pm0,9$	4±0,5
TA-S23	11±3,9	94,6±5,3	374±9	23,2±3,4	186±7	11±2	$1,7\pm0,3$	$0,6\pm0,2$	$3,3\pm0,5$	417±20	17±1,2	8,2±1	$3,2\pm0,5$
SD-S23	9,1±3,9	77±5	413±10	24,5±3,4	213±7	11±2	3±0,3	$0,6\pm0,2$	$4,2\pm0,5$	335±20	14±1,2	8,3±1	$3,9\pm0,5$

Результаты определения методом РФА элементного состава образцов почвы, отобранных в бассейнах трансграничных рек Казахстана осенью 2018 г. (24-ая экспедиция)

Образец	K %	Ca %	Ti %	V, мкг/г	Сг, мкг/г	Mn %	Fe %	Co,	Ni, мкг/г	Cu,	Zn,	Ga,	As,
Образец	K 70	Ca 70	11 70	v, MK1/1	C1, MK1/1	IVIII 70	1 6 70	мкг/г	1N1, MK1/1	$MK\Gamma/\Gamma$	мкг/г	мкг/г	мкг/г
CH-S24	$2,33\pm0,05$	$1\pm0,2$	$0,417\pm0,008$	130 ± 23	280 ± 13	$0,09\pm0,01$	$3,37\pm0,08$	< 4	50±3	24 ± 2	57±12	$12,5\pm0,8$	$19,4\pm0,8$
UR-S24	$1,80\pm0,05$	$1,5\pm0,3$	$0,372\pm0,008$	98 ± 23	493±15	$0,06\pm0,01$	$2,72\pm0,06$	< 4	66 ± 3	27±2	61 ± 13	$9,9\pm0,7$	$10,9\pm0,7$
IK-S24	$1,76\pm0,05$	$0,5\pm0,2$	$0,35\pm0,007$	40 ± 22	320 ± 12	$0,05\pm0,01$	$1,84\pm0,04$	< 4	36 ± 3	16±2	35 ± 10	$7,4\pm0,7$	$12,1\pm0,7$
EK-S24	$0,57\pm0,05$	$0,8\pm0,2$	$0,059\pm0,004$	50±19	370 ± 12	$0,05\pm0,01$	$1,29\pm0,03$	< 4	25 ± 2	4 ± 1	8±8	< 1	$7,9\pm0,7$
TO-S24	$1,59\pm0,05$	$1,2\pm0,2$	$0,376\pm0,005$	100 ± 23	200 ± 12	$0,07\pm0,01$	$2,23\pm0,05$	< 4	31±3	23 ± 2	60 ± 11	$8,2\pm0,7$	$12,6\pm0,8$
AY-S24	$1,7\pm0,05$	$0,8\pm0,2$	$0,309\pm0,005$	120 ± 22	260 ± 12	$0,11\pm0,01$	$3,07\pm0,07$	< 4	39 ± 3	26±2	46±11	$9,3\pm0,7$	$12,1\pm0,8$
PR-S24	$1,77\pm0,05$	$1\pm0,2$	$0,262\pm0,007$	30 ± 22	90±11	$0,03\pm0,01$	$1,48\pm0,03$	< 4	15±2	12±1	29±9	$9,6\pm0,7$	$8,5\pm0,7$
IR-S24	$1,9\pm0,05$	$2,4\pm0,3$	$0,368\pm0,005$	100 ± 23	140 ± 12	$0,05\pm0,01$	$3,37\pm0,07$	< 4	40 ± 3	34 ± 2	68±12	$13,1\pm0,8$	$12,3\pm0,8$
EM-S24	$1,89\pm0,05$	$3,9\pm0,3$	$0,324\pm0,007$	110 ± 24	80 ± 12	$0,04\pm0,01$	$2,34\pm0,05$	< 4	13±3	12±2	34 ± 11	$11,6\pm0,8$	$15,5\pm0,8$
IL-S24	$2,28\pm0,05$	$4,7\pm0,3$	$0,333\pm0,008$	100 ± 24	160 ± 13	$0,06\pm0,01$	$2,86\pm0,06$	< 4	35±3	31±2	95±14	15 ± 0.8	$15,1\pm0,9$
TK-S24	$2,84\pm0,05$	$4\pm0,3$	$0,26\pm0,007$	90 ± 24	120±13	$0,04\pm0,01$	$2,21\pm0,05$	< 4	18±3	13±2	44±11	17 ± 0.8	$7,4\pm0,9$
SH-S24	$2,02\pm0,05$	$7,2\pm0,4$	$0,302\pm0,007$	110 ± 24	120±13	$0,05\pm0,01$	$2,72\pm0,06$	< 4	26 ± 3	19±2	54±12	$12,7\pm0,8$	$16\pm0,9$
KB-S24	$2,35\pm0,05$	$4,6\pm0,3$	$0,331\pm0,007$	100 ± 24	130±13	$0,06\pm0,01$	$3,07\pm0,07$	< 4	32±3	28±2	68±13	$13,2\pm0,8$	$13,6\pm0,9$
TA-S24	$2,05\pm0,05$	$7 \pm 0,4$	$0,283\pm0,005$	120 ± 24	120±13	$0,05\pm0,01$	$2,62\pm0,05$	< 4	30 ± 3	27±2	66±13	$12,7\pm0,8$	15 ± 0.9
SD-S24	$1,73\pm0,05$	8,2±0,4	$0,332\pm0,008$	50±26	130±13	$0,05\pm0,01$	$2,79\pm0,06$	< 4	34±3	21±2	55±13	$12,2\pm0,8$	$17,7\pm0,9$

Образец	Вг, мкг/г	Rb, мкг/г	Sr, мкг/г	Υ, мкг/г	Zr, мкг/г	Nb, мкг/г	Мо, мкг/г	Pd мкг/г	Cd мкг/г	Ва, мкг/г	Рb, мкг/г	Th мкг/г	U мкг/г
CH-S24	15,3±0,4	78±5	144±5	23±3	283±7	9,6±1,8	2,1±0,3	$0,4\pm0,2$	3,6±0,4	235±19	12±1	5,2±0,8	2±0,5
UR-S24	$8,2\pm0,4$	65±5	164±5	20±3	284 ± 8	$8,0\pm1,7$	$1,3\pm0,2$	$0,6\pm0,2$	$3,5\pm0,5$	154 ± 17	10 ± 1	$4,4\pm0,7$	$2,0\pm0,5$
IK-S24	$5,5\pm0,3$	63±4	96±4	17 ± 3	331 ± 8	$7,3\pm1,6$	$2\pm0,3$	$0,3\pm0,2$	$3,4\pm0,4$	235 ± 18	5±1	$3,8\pm0,8$	$1,9\pm0,4$
EK-S24	$3,6\pm0,3$	11±2	50±3	8±2	33±3	< 1	$1,3\pm0,1$	$0,3\pm0,2$	$2,8\pm0,4$	126±16	< 1	$0,8\pm0,4$	$1,2\pm0,3$
TO-S24	$13,8\pm0,4$	54±4	130±5	16±3	245 ± 6	$7,4\pm1,6$	$2\pm0,3$	$0,6\pm0,2$	$3,8\pm0,4$	135 ± 17	10 ± 1	$3,9\pm0,7$	$1,6\pm0,4$
AY-S24	$8,4\pm0,3$	54±4	117±5	14 ± 3	99±4	$5,1\pm1,4$	$2\pm0,2$	$0,6\pm0,2$	$3,4\pm0,4$	165 ± 18	10 ± 1	$4,5\pm0,6$	$1,9\pm0,4$
PR-S24	$5\pm0,3$	59±4	158±5	17 ± 3	195±6	$6,8\pm1,5$	$1,1\pm0,3$	$0,3\pm0,2$	$2,9\pm0,4$	247 ± 17	5±1	$4,3\pm0,7$	$2,5\pm0,4$
IR-S24	$11,3\pm0,4$	80±5	210±6	26 ± 3	156 ± 6	$8,2\pm1,8$	$1,2\pm0,2$	< 0,2	$3,4\pm0,4$	118 ± 18	11±1	$7\pm0,8$	$2\pm0,4$
EM-S24	$6,6\pm0,4$	69±4	332±9	22 ± 3	207 ± 7	$8,3\pm1,7$	$2,1\pm0,3$	< 0,2	$2\pm0,4$	382 ± 19	3 ± 1	$4,6\pm0,9$	$2\pm0,4$
IL-S24	$15\pm0,4$	104 ± 5	284 ± 8	27±4	196±7	$10,9\pm1,9$	$3\pm0,3$	$0,3\pm0,2$	$3,3\pm0,4$	312 ± 19	24 ± 1	$10,9\pm0,9$	$3,1\pm0,5$
TK-S24	$9,2\pm0,4$	117±5	234±7	31±4	239 ± 7	13±2	$1,7\pm0,3$	$0,5\pm0,2$	$3\pm0,4$	465±19	16 ± 1	$14,5\pm0,9$	$3,1\pm0,5$
SH-S24	$6,9\pm0,4$	97±5	606±12	24 ± 3	204 ± 7	$10,9\pm1,9$	$1,7\pm0,3$	< 0,2	$3\pm0,4$	412±19	10 ± 1	$9,4\pm1,1$	$4,5\pm0,4$
KB-S24	$7,8\pm0,4$	110±6	305 ± 8	25 ± 3	191±6	$11,5\pm1,9$	$2,5\pm0,3$	$0,7\pm0,2$	$3,3\pm0,4$	376 ± 19	15±1	$10,9\pm0,9$	$3,5\pm0,5$
TA-S24	$11,8\pm0,4$	99±6	629±12	21±3	152 ± 7	$9,8\pm1,9$	$1,8\pm0,3$	$0,6\pm0,2$	$3,2\pm0,5$	470 ± 19	18 ± 1	$9,8\pm1$	$5,3\pm0,4$
SD-S241	$8,6\pm0,4$	79±5	493±11	26±3	224±8	10±2	$3,4\pm0,3$	$0,4\pm0,2$	$3,7\pm0,5$	329 ± 20	12±1	$8,2\pm1,1$	5±0,5

Приложение 7 Результаты определения методом РФА элементного состава образцов донных отложений, отобранных в бассейнах трансграничных рек Казахстана весной 2018 г. (23-я экспедиция)

Образец	K %	Ca %	Ti %	V, мкг/г	Сr, мкг/г	Mn %	Fe %	Со, мкг/г	Ni, мкг/г	Си, мкг/г	Zn, μκγ/γ	Ga, мкг/г	As, мкг/г	Br, мкг/г
CH-B23	1,78±0,47	1,71±0,26	0,310±0,069	90±22	400±13	0,075±0,01	2,67±0,06	< 10	48±3	17±2	45±11	9,6±0,7	19±0,8	12,6±3,6
UR-B23	1,56±0,45	3±0,29	0,383±0,074	120±23	390±13	$0,069\pm0,01$	$2,7\pm0,06$	< 10	83±3	24±2	46±11	$9,9\pm0,8$	12±0,8	$7,8\pm3,4$
IK-B23	$1,75\pm0,46$	$4,1\pm0,32$	$0,355\pm0,074$	90±24	230±13	$0,075\pm0,01$	$2,6\pm0,06$	< 10	48 ± 3	21±2	45±11	$9,5\pm0,8$	$15,7\pm0,8$	$9,7\pm3,6$
EK-B23	$1,24\pm0,47$	$1,36\pm0,24$	$0,133\pm0,059$	≤ 10	420±13	$0,031\pm0,007$	$1,14\pm0,03$	< 10	37±3	10±1	14 ± 8	$3,3\pm0,6$	$6,7\pm0,7$	$4,4\pm 2,9$
TO-B23	$1,15\pm0,47$	$0,74\pm0,22$	$0,36\pm0,07$	40 ± 22	310 ± 12	$0,018\pm0,007$	$1,49\pm0,04$	< 10	26 ± 3	9±1	21±9	$4,4\pm0,7$	13 ± 0.7	$12,6\pm3,3$
AY-B23	$1,40\pm0,47$	$0,64\pm0,22$	$0,369\pm0,072$	90 ± 23	360 ± 13	$0,032\pm0,008$	$2,34\pm0,06$	< 10	36 ± 3	13 ± 2	25 ± 10	$6,3\pm0,7$	13 ± 0.8	$5,8\pm3,1$
PR-B23	$1,90\pm0,47$	$1,09\pm0,24$	$0,455\pm0,051$	110 ± 24	110 ± 12	$0,067\pm0,009$	$3,2\pm0,08$	< 10	35±3	28 ± 2	71 ± 12	$15,5\pm0,8$	$12,9\pm0,9$	$5,9\pm3,3$
IR-B23	$1,39\pm0,49$	$0,67\pm0,23$	$0,163\pm0,062$	10 ± 21	100 ± 11	$0,032\pm0,007$	$1,38\pm0,03$	< 10	11±2	7 ± 1	14±9	$5,5\pm0,7$	$7 \pm 0,7$	$4,1\pm2,9$
EM-B23	$1,79\pm0,47$	$3,03\pm0,29$	$0,533\pm0,082$	160 ± 25	90±12	$0,059\pm0,01$	$3,55\pm0,08$	< 10	17±3	21 ± 2	45±12	$14\pm0,8$	$18,1\pm0,9$	$3,3\pm 3,4$
IL-B23	$2,15\pm0,46$	$5,3\pm0,36$	$0,400\pm0,079$	130 ± 25	90±13	$0,077\pm0,011$	$3,83\pm0,08$	< 10	31±3	32 ± 2	83 ± 14	$15,8\pm0,9$	$22,9\pm1$	$7,8\pm3,8$
TK-B23	$2,14\pm0,45$	$7,69\pm0,4$	$0,296\pm0,074$	70 ± 24	150 ± 13	$0,051\pm0,009$	$2,56\pm0,05$	< 10	27±3	20±2	51±12	$13\pm0,8$	$11\pm0,9$	$12,7\pm3,9$
SH-B23	$2,32\pm0,48$	$3,48\pm0,31$	$0,361\pm0,076$	70 ± 24	140 ± 12	$0,044\pm0,009$	$3,03\pm0,07$	< 10	24±3	14 ± 2	52±12	$13,2\pm0,8$	$9,7\pm0,9$	$5,1\pm3,5$
KB-B23	$2,00\pm0,46$	$6,31\pm0,38$	$0,370\pm0,078$	120 ± 25	110 ± 13	$0,07\pm0,01$	$3,23\pm0,07$	< 10	35±3	26 ± 2	60 ± 13	$14\pm0,8$	$20,3\pm0,9$	$7 \pm 3,7$
TA-B23	$1,83\pm0,43$	$8,39\pm0,41$	$0,331\pm0,077$	80 ± 25	160 ± 13	$0,045\pm0,009$	$3,12\pm0,06$	< 10	42±3	29 ± 2	68±13	$13,7\pm0,8$	$12,1\pm0,9$	$15,5\pm4,1$
SD-B23	$1,81\pm0,44$	$8,13\pm0,41$	$0,348\pm0,077$	120 ± 25	110 ± 13	$0,058\pm0,01$	$2,73\pm0,05$	< 10	29±3	26 ± 2	70 ± 13	$11,5\pm0,8$	$15,7\pm0,9$	$6,2\pm3,6$

Образец	Rb, мкг/г	Sr, мкг/г	Ү, мкг/г	Zr, мкг/г	Nb, мкг/г	Мо, мкг/г	Pd мкг/г	Cd мкг/г	Ва, мкг/г	Рb, _{мкг} /г	Th мкг/г	U мкг/г
CH-B23	61±4	154±5	$17,8\pm2,8$	229±6	7±1,6	$1,9\pm0,3$	$0,3\pm0,2$	$3,7\pm0,4$	147±18	10±1	$3,4\pm0,8$	$1,6\pm0,4$
UR-B23	$60,2\pm4,1$	194±6	22±2,9	276±7	$8,7\pm1,8$	$2\pm0,3$	$0,4\pm0,2$	$3,3\pm0,4$	212 ± 18	$8\pm 1,1$	$5,3\pm0,9$	$2,4\pm0,4$
IK-B23	$66,9\pm4,3$	215±7	20±3	263 ± 7	$8,2\pm1,8$	$2\pm0,3$	$0,9\pm0,2$	$3,4\pm0,4$	159±19	$10\pm1,1$	$4,5\pm0,9$	$2,9\pm0,5$
EK-B23	36±3	71±3	$11,2\pm2,1$	75±3	$2,4\pm1,3$	$1,8\pm0,2$	$0,7\pm0,2$	$3,5\pm0,4$	182 ± 17	< 1	$1,3\pm0,5$	$1,3\pm0,4$
TO-B23	$36,7\pm3,1$	89±4	$11,3\pm2,5$	410±9	$6,5\pm1,5$	$1,7\pm0,3$	$0,3\pm0,2$	$3,2\pm0,4$	165±17	6±1	$2,9\pm0,8$	$1,7\pm0,5$
AY-B23	$44 \pm 3,5$	129±5	$13,8\pm2,5$	170 ± 5	$5,7\pm1,5$	$1,6\pm0,2$	$0,7\pm0,2$	$4,2\pm0,4$	194 ± 18	10 ± 1	$4\pm0,7$	$2\pm0,4$
PR-B23	$92,1\pm4,8$	178±6	$30,3\pm3,4$	317 ± 8	12±2	$1,9\pm0,3$	$0,2\pm0,2$	$3,3\pm0,4$	206 ± 19	$17\pm1,1$	$8,6\pm0,9$	$3,2\pm0,5$
IR-B23	$42,5\pm3,2$	102±4	$12\pm2,2$	73±4	$3,6\pm1,3$	$1\pm0,2$	$0,7\pm0,2$	$3,6\pm0,4$	59±18	< 1	$2,7\pm0,6$	$0,9\pm0,3$
EM-B23	$58,3\pm4,2$	347±9	$24\pm3,2$	354±9	$8,6\pm1,9$	$2,2\pm0,4$	$0,5\pm0,2$	$2,7\pm0,4$	406 ± 20	$5\pm1,1$	$2,2\pm1$	$2,2\pm0,5$
IL-B23	$111,5\pm 5,6$	217±7	$30,2\pm3,7$	186±6	$12,7\pm2,1$	$2,2\pm0,3$	\leq 0,1	$2,7\pm0,5$	259 ± 20	$25\pm1,3$	$12,1\pm0,9$	$3,1\pm0,5$
TK-B23	$102,5\pm 5,4$	282±8	$24,7\pm3,4$	253±7	$10,4\pm1,9$	$2,2\pm0,3$	$0,5\pm0,2$	$3,1\pm0,5$	388 ± 19	$14\pm1,2$	$10,4\pm0,9$	$4,1\pm0,5$
SH-B23	$112,8\pm 5,4$	231±7	$28,6\pm3,7$	500±10	$13,7\pm2,1$	$2\pm0,4$	$0,4\pm0,2$	$2,8\pm0,4$	394 ± 20	$20\pm1,2$	$11,6\pm1,1$	$5,2\pm0,5$
KB-B23	$92,7\pm5,2$	363±9	$24,5\pm3,4$	225 ± 7	10 ± 2	$2\pm0,3$	$0,4\pm0,2$	$3,6\pm0,5$	341 ± 20	$16\pm1,2$	$8,8 \pm 1$	$4,2\pm0,5$
TA-B23	$87,4\pm 5,2$	351±9	$23,5\pm3,4$	199±7	11±2	$3,6\pm0,3$	\leq 0,1	$1,4\pm0,4$	335 ± 19	$23\pm1,3$	$10,2\pm 1$	$6,3\pm0,5$
SD-B23	$83,5\pm4,9$	290±8	$23,7\pm3,3$	211±7	$10,4\pm1,9$	$1,6\pm0,3$	$1\pm0,2$	$3,7\pm0,5$	382 ± 20	19±1,2	$7,9\pm0,9$	$3,2\pm0,5$

Приложение 8 Результаты определения методом РФА элементного состава образцов донных отложений, отобранных в бассейнах трансграничных рек Казахстана осенью 2018 г. (24-я экспедиция)

Образец	K %	Ca %	Ti %	V, MK Γ/Γ	Сг, мкг/г	Mn %	Fe %	Со, мкг/г	Ni, мкг/г	Си, мкг/г	Zn, мкг/г	Ga, мкг/г	As, $MK\Gamma/\Gamma$	Br, $MK\Gamma/\Gamma$
CH-B24	1,73±0,05	0,7±0,2	0,368±0,007	60±23	670±14	$0,03\pm0,01$	2,03±0,05	< 4	44±3	13±2	32±10	8±0,7	12,4±0,7	5,4±0,3
UR-B24	$0,86 \pm 0,05$	$1,5\pm0,2$	$0,163\pm0,006$	40±21	930±15	$0,02\pm0,01$	$1,24\pm0,03$	< 4	65±3	11±1	14±9	$3,1\pm0,6$	$12,3\pm0,7$	$3,6\pm0,3$
IK-B24	$0,87 \pm 0,05$	$0,4\pm0,2$	$0,048\pm0,006$	< 14	230 ± 11	$0,02\pm0,01$	$0,43\pm0,02$	< 4	29 ± 2	4 ± 1	3 ± 7	$1\pm0,6$	$5,8\pm0,6$	$3,5\pm0,3$
EK-B24	$0,56\pm0,05$	$0,6\pm0,2$	$0,038\pm0,005$	40±19	160 ± 11	$0,03\pm0,01$	$0,86\pm0,02$	< 4	21 ± 2	5±1	5±7	< 1	$7,5\pm0,6$	$3,9\pm0,3$
TO-B24	$1,13\pm0,05$	$0,8\pm0,2$	$0,321\pm0,005$	60 ± 22	$170{\pm}11$	$0,02\pm0,01$	$1,31\pm0,03$	< 4	18 ± 2	10 ± 1	19±9	$4,9\pm0,6$	$8,3\pm0,7$	$6,6\pm0,3$
AY-B24	$1,34\pm0,05$	$0,5\pm0,2$	$0,13\pm0,004$	< 14	$140{\pm}11$	$0,02\pm0,01$	$1,43\pm0,03$	< 4	14 ± 2	5±1	7±8	$3,5\pm0,6$	$7\pm0,7$	$3,8\pm0,3$
PR-B24	$1,84 \pm 0,05$	$1,1\pm0,2$	$0,401\pm0,007$	90±23	150 ± 12	$0,05\pm0,01$	$2,8\pm0,07$	< 4	33 ± 3	22 ± 2	55 ± 12	$13,2\pm0,8$	$12,7\pm0,8$	$5,1\pm0,3$
IR-B24	$1,34\pm0,05$	$0,6\pm0,2$	$0,175\pm0,006$	< 14	320 ± 12	$0,03\pm0,01$	$1,4\pm0,03$	< 4	49±3	7 ± 1	16±9	$6\pm0,7$	$4,8\pm0,7$	$4,2\pm0,3$
EM-B24	$1,91\pm0,05$	$2,2\pm0,3$	$0,39\pm0,005$	100 ± 24	100 ± 12	$0,05\pm0,01$	$3,07\pm0,07$	< 4	20 ± 3	19±2	45 ± 11	$14,1\pm0,8$	$17,8\pm0,8$	$3,7\pm0,3$
IL-B24	$1,83\pm0,05$	$6,8\pm0,4$	$0,376\pm0,005$	80 ± 25	100 ± 13	$0,05\pm0,01$	$2,62\pm0,05$	< 4	23 ± 3	14 ± 2	45 ± 12	$13\pm0,8$	$10,4\pm0,9$	$4\pm0,4$
TK-B24	$2,11\pm0,05$	$7,9\pm0,4$	$0,315\pm0,008$	110 ± 25	110 ± 13	$0,06\pm0,01$	$2,73\pm0,06$	< 4	28 ± 3	24 ± 2	60 ± 13	$13,1\pm0,8$	$16\pm0,9$	$14,5\pm0,4$
SH-B24	$2,3\pm0,05$	$3,9\pm0,3$	$0,35\pm0,008$	130 ± 24	120 ± 13	$0,06\pm0,01$	$3,04\pm0,07$	< 4	27 ± 3	16 ± 2	53 ± 12	$14,6\pm0,8$	$14,1\pm0,9$	$5,3\pm0,4$
KB-B24	$2,06\pm0,05$	$5,1\pm0,3$	$0,388 \pm 0,008$	150 ± 25	140 ± 13	$0,06\pm0,01$	$3,42\pm0,07$	< 4	40 ± 3	24 ± 2	55 ± 12	$13,8\pm0,8$	$17\pm0,9$	$7,3\pm0,4$
TA-B24	$1,84\pm0,04$	$7,1\pm0,4$	$0,306\pm0,007$	110 ± 24	150±13	$0,05\pm0,01$	$2,78\pm0,06$	< 4	35±3	23 ± 2	54±12	$12,1\pm0,8$	$13,2\pm0,9$	$11,9\pm0,4$
SD-B24	$1,78\pm0,05$	8,2±0,4	$0,315\pm0,005$	100±25	120±13	$0,05\pm0,01$	2,43±0,05	< 4	30±3	20±2	54±12	11,4±0,8	13,4±0,9	4,7±0,4

Образец	Rb, мкг/г	Sr, мкг/г	Ү, мкг/г	Zr, мкг/г	Nb, мкг/г	Мо, мкг/г	Pd мкг/г	Cd мкг/г	Ва, мкг/г	Рь, мкг/г	Th мкг/г	U мкг/г
CH-B24	55±4	142±5	17±3	291±7	6,5±1,6	1,8±0,3	0,7±0,2	3,4±0,4	353±18	4±1	3,1±0,8	1,5±0,4
UR-B24	23±3	93±4	10±2	155±5	$2,7\pm1,3$	$2,2\pm0,2$	$0,3\pm0,2$	$3,1\pm0,4$	123 ± 17	< 1	$0,7\pm0,6$	$1,5\pm0,4$
IK-B24	23±3	37 ± 3	5±2	31±2	$1,2\pm 1,1$	$2,1\pm0,1$	$0,8\pm0,2$	$3,4\pm0,4$	153±16	< 1	$0,9\pm0,4$	$0,8\pm0,3$
EK-B24	11±2	42 ± 3	7±2	33 ± 2	< 1	$1,4\pm0,1$	$0,3\pm0,2$	$2,4\pm0,4$	82 ± 16	< 1	$0,6\pm0,4$	$1\pm0,3$
TO-B24	34±3	94±4	10±2	320 ± 8	$5,7\pm1,5$	$1\pm0,3$	< 0,2	$2,1\pm0,4$	153 ± 17	2±1	$1,2\pm0,8$	$1\pm0,4$
AY-B24	40±3	105±4	6±2	29±3	$1,3\pm1,2$	$1\pm0,1$	$0,3\pm0,2$	$3,5\pm0,4$	153 ± 17	< 1	$1,8\pm0,5$	$1,4\pm0,3$
PR-B24	81±5	187±6	26±3	330 ± 8	$10,8\pm1,9$	$1,2\pm0,3$	$0,3\pm0,2$	$3,3\pm0,4$	194 ± 18	12±1	$6,5\pm0,9$	$2,6\pm0,5$
IR-B24	44±3	106±4	12±2	101±4	$3,7\pm1,4$	$3\pm0,2$	$0,6\pm0,2$	$4\pm0,4$	71±17	< 1	$3,3\pm0,6$	$1,3\pm0,4$
EM-B24	57±4	343±9	21±3	162±6	$6,7\pm1,7$	$2\pm0,3$	$0,9\pm0,2$	$4,3\pm0,4$	341±19	2±1	$2,7\pm0,9$	$2,7\pm0,4$
IL-B24	83±5	243±7	29±4	323±8	$12,3\pm2,1$	$1,6\pm0,3$	$0,3\pm0,2$	$2,9\pm0,5$	329±19	12±1	$7,8\pm1$	$2,4\pm0,5$
TK-B24	105±6	276±8	25±4	205±7	12±2	$1,6\pm0,3$	$0,7\pm0,2$	$3,1\pm0,5$	259±19	19±1	$10,7\pm0,9$	$4\pm0,5$
SH-B24	113±6	249±7	27±4	365±9	$13,1\pm2,1$	$2\pm0,4$	< 0,2	$1,9\pm0,4$	417±19	18±1	11,6±1	5±0,5
KB-B24	94±5	365±9	24±4	288±8	11±2	$2,5\pm0,3$	$0,7\pm0,2$	$2,8\pm0,5$	370 ± 20	14±1	8,3±1	$4,2\pm0,5$
TA-B24	89±5	338±8	19±3	154±6	$9,4\pm1,8$	$1,8\pm0,3$	$0,6\pm0,2$	$3,5\pm0,4$	341±19	17±1	$6,7\pm0,9$	$4\pm0,4$
SD-B24	81±5	286±8	21±3	233 ± 7	$10,1\pm1,9$	$2\pm0,3$	< 0,2	$2,5\pm0,4$	376 ± 20	17±1	$6,9\pm0,9$	$3,1\pm0,5$

Приложение 9 Результаты определения методом НАА элементного состава образцов почвы, отобранных в бассейнах трансграничных рек Казахстана весной 2018г. (23-ая экспедиция)

Sample code	Sb, мкг/г	As, _{ΜΚΓ} / _Γ	Ni, мкг/г	Cr, мкг/г	Со, мкг/г	Zn, мкг/г	U, мкг/г	Тh, мкг/г	La, мкг/г	Се, мкг/г	Ca, %	Fe, %	Na, %	Ва, мкг/г	Sr, мкг/г
CH-S23	0,85	12	120	233	21	93	2,1	9,5	34	66	< 1	4,5	1,0	472	174
UR-S23	0,55	4,0	72	403	11	71	1,5	5,7	20	44	< 1	2,5	0,89	367	174
IK-S23	0,65	4,8	95	245	9,7	48	1,8	5,6	20	42	< 1	2,0	0,79	391	91
EK-S23	0,36	1,7	55	206	2,9	22	0,52	1,9	7,8	16	< 1	0,68	0,23	206	46
TO-S23	0,56	2,8	70	187	12	86	1,3	5,5	17	41	< 1	2,3	0,44	356	173
AY-S23	1,3	11	101	217	25	92	2,5	7,8	29	67	< 1	5,0	0,48	588	104
PR-S23	0,59	4,5	52	57	7,2	51	1,2	5,4	20	40	1,2	1,8	1,7	335	194
IR-S23	0,84	6,1	114	135	15	80	1,7	8,3	29	59	< 1	3,8	1,8	383	192
EM-S23	0,96	8,7	60	45	8,6	60	1,7	4,8	21	45	3,2	3,0	2,6	506	384
IL-S23	1,1	9,8	70	79	10	77	4,7	9,1	31	61	7,4	2,9	2,5	495	706
TK-S23	1,1	8,1	54	103	11	86	2,4	11	32	60	6,1	2,8	1,5	604	352
SH-S23	1,4	8,7	< 2	106	11	79	4,2	12	36	67	3,4	3,1	2,5	657	286
KB-S23	1,6	12	< 2	90	13	89	3,6	12	34	62	6,5	3,5	2,1	673	486
TA-S23	1,6	9,8	62	97	13	69	2,6	10	35	67	7,0	3,2	1,7	588	427
SD-S23	1,2	11	< 51	82	11	75	2,9	9,2	33	61	8,6	2,8	1,7	574	490
															_
Commlo		ъ.					3.6		37.1	~	3.71	TCI	т.	_	
Sample code	Zr, $MK\Gamma/\Gamma$	Rb, _{мкг} /г	Sc, мкг/г	Cs, мкг/г	Hf, $MK\Gamma/\Gamma$	Та, мкг/г	Мо, мкг/г	Br, мкг/г	Nd, мкг/г	Sm, мкг/г	Yb, $_{ m MK\Gamma}/_{\Gamma}$	Тb, мкг/г	Lu, мкг/г	Eu, мкг/г	
	Zr, мкг/г 318		Sc, мкг/г	Cs, мкг/г 5,0	Нf, мкг/г 7,3	Та, мкг/г 0,86	,	Вг, мкг/г 9,7					1.		_
code		мкг/г				•	мкг/г		мкг/г	мкг/г	мкг/г	мкг/г	мкг/г	мкг/г	_
CH-S23	318	мкг/г 116	15	5,0	7,3	0,86	мкг/г < 1	9,7	мкг/г 31	мкг/г 5,8	мкг/г 2,7	мкг/г 0,80	мкг/г 0,38	мкг/г 1,2	_
code CH-S23 UR-S23	318 294	мкг/г 116 66	15 9,2	5,0 2,5	7,3 7,5	0,86 0,58	мкг/г < 1 1,6	9,7 2,0	мкг/г 31 26	мкг/г 5,8 3,3	мкг/г 2,7 1,8	мкг/г 0,80 0,53	мкг/г 0,38 0,32	мкг/г 1,2 0,73	_
CH-S23 UR-S23 IK-S23	318 294 305	мкг/г 116 66 70	15 9,2 6,5	5,0 2,5 2,5	7,3 7,5 9,3	0,86 0,58 0,61	MKΓ/Γ < 1 1,6 < 1	9,7 2,0 1,5	мкг/г 31 26 19	мкг/г 5,8 3,3 3,4	мкг/г 2,7 1,8 1,7	мкг/г 0,80 0,53 0,55	мкг/г 0,38 0,32 0,28	мкг/г 1,2 0,73 0,71	_
code CH-S23 UR-S23 IK-S23 EK-S23	318 294 305 58	мкг/г 116 66 70 27	15 9,2 6,5 1,7	5,0 2,5 2,5 0,64	7,3 7,5 9,3 1,8	0,86 0,58 0,61 0,14	мкг/г < 1 1,6 < 1 < 1 < 1	9,7 2,0 1,5 0,28	31 26 19 13	5,8 3,3 3,4 1,4	2,7 1,8 1,7 0,68	мкг/г 0,80 0,53 0,55 0,23	мкг/г 0,38 0,32 0,28 0,11	1,2 0,73 0,71 0,29	-
code CH-S23 UR-S23 IK-S23 EK-S23 TO-S23	318 294 305 58 266	мкг/г 116 66 70 27 64	15 9,2 6,5 1,7 7,5	5,0 2,5 2,5 0,64 2,7	7,3 7,5 9,3 1,8 6,3	0,86 0,58 0,61 0,14 0,50	мкг/г < 1 1,6 < 1 < 1 < 1 < 1 < 1	9,7 2,0 1,5 0,28 4,9	31 26 19 13 23	5,8 3,3 3,4 1,4 2,5	2,7 1,8 1,7 0,68 1,2	мкг/г 0,80 0,53 0,55 0,23 0,43	мкг/г 0,38 0,32 0,28 0,11 0,21	1,2 0,73 0,71 0,29 0,54	-
CH-S23 UR-S23 IK-S23 EK-S23 TO-S23 AY-S23	318 294 305 58 266 312	мкг/г 116 66 70 27 64 99	15 9,2 6,5 1,7 7,5	5,0 2,5 2,5 0,64 2,7 4,4	7,3 7,5 9,3 1,8 6,3 5,9	0,86 0,58 0,61 0,14 0,50 0,72	MKT/T < 1 1,6 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 <	9,7 2,0 1,5 0,28 4,9 9,1	31 26 19 13 23 40	5,8 3,3 3,4 1,4 2,5 5,4	2,7 1,8 1,7 0,68 1,2 2,1	мкг/г 0,80 0,53 0,55 0,23 0,43 0,89	мкг/г 0,38 0,32 0,28 0,11 0,21 0,39	1,2 0,73 0,71 0,29 0,54 1,2	-
CH-S23 UR-S23 IK-S23 EK-S23 TO-S23 AY-S23 PR-S23	318 294 305 58 266 312 264	мкг/г 116 66 70 27 64 99 71	15 9,2 6,5 1,7 7,5 12 6,3	5,0 2,5 2,5 0,64 2,7 4,4 2,2	7,3 7,5 9,3 1,8 6,3 5,9 7,1	0,86 0,58 0,61 0,14 0,50 0,72 0,56	MKI/F < 1 1,6 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 <	9,7 2,0 1,5 0,28 4,9 9,1 0,85	31 26 19 13 23 40	5,8 3,3 3,4 1,4 2,5 5,4 3,3	2,7 1,8 1,7 0,68 1,2 2,1 1,5	мкг/г 0,80 0,53 0,55 0,23 0,43 0,89 0,48	мкг/г 0,38 0,32 0,28 0,11 0,21 0,39 0,22	1,2 0,73 0,71 0,29 0,54 1,2 0,78	-
Code CH-S23 UR-S23 IK-S23 EK-S23 TO-S23 AY-S23 PR-S23 IR-S23	318 294 305 58 266 312 264 151	мкг/г 116 66 70 27 64 99 71 105	15 9,2 6,5 1,7 7,5 12 6,3 15	5,0 2,5 2,5 0,64 2,7 4,4 2,2 5,3	7,3 7,5 9,3 1,8 6,3 5,9 7,1 4,8	0,86 0,58 0,61 0,14 0,50 0,72 0,56 0,76	MKT/T < 1 1,6 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 <	9,7 2,0 1,5 0,28 4,9 9,1 0,85 5,5	31 26 19 13 23 40 15 32	5,8 3,3 3,4 1,4 2,5 5,4 3,3 5,4	2,7 1,8 1,7 0,68 1,2 2,1 1,5 2,7	мкг/г 0,80 0,53 0,55 0,23 0,43 0,89 0,48 0,83	мкг/г 0,38 0,32 0,28 0,11 0,21 0,39 0,22 0,39	1,2 0,73 0,71 0,29 0,54 1,2 0,78 1,1	-
Code CH-S23 UR-S23 IK-S23 EK-S23 TO-S23 AY-S23 PR-S23 IR-S23 EM-S23	318 294 305 58 266 312 264 151 237	мкг/г 116 66 70 27 64 99 71 105 72	15 9,2 6,5 1,7 7,5 12 6,3 15	5,0 2,5 2,5 0,64 2,7 4,4 2,2 5,3 2,2	7,3 7,5 9,3 1,8 6,3 5,9 7,1 4,8 6,6	0,86 0,58 0,61 0,14 0,50 0,72 0,56 0,76 0,70	MKT/T < 1 1,6 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	9,7 2,0 1,5 0,28 4,9 9,1 0,85 5,5 0,68	31 26 19 13 23 40 15 32 24	5,8 3,3 3,4 1,4 2,5 5,4 3,3 5,4 4,1	2,7 1,8 1,7 0,68 1,2 2,1 1,5 2,7 2,2	мкг/г 0,80 0,53 0,55 0,23 0,43 0,89 0,48 0,83 0,63	мкг/г 0,38 0,32 0,28 0,11 0,21 0,39 0,22 0,39 0,30	1,2 0,73 0,71 0,29 0,54 1,2 0,78 1,1 1,1	-
Code CH-S23 UR-S23 IK-S23 EK-S23 TO-S23 AY-S23 PR-S23 IR-S23 EM-S23 IL-S23	318 294 305 58 266 312 264 151 237 272	мкг/г 116 66 70 27 64 99 71 105 72 98	15 9,2 6,5 1,7 7,5 12 6,3 15	5,0 2,5 2,5 0,64 2,7 4,4 2,2 5,3 2,2 4,5	7,3 7,5 9,3 1,8 6,3 5,9 7,1 4,8 6,6 6,9	0,86 0,58 0,61 0,14 0,50 0,72 0,56 0,76 0,70 0,85	MKT/T < 1 1,6 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 7 < 1 < 7 < 7 < 7 < 7 < 7 < 7 < 7 < 7 < 7 < 7	9,7 2,0 1,5 0,28 4,9 9,1 0,85 5,5 0,68 7,2	31 26 19 13 23 40 15 32 24 27	5,8 3,3 3,4 1,4 2,5 5,4 3,3 5,4 4,1 5,0	2,7 1,8 1,7 0,68 1,2 2,1 1,5 2,7 2,2 2,5	мкг/г 0,80 0,53 0,55 0,23 0,43 0,89 0,48 0,83 0,63 0,74	мкг/г 0,38 0,32 0,28 0,11 0,21 0,39 0,22 0,39 0,30 0,33	1,2 0,73 0,71 0,29 0,54 1,2 0,78 1,1 1,1	_
Code CH-S23 UR-S23 IK-S23 EK-S23 TO-S23 AY-S23 PR-S23 IR-S23 EM-S23 IL-S23 TK-S23	318 294 305 58 266 312 264 151 237 272 103	MKT/T 116 66 70 27 64 99 71 105 72 98 101	15 9,2 6,5 1,7 7,5 12 6,3 15 11 11	5,0 2,5 2,5 0,64 2,7 4,4 2,2 5,3 2,2 4,5 4,8	7,3 7,5 9,3 1,8 6,3 5,9 7,1 4,8 6,6 6,9 4,3	0,86 0,58 0,61 0,14 0,50 0,72 0,56 0,76 0,70 0,85 0,78	MKI/F < 1 1,6 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 <	9,7 2,0 1,5 0,28 4,9 9,1 0,85 5,5 0,68 7,2 5,8	31 26 19 13 23 40 15 32 24 27 28	5,8 3,3 3,4 1,4 2,5 5,4 3,3 5,4 4,1 5,0 4,5	2,7 1,8 1,7 0,68 1,2 2,1 1,5 2,7 2,2 2,5 1,8	0,80 0,53 0,55 0,23 0,43 0,89 0,48 0,83 0,63 0,74 0,46	0,38 0,32 0,28 0,11 0,21 0,39 0,22 0,39 0,30 0,33 0,22	1,2 0,73 0,71 0,29 0,54 1,2 0,78 1,1 1,1 1,0 0,79	_
Code CH-S23 UR-S23 IK-S23 EK-S23 TO-S23 AY-S23 PR-S23 IR-S23 EM-S23 IL-S23 TK-S23 SH-S23	318 294 305 58 266 312 264 151 237 272 103 232	мкг/г 116 66 70 27 64 99 71 105 72 98 101 122	15 9,2 6,5 1,7 7,5 12 6,3 15 11 11 9,4	5,0 2,5 2,5 0,64 2,7 4,4 2,2 5,3 2,2 4,5 4,8 4,6	7,3 7,5 9,3 1,8 6,3 5,9 7,1 4,8 6,6 6,9 4,3 7,6	0,86 0,58 0,61 0,14 0,50 0,72 0,56 0,76 0,70 0,85 0,78 1,1	MKT/T	9,7 2,0 1,5 0,28 4,9 9,1 0,85 5,5 0,68 7,2 5,8 7,0	31 26 19 13 23 40 15 32 24 27 28 29	5,8 3,3 3,4 1,4 2,5 5,4 3,3 5,4 4,1 5,0 4,5 5,6	2,7 1,8 1,7 0,68 1,2 2,1 1,5 2,7 2,2 2,5 1,8 2,6	0,80 0,53 0,55 0,23 0,43 0,89 0,48 0,83 0,63 0,74 0,46 0,87	мкг/г 0,38 0,32 0,28 0,11 0,21 0,39 0,22 0,39 0,30 0,33 0,22 0,34	1,2 0,73 0,71 0,29 0,54 1,2 0,78 1,1 1,1 1,0 0,79 1,1	_

Результаты определения методом НАА элементного состава образцов почвы, отобранных в бассейнах трансграничных рек Казахстана осенью 2018 г. (24-ая экспедиция)

Sample code	Sb, мкг/г	As, _{ΜΚΓ} / _Γ	Ni, _{мкг} /г	Сr, мкг/г	Со, мкг/г	Zn, мкг/г	U, мкг/г	Th, мкг/г	La, мкг/г	Се, мкг/г	Ca, %	Fe, %	Na, %	Ва, _{мкг/г}	Au, нг/г	Sr, мкг/г	Zr, _{ΜΚΓ} /Γ	Rb, мкг/г
CH-S24	0,65	10	65	277	16	61	1,5	8,4	28	62	< 1	3,3	1,0	444	< 1	149	275	83
UR-S-24	0,60	5,0	65	478	13	78	1,6	6,6	22	49	0,96	2,8	0,95	457	< 1	101	233	66
IK-S24	0,59	5,4	49	269	8,7	54	1,1	6,0	18	41	< 1	1,7	0,64	432	< 1	88	271	63
EK-S24	0,37	4,9	30	271	5,5	23	1,2	1,6	8,0	17	0,84	1,3	0,22	186	4,1	62	30	15
TO-S24	0,84	7,3	< 2	172	13	69	1,5	6,0	21	37	1,7	2,3	0,68	378	4,9	151	202	63
AY-S24	0,88	7,2	43	127	31	43	1,2	4,2	15	26	1,0	2,7	0,91	423	< 1	135	142	61
PR-S24	0,58	4,7	18	79	6,3	40	1,2	7,2	19	46	< 1	1,6	1,4	398	< 1	167	223	60
IR-S24	0,89	4,4	46	101	12	73	1,4	7,3	23	51	2,2	3,0	1,2	380	< 1	213	149	73
EM-S24	1,1	6,7	25	70	6,9	43	1,5	5,1	19	43	3,1	2,2	2,0	527	< 1	313	189	62
IL-S24	1,4	7,4	49	124	9,5	105	2,5	14	32	64	3,5	2,6	2,3	575	< 1	283	166	98
TK-S24	0,49	3,2	35	91	6,6	58	2,5	15	56	129	3,3	2,3	2,2	694	< 1	279	243	114
SH-S24	1,3	7,6	25	92	10	60	4,0	11	28	64	5,7	2,7	1,4	685	7,3	701	218	107
KB-S24	0,99	8,1	25	97	12	86	3,0	14	34	74	4,9	3,0	1,2	695	16	380	150	109
TA-S24	1,3	7,1	37	110	10	86	3,5	11	31	69	5,1	2,6	1,4	909	< 1	724	163	105
SD-S24	1,2	9,3	36	84	11	63	4,6	11	32	66	7,5	2,7	1,7	651	< 1	568	188	81

Sample code	Sc, _{мкг/г}	Сs, _{мкг/г}	Нf, _{мкг} /г	Та, _{мкг/г}	Мо, _{мкг/г}	Br, _{ΜΚΓ} / _Γ	Nd, мкг/г	Sm, _{ΜΚΓ} /Γ	Υb, _{мкг/г}	Тb, _{мкг} /г	Lu, мкг/г	Еи, мкг/г
CH-S24	11	3,7	8,0	0,74	< 1	7,7	62	5,3	2,2	0,63	0,37	1,1
UR-S-24	11	3,0	8,4	0,58	< 1	2,9	49	4,2	2,4	0,68	0,35	0,96
IK-S24	6,3	2,5	8,8	0,63	1,5	1,5	41	3,2	2,1	0,50	0,31	0,71
EK-S24	2,3	0,42	0,85	0,19	< 1	0,36	17	1,6	0,78	0,23	0,10	0,39
TO-S24	8,0	3,2	6,7	0,62	0,25	9,4	19	3,9	2,1	0,48	0,27	0,75
AY-S24	8,3	2,2	3,6	0,34	< 1	4,4	18	2,9	1,3	0,33	0,21	0,69
PR-S24	6,4	2,1	6,3	0,54	< 1	0,74	46	3,8	1,9	0,54	0,29	0,84
IR-S24	13	4,3	4,5	0,63	< 1	4,1	51	4,6	2,4	0,72	0,32	1,1
EM-S24	9,3	2,2	5,3	0,61	< 1	1,9	43	4,1	2,3	0,59	0,28	0,91
IL-S24	9,3	4,1	5,1	0,83	1,7	6,8	64	5,2	2,3	0,68	0,32	0,88
TK-S24	7,7	3,3	8,9	1,2	< 1	3,8	129	7,7	3,5	1,0	0,44	1,0
SH-S24	9,9	4,1	7,0	0,86	< 1	2,7	64	4,7	2,2	0,62	0,36	1,0
KB-S24	11	4,7	5,3	1,0	< 1	3,3	74	5,3	2,6	0,73	0,32	1,1
TA-S24	9,2	3,9	5,4	0,91	< 1	5,2	69	4,6	2,4	0,71	0,35	1,1
SD-S24	10	4,5	6,6	0,87	1,2	3,5	66	5,7	2,4	0,72	0,30	1,0

Результаты определения методом НАА элементного состава образцов донных отложений, отобранных в бассейнах трансграничных рек Казахстана весной 2018г. (23-я экспедиция)

Sample code	Sb, мкг/г	As, мкг/г	Ni, мкг/г	Cr, мкг/г	Со, мкг/г	Zn, мкг/г	U, мкг/г	Th, мкг/г	La, мкг/г	Се, мкг/г	Ca, %	Fe, %	Na, %	Ва, мкг/г	Sr, мкг/г
CH-B23	0,52	10	83	394	13	60	1,5	5,9	23	45	1,5	2,9	1,2	410	206
UR-B23	0,65	5,6	115	352	15	59	1,8	6,6	23	51	2,7	2,9	1,1	395	253
IK-B23	0,63	7,8	51	190	13	51	2,0	6,0	22	48	3,6	2,6	1,0	354	253
EK-B23	0,50	3,9	84	258	6,8	28	1,4	3,0	13	27	< 1	1,3	0,43	307	98
TO-B23	0,36	4,5	54	299	7,6	29	1,4	5,8	12	38	< 1	1,5	0,41	236	101
AY-B23	0,93	4,5	59	310	14	46	1,3	12	18	77	1,3	2,8	0,50	341	150
PR-B23	0,81	7,1	81	72	13	75	2,4	10	32	67	< 1	3,1	1,4	401	206
IR-B23	0,41	2,9	49	67	5,0	21	0,74	2,6	14	26	1,1	2,0	1,5	224	141
EM-B23	1,4	9,7	< 2	67	11	72	2,4	5,4	24	50	2,7	4,5	3,0	626	459
IL-B23	1,4	15	< 2	69	15	91	2,8	13	37	71	4,9	3,8	1,6	484	238
TK-B23	0,74	6,0	48	94	7,8	56	2,8	9,5	30	57	7,0	2,4	1,6	494	336
SH-B23	1,3	6,5	< 2	86	9,3	59	5,3	17	39	74	2,6	3,2	2,4	584	291
KB-B23	1,3	14	< 2	86	14	71	3,4	11	36	71	7,1	3,6	2,0	554	456
TA-B23	2,2	5,6	55	118	14	88	6,3	9,9	37	66	8,6	3,3	1,5	538	506
SD-B23	1,1	9,6	62	86	11	89	2,9	9,5	31	60	7,6	2,9	1,4	558	437

Sample	Zr, мкг/г	Rb, мкг/г	Sc, мкг/г	Сs, мкг/г	Hf, мкг/г	Та, мкг/г	Мо, мкг/г	Br, мкг/г	Nd, мкг/г	Sm, мкг/г	Yb, мкг/г	Ть, мкг/г	Lu, мкг/г	Еи, мкг/г
CH-B23	201	65	8,1	2,4	6,7	0,49	< 1	6,3	21	3,9	1,8	0,53	0,27	0,89
UR-B23	320	71	10	2,9	8,0	0,72	< 1	3,1	25	3,9	2,1	0,58	0,35	0,96
IK-B23	228	66	8,4	2,8	7,7	0,61	< 1	3,9	28	3,9	2,1	0,62	0,31	0,81
EK-B23	144	42	3,5	1,2	3,4	0,28	< 1	0,69	16	2,4	0,87	0,33	0,17	0,52
TO-B23	399	38	4,6	1,3	11	0,51	< 1	0,92	21	2,3	0,98	0,35	0,21	0,43
AY-B23	263	52	7,4	1,4	6,2	0,64	< 1	5,6	37	3,0	1,3	0,49	0,25	0,95
PR-B23	263	95	12	4,9	8,4	0,96	1,4	1,4	35	5,7	2,9	1,0	0,40	1,3
IR-B23	126	50	4,5	1,3	3,9	0,29	< 1	0,50	15	2,5	1,1	0,38	0,16	0,58
EM-B23	622	73	13	1,7	14	1,1	< 1	< 0,2	26	5,1	3,0	0,87	0,40	1,3
IL-B23	217	109	13	7,5	5,1	1,1	< 1	1,8	32	5,9	2,6	0,91	0,36	1,3
TK-B23	223	102	8,1	4,4	7,1	0,71	< 1	5,5	26	4,5	2,3	0,58	0,27	0,81
SH-B23	643	119	9,9	3,8	16	1,6	< 1	1,2	36	6,1	3,4	0,78	0,46	1,1
KB-B23	322	102	13	5,1	7,2	1,0	< 1	1,9	41	5,4	2,4	0,73	0,37	1,1
TA-B23	204	105	11	4,8	5,7	1,0	2,2	8,7	27	5,5	2,0	0,65	0,29	1,0
SD-B23	227	94	9,8	4,6	6,3	0,77	< 1	1,3	32	4,7	1,9	0,66	0,35	0,95

Результаты определения методом НАА элементного состава образцов донных отложений, отобранных в бассейнах трансграничных рек Казахстана осенью 2018 г. (24-я экспедиция)

Sample code	Sb, мкг/г	As, _{ΜΚΓ} /Γ	Ni, _{мкг/г}	Сr, мкг/г	Со, _{мкг/г}	Zn, _{ΜΚΓ} /Γ	U, мкг/г	Th, мкг/г	La, мкг/г	Се, мкг/г	Ca,	% Fe,	%	Na,	%	Ва, мкг/г	Au, нг/г	Sr, мкг/г
CH-B24	0,64	4,9	49	621	11	41	1,8	6,4	22	50	1,3	2,2	2	1,2		450	< 1	128
UR-B24	0,44	4,9	72	860	7,0	17	0,85	2,2	11	22	1,2	1,4	1	0,72		344	< 1	95
IK-B24	0,40	3,4	52	220	3,0	12	0,47	1,5	7,4	17	< 1	0,5	3	0,18		324	2,4	42
EK-B24	0,23	3,6	40	169	5,0	17	0,76	1,3	7,0	15	0,81	1,0)	0,26		183	3,8	63
TO-B24	0,46	2,9	24	136	7,2	27	1,0	3,7	15	25	< 1	1,3	3	0,63		250	4,9	105
AY-B24	1,0	5,9	28	170	6,0	17	0,65	1,8	7,9	12	< 1	1,	7	1,1		414	4,5	179
PR-B24	0,94	7,7	42	136	12	71	1,8	8,8	28	67	< 1	2,9)	1,6		448	< 1	225
IR-B24	0,57	3,1	77	303	5,7	23	0,86	5,4	19	46	< 1	1,8	3	1,2		285	< 1	120
EM-B24	1,0	8,9	29	84	8,8	53	1,3	4,6	17	40	1,7	2,9)	2,2		601	7,3	326
IL-B24	1,0	7,5	23	83	7,9	48	2,3	9,6	28	60	5,4	2,5	5	1,9		540	< 1	265
TK-B24	1,1	7,5	22	85	8,9	63	3,2	12	31	65	6,6	2,4	1	1,4		523	< 1	277
SH-B24	1,5	6,4	21	115	9,8	64	3,6	13	31	70	3,6	2,9)	1,7		730	6,6	288
KB-B24	1,5	8,9	32	103	12	54	3,4	10	28	65	4,3	3,2	2	1,4		604	< 1	385
TA-B24	1,1	5,5	30	110	9,5	62	2,6	8,4	27	59	4,6	2,5	5	1,3		589	< 1	364
SD-B24	1,1	7,5	28	96	8,6	61	2,3	8,6	27	56	5,5	2,2	2	1,2		563	< 1	265

Sample code	Zr, _{ΜΚΓ} /Γ	Rb, _{мкг} /г	Sc, _{мкг/г}	Cs, мкг/г	Hf, _{ΜΚΓ} /Γ	Та, _{мкг/г}	Мо, мкг/г	Br, _{ΜΚΓ} /Γ	Nd, мкг/г	Sm, мкг/г	Yb, мкг/г	Tb, мкг/г	Lu, мкг/г	Eu, мкг/г
CH-B24	255	61	7,4	2,1	9,0	0,62	0,58	1,5	50	4,1	2,0	0,52	0,30	0,91
UR-B24	154	22	4,1	0,72	4,7	0,19	1,1	0,34	22	2,2	1,1	0,28	0,18	0,51
IK-B24	29	30	1,1	0,70	1,0	0,12	1,4	0,41	17	1,4	0,60	0,20	0,09	0,32
EK-B24	43	13	1,8	0,41	1,1	0,09	< 1	0,33	15	1,4	0,68	0,19	0,11	0,36
TO-B24	326	35	4,1	1,1	8,5	0,45	< 1	3,0	10	2,6	1,4	0,23	0,18	0,45
AY-B24	< 30	51	2,7	0,72	1,1	0,11	0,98	0,69	7,3	1,4	0,64	0,16	0,10	0,41
PR-B24	315	82	12	4,2	9,5	0,99	< 1	1,0	67	5,7	3,2	1,0	0,48	1,3
IR-B24	119	50	5,8	1,7	3,6	0,86	1,4	0,64	46	3,7	1,4	0,54	0,21	0,75
EM-B24	140	55	11	1,5	5,0	0,52	< 1	< 0,2	40	3,8	2,2	0,66	0,26	1,0
IL-B24	296	80	10	3,6	9,3	0,97	< 1	0,52	60	5,3	2,7	0,82	0,36	1,1
TK-B24	164	99	9,3	6,1	5,7	0,93	< 1	7,3	65	5,2	2,5	0,68	0,30	0,89
SH-B24	343	110	11	4,6	11	1,1	< 1	1,1	70	5,4	3,1	0,80	0,45	1,1
KB-B24	261	86	12	3,9	7,9	0,72	< 1	2,3	65	4,9	2,4	0,64	0,33	1,2
TA-B24	123	75	9,0	3,4	4,4	0,68	0,94	5,1	59	4,4	2,0	0,51	0,25	0,96
SD-B24	210	76	8,3	3,5	6,6	0,78	< 1	0,82	56	4,7	2,1	0,64	0,28	0,90

Результаты гамма-спектрометрического анализа растворимых компонентов (WD) проб воды, отобранных в бассейнах трансграничных рек Казахстана весной 2018 г. (23-я экспедиция).

Образец	т факт, г	Th-234, мБк/л	Ra-226, мБк/л	Рb-214, мБк/л	Ві-214, мБк/л	Рb-210, мБк/л	Ас-228, мБк/л	Ra-224, мБк/л	Рb-212, мБк/л	Ві-212, мБк/л
CH-WD23	3,397	$6,7 \pm 3,6$	< 14	8 ± 2	8 ± 2	< 8	< 5	< 20	< 5	< 14
UR-WD23	3,033	< 27	< 10	< 2	$3 \pm 1,4$	< 72	< 4	< 8	< 8	< 10
IK-WD23	4	< 12	< 11	8 ± 2	10 ± 1	< 33	< 5	< 12	< 5	< 13
EK-WD23	2,914	< 10	< 10	26 ± 2	30 ± 3	< 28	< 5	< 11	< 5	< 12
TO-WD23	5,447	< 21	< 11	26 ± 2	28 ± 3	< 89	< 4	< 10	< 7	< 12
AY-WD23	5,97	$54,4 \pm 5,5$	< 27	< 5	< 4	< 11	< 7	< 27	< 5	< 19
PR-WD23	2,069	$12,\!4\pm2,\!9$	25 ± 9	19 ± 2	27 ± 3	< 6	< 4	< 16	< 5	< 12
IR-WD23	1,765	36 ± 11	< 9	28 ± 2	33 ± 4	< 67	< 4	< 8	< 5	< 10
EM-WD23	6,739	$67,1 \pm 8,1$	17 ± 9	15 ± 2	20 ± 4	< 35	< 5	< 12	< 5	< 16
IL-WD23	3,871	$9 \pm 4,4$	< 11	< 3	< 2	< 8	< 4	< 13	< 5	< 12
TK-WD23	3,635	10 ± 5	< 11	< 2	< 2	< 25	< 4	< 10	< 6	< 12
SH-WD23	5,053	78 ± 8	< 26	34 ± 3	27 ± 8	< 10	< 7	< 26	6 ± 1	< 19
KB-WD23	9,637	$117,3 \pm 6$	< 14	17 ± 2	18 ± 2	< 9	< 5	< 15	< 5	< 13
TA-WD23	4,051	34 ± 4	< 19	< 3	< 3	< 8	< 6	< 13	< 5	< 14
SD-WD23	9,223	82 ± 21	< 16	< 4	< 3	< 150	< 6	< 14	< 5	< 16

Образец	Tl-208, мБк/л	U-235, мБк/л	К-40, мБк/л	Cs-137, мБк/л
CH-WD23	12 ± 5	< 1	< 42	< 1
UR-WD23	9 ± 2	< 1	90 ± 25	< 0,6
IK-WD23	< 7	< 1	< 94	< 1,1
EK-WD23	< 7	< 1	139 ± 50	< 1
TO-WD23	10 ± 2	< 1	49 ± 27	< 0,7
AY-WD23	10 ± 4	$3,4 \pm 1$	< 57	< 1,4
PR-WD23	< 9	$1,\!4\pm0,\!6$	< 34	< 0,8
IR-WD23	< 8	$2,7\pm0,3$	44 ± 24	< 0,7
EM-WD23	< 7	$5,5\pm0,5$	< 90	< 1,1
IL-WD23	< 7	$3,6\pm0,4$	< 36	< 1,1
TK-WD23	< 3	$2,9\pm0,4$	< 76	< 1
SH-WD23	14 ± 5	$9,6 \pm 1$	99 ± 33	< 1,3
KB-WD23	< 7	$14{,}4\pm0{,}6$	88 ± 25	< 1
TA-WD23	15 ± 3	$3,7\pm0,7$	< 41	< 1
SD-WD23	12 ± 5	$8,2\pm0,6$	78 ± 39	< 1,1

Результаты гамма-спектрометрического анализа растворимых компонентов (WD) проб воды, отобранных в бассейнах трансграничных рек Казахстана осенью 2018 г. (24-я спедиция).

Образец	V, л	Масса факт, г	Th-234, мБк/л	Ra-226, мБк/л	Pb-214, мБк/л	Ві-214, мБк/л	Рb-210, мБк/л	Ас-228, мБк/л	Ra-224, мБк/л	Рb-212, мБк/л	Ві-212, мБк/л	Tl-208, мБк/л
CH-WD24	10	8,735	< 9	< 27	< 5	< 4	< 13	< 8	< 26	< 2	< 21	6 ± 2
UR-WD24	10	5,443	< 12	32 ± 9	$4\pm1,8$	$6,6 \pm 1,6$	46 ± 21	< 6	< 11	$2,\!8\pm0,\!7$	< 16	5 ± 2
IK-WD24	10	13,146	16 ± 9	69 ± 16	10 ± 3	11 ± 3	< 18	< 8	< 18	$4,3 \pm 1,2$	< 22	< 6
EK-WD24	10	9,217	20 ± 6	32 ± 11	22 ± 2	29 ± 2	17 ± 8	< 6	< 13	$2,\!8\pm0,\!8$	< 17	< 4
TO-WD24	10	9,423	26 ± 5	< 26	< 5	< 4	< 12	< 7	< 18	$4,1\pm1,3$	< 18	5 ± 2
AY-WD24	10	9,473	36 ± 8	17 ± 9	15 ± 2	16 ± 2	64 ± 23	6 ± 3	< 11	$5,3\pm0,7$	< 15	8 ± 2
PR-WD24	10	1,664	15 ± 3	< 9	15 ± 1	14 ± 1	< 5	< 3	9 ± 4	$1,7 \pm 0,\!4$	< 8	< 2
IR-WD24	10	0,962	9 ± 3	< 14	< 3	< 2	< 5	< 4	< 13	< 1	< 11	3 ± 1
EM-WD24	10	10,176	132 ± 12	55 ± 13	20 ± 3	20 ± 2	< 52	< 8	< 16	$3,9\pm1,1$	< 23	5 ± 2
IL-WD24	10	4,595	39 ± 5	28 ± 9	6 ± 2	8 ± 1	9 ± 5	< 5	< 10	$2,1\pm0,\!6$	< 13	< 3
TK-WD24	6,3	2,127	26 ± 6	< 30	< 6	< 5	< 12	< 9	< 22	< 2	< 24	4 ± 2
SH-WD24	10	5,688	81 ± 5	28 ± 15	< 4	< 4	< 10	< 7	< 16	< 2	< 18	4 ± 1
KB-WD24	10	20,102	279 ± 15	211 ± 39	< 11	< 10	< 30	< 18	< 56	< 5	< 47	7 ± 2
TA-WD24	10	3,757	39 ± 4	< 19	< 4	< 3	< 8	< 6	< 13	< 2	< 15	4 ± 1
SD-WD24	10	13,727	122 ± 12	70 ± 19	30 ± 4	31 ± 4	< 21	< 11	< 23	$3,5\pm1,5$	< 29	< 7

Образец	U-235, мБк/л	ТН-227, мБк/л	К-40, мБк/л	Cs-137, мБк/л
CH-WD24	< 2	< 6	< 62	< 1
UR-WD24	$1,3\pm0,6$	< 3,7	459 ± 44	< 1
IK-WD24	< 1	< 5	302 ± 50	$2,9\pm1,2$
EK-WD24	< 1	< 4	403 ± 36	< 1
TO-WD24	< 1,6	< 6	< 53	< 1
AY-WD24	$1{,}7\pm0{,}5$	< 4	543 ± 39	< 1
PR-WD24	$0,7\pm0,3$	< 2	< 31	< 1
IR-WD24	< 1	< 4	< 34	< 1
EM-WD24	8 ± 0.8	< 5	685 ± 59	$2,1\pm1,1$
IL-WD24	$2,8\pm0,5$	< 3	280 ± 28	< 1
TK-WD24	$2,3 \pm 1,1$	< 7	< 72	< 2
SH-WD24	$13\pm1,\!3$	< 5,3	< 54	< 1
KB-WD24	25 ± 3	< 5	< 136	< 3
TA-WD24	$3,8\pm0,7$	< 5,4	< 45	< 1
SD-WD24	$7,5 \pm 1,1$	< 5,5	240 ± 61	< 2

Результаты гамма-спектрометрического анализа нерастворимых компонентов (WS) проб воды, отобранных в бассейнах трансграничных рек Казахстана весной 2018 г. (23-я экспедиция).

Образец	т факт, г	Th-234, мБк/л	Ra-226, мБк/л	Рb-214, мБк/л	Ві-214, мБк/л	Pb-210, мБк/л	Ас-228, мБк/л	Ra-224, мБк/л	Рb-212, мБк/л	Ві-212, мБк/л
CH-WS23	0,074	9 ± 5	< 4	< 1	< 1	< 27	< 2	< 4	< 4	< 4
UR-WS23	1,268	< 4	< 6	$2,3 \pm 1$	$2,9 \pm 1$	< 4	< 2	6 ± 3	$2,1\pm0,\!4$	< 7
IK-WS23	0,513	< 2	< 5	< 1	< 1	< 3	< 2	< 5	$1,5\pm0,4$	< 6
EK-WS23	0,093	< 4	< 6	< 2	< 2	< 4	< 4	< 9	< 4	< 7
TO-WS23	0,065	< 4	< 9	< 2	< 2	< 4	< 4	< 12	< 4	< 9
AY-WS23	0,231	< 2	< 3	4 ± 1	$3,2 \pm 0,6$	< 2	< 2	< 7	< 4	< 4
PR-WS23	0,294	< 2	< 3	10 ± 1	10 ± 1	< 2	< 1	4 ± 2	$0,6 \pm 0,2$	< 4
IR-WS23	2,436	16 ± 2	8 ± 4	< 1	< 1	10 ± 2	< 2	< 7	9 ± 1	< 5
EM-WS23	6,003	7 ± 2	< 5	6 ± 1	6 ± 1	< 5	< 2	< 9	9 ± 1	< 6
IL-WS23	5,965	13 ± 2	< 8	25 ± 3	29 ± 3	8 ± 3	19 ± 2	20 ± 4	17 ± 2	10 ± 4
TK-WS23	0,168	< 7	< 4	$3,2\pm0,6$	4 ± 1	< 25	< 1	< 3	< 4	< 4
SH-WS23	1,317	25 ± 6	< 4	< 1	< 1	< 30	4 ± 1	< 4	$2,\!4\pm0,\!3$	< 5
KB-WS23	2,403	10 ± 2	< 6	5 ± 1	4 ± 1	< 4	5 ± 2	10 ± 3	9 ± 1	< 6
TA-WS23	0,286	$3,2 \pm 1,7$	< 3	4 ± 1	6 ± 1	< 7	< 1	< 3	0.8 ± 0.2	9 ± 2
SD-WS23	2,681	10 ± 2	< 5	6 ± 1	5 ± 1	< 10	6 ± 1	7 ± 2	6 ± 1	14 ± 3

Образец	Tl-208, мБк/л	U-235, мБк/л	К-40, мБк/л	Cs-137, мБк/л
CH-WS23	< 5	< 1	< 17	< 0,3
UR-WS23	< 5	< 1	< 27	< 0,6
IK-WS23	< 5	< 1	< 17	< 0,4
EK-WS23	< 5	< 1	< 15	< 0,6
TO-WS23	6 ± 2	< 1	< 28	< 0,7
AY-WS23	< 5	< 1	< 15	< 0,3
PR-WS23	< 5	< 1	< 14	< 0,3
IR-WS23	10 ± 2	0.8 ± 0.3	< 16	< 0,4
EM-WS23	< 6	< 1	36 ± 15	< 0,5
IL-WS23	15 ± 2	$0,6\pm0,3$	303 ± 17	< 0,6
TK-WS23	13 ± 1	< 1	< 16	< 0,3
SH-WS23	17 ± 1	$1,1\pm0,2$	37 ± 11	< 0,3
KB-WS23	8 ± 1	0.5 ± 0.3	38 ± 13	< 0,5
TA-WS23	< 5	< 1	46 ± 15	< 0,3
SD-WS23	6 ± 1	$0,5 \pm 0,2$	< 32	< 0,4

Результаты гамма-спектрометрического анализа нерастворимых компонентов (WS) проб воды,

отобранных в бассейнах трансграничных рек Казахстана осенью 2018г. (24-я экспедиция).

Образец	Масса факт, г	Th-234, мБк/л	Ra-226, мБк/л	Рb-214, мБк/л	Ві-214, мБк/л	Рb-210, мБк/л	Ас-228, мБк/л	Ra-224, мБк/л	Рb-212, мБк/л	Ві-212, мБк/л	Tl-208, мБк/л
CH-WS24	0,012	< 4	< 6	< 1	2 ± 0.7	< 10	$3,4 \pm 1,6$	< 5	$1,2 \pm 0,3$	< 7	2,2 ± 1
UR-WS24	0,01	< 9	< 6	< 1	< 1	< 36	< 2	< 5	< 1	< 6	< 2
IK-WS24	0,01	< 3	< 10	< 2	< 2	< 4	< 3	< 7	< 2	< 9	< 2
EK-WS24	0,967	< 7	12 ± 6	$7,5\pm1,2$	$8,6 \pm 1,1$	30 ± 11	$3,9\pm2,2$	< 8	$2,1\pm0,5$	< 10	$3,6 \pm 1,5$
TO-WS24	0,138	< 3	< 6	$7,2 \pm 1$	$6,2 \pm 1$	< 4	< 3	< 6	< 1	< 6	< 2
AY-WS24	0,124	< 4	< 11	$3\pm1,4$	< 2	< 4	< 4	< 8	< 1	< 10	< 2
PR-WS24	0,096	5 ± 3	8 ± 4	3 ± 1	4 ± 1	16 ± 7	< 2	< 5	1 ± 0.3	< 5	$1,6 \pm 1$
IR-WS24	0,321	5 ± 2	9 ± 3	3.9 ± 0.6	$5,\!8\pm0,\!6$	12 ± 5	< 2	4 ± 2	$2,5\pm0,3$	< 5	2 ± 0.8
EM-WS24	0,991	8 ± 4	8 ± 3	$3,6\pm0,5$	$2,\!4\pm0,\!7$	< 31	$2,5 \pm 1,1$	< 4	< 2	< 5	< 3
IL-WS24	1,875	9 ± 2	8 ± 3	$9,3\pm0,8$	$10,\!5\pm0,\!7$	$8,7\pm1,9$	$3 \pm 1,2$	11 ± 2	$5,\!8\pm0,\!3$	< 5	$3,5\pm0,9$
TK-WS24	0,275	< 3	15 ± 4	$4,7\pm0,8$	$3,3 \pm 0,7$	< 3	< 2	< 4	$1 \pm 0,3$	< 6	< 2
SH-WS24	0,653	$13,2 \pm 1,6$	< 4	$2,\!3\pm0,\!7$	< 1	< 2	< 2	4 ± 2	$2,\!6\pm0,\!3$	< 5	$1,5\pm0.8$
KB-WS24	0,695	24 ± 5	< 5	< 1	< 1	< 33	$3,7 \pm 1,1$	< 4	< 2	< 5	< 2
TA-WS24	0,473	$5,6 \pm 1,4$	< 7	< 1	< 1	< 3	< 2	< 7	$0,7\pm0,\!4$	< 6	3 ± 1
SD-WS24	0,506	< 3	< 11	< 2	< 2	< 4	< 4	< 11	< 1	< 9	< 2

Образец	U-235, мБк/л	ТН-227, мБк/л	К-40, мБк/л	Cs-137, мБк/л
CH-WS24	< 0,4	< 1,6	158 ± 19	< 1
UR-WS24	< 0,4	< 2	< 19	< 0,4
IK-WS24	< 0,7	< 2,4	< 26	< 1
EK-WS24	< 0,6	< 2,2	198 ± 27	< 1
TO-WS24	< 0,2	< 1,8	< 15	< 0,6
AY-WS24	< 0,7	< 2,7	< 28,4	< 1
PR-WS24	< 0,4	< 1,6	156 ± 19	< 0,5
IR-WS24	< 0,3	< 1,2	156 ± 14	< 0,4
EM-WS24	$0,4\pm0,2$	< 1,3	< 19	< 0
IL-WS24	$0,4\pm0,2$	< 1,2	105 ± 11	0.6 ± 0.3
TK-WS24	< 0,3	< 1,2	< 12	0.6 ± 0.3
SH-WS24	$1,1\pm0,2$	< 1	< 10	< 0,4
KB-WS24	$1,2\pm0,2$	< 1,3	35 ± 12	< 0,4
TA-WS24	< 0,4	< 1,7	< 18	< 0,4
SD-WS24	< 0,7	< 2,7	< 27	< 0,7

Результаты нейтроноактивационного анализа растворимых компонентов (WD) проб воды, отобранных в бассейнах трансграничных рек Казахстана весной 2018 г. (23-я экспедиция)

Sample code	m, g	Литры	Sb, мкг/г	Sb, мкг/л	As, _{ΜΚΓ} /Γ	As, мкг/л	Ni, _{мкг/г}	Ni, мкг/л	Сr, мкг/г	Сr, _{мкг/л}	Со, _{мкг/г}	Со, мкг/л	Zn, _{ΜΚΓ} /Γ	Zn, мкг/л	U, мкг/г	U, мкг/л	Th, нг/г	Th, нг/л
CH-WD23	3,397	9	4,0	1,5	3,2	1,2	4,3	1,6	2,8	1,0	0,37	0,14	8,2	3,1	1,3	0,48	16	5,9
UR-WD23	3,033	9,5	2,1	0,66	6,6	2,1	11	3,4	3,8	1,2	0,53	0,17	31	9,9	3,8	1,2	41	13
IK-WD23	4	8,25	1,2	0,57	3,6	1,8	3,9	1,9	3,1	1,5	0,48	0,23	13	6,5	2,1	1,0	19	9,2
EK-WD23	2,914	9	0,57	0,19	3,3	1,1	5,1	1,7	11	3,6	2,9	0,94	16	5,0	1,8	0,59	94	30
TO-WD23	5,447	10	0,20	0,11	< 0,5	< 0,27	0,15	0,082	0,67	0,36	0,73	0,40	7,5	4,1	2,3	1,2	< 10	< 5,4
AY-WD23	5,97	10	0,30	0,18	< 0,5	< 0,30	4,3	2,6	0,89	0,53	0,31	0,18	4,7	2,8	9,9	5,9	< 10	< 6
PR-WD23	2,069	10	1,3	0,27	5,2	1,1	0,15	0,031	2,5	0,52	0,21	0,043	12	2,5	12	2,4	< 10	< 2,1
IR-WD23	1,765	9,2	5,9	1,1	5,0	0,97	10	1,9	6,0	1,1	1,2	0,23	45	8,7	26	4,9	694	133
EM-WD23	6,739	10	1,2	0,84	2,7	1,8	0,15	0,10	0,31	0,21	0,14	0,096	3,2	2,2	14	9,1	< 10	< 6,7
IL-WD23	3,871	10	0,79	0,31	3,3	1,3	17	6,6	2,6	0,99	0,26	0,10	8,6	3,3	14	5,4	68	26
TK-WD23	3,635	10	0,31	0,11	2,1	0,77	0,15	0,055	2,0	0,74	0,17	0,062	11	4,1	15	5,3	35	13
SH-WD23	5,053	10	0,90	0,46	3,4	1,7	53	27	13	6,7	0,19	0,098	6,3	3,2	36	18	< 10	< 5,1
KB-WD23	9,637	10	0,41	0,40	2,4	2,3	0,15	0,14	1,5	1,5	0,11	0,11	3,4	3,3	28	27	17	17
TA-WD23	4,051	10	0,71	0,29	2,4	0,96	0,15	0,061	5,9	2,4	0,12	0,048	9,8	4,0	15	6,2	< 10	< 4,1
SD-WD23	9,223	9,5	0,57	0,55	< 0,5	< 0,49	0,15	0,15	1,1	1,1	0,04	0,043	2,5	2,4	16	15	< 10	< 9,7
-																		
Sample code	Ag,	Ао мкг/п	Au,	Au,	La,	Lа мкг/п	Ce,	Се мкг/п	Ca,	Ca,	Fe,	Fe,	Na,	Na,	Ba,	Ba,	Sr,	Sr,
Sample code	$MK\Gamma/\Gamma$	Ад, мкг/л	$^{\mathrm{HL}/\mathrm{L}}$	нг/л	La, мкг/г	La, мкг/л	$MK\Gamma/\Gamma$	Се, мкг/л	Ca, %	мг/л	мкг/г	мкг/л	%	Na, мг/л	$MK\Gamma/\Gamma$	мкг/л	мкг/г	мкг/л
CH-WD23	мкг/г 0,54	0,20	нг/г 5,1	нг/л 1,9	MKΓ/Γ < 0,1	< 0,038	мкг/г 0,07	0,028	% 10		мкг/г 101	мкг/л 38	8,9	мг/л 34	мкг/г 58		мкг/г 961	мкг/л 363
CH-WD23 UR-WD23	MKΓ/Γ 0,54 0,33	0,20 0,11	нг/г 5,1 21	нг/л 1,9 6,7	мкг/г < 0,1 0,43	< 0,038 0,14	мкг/г 0,07 0,36	0,028 0,11	% 10 13	мг/л 37 41	мкг/г 101 316	мкг/л 38 101	% 8,9 9,5	мг/л 34 30	мкг/г 58 113	мкг/л 22 36	мкг/г 961 1252	мкг/л 363 400
CH-WD23 UR-WD23 IK-WD23	мкг/г 0,54 0,33 0,26	0,20 0,11 0,13	нг/г 5,1 21 < 0,5	нг/л 1,9 6,7 < 0,24	мкг/г < 0,1 0,43 < 0,1	< 0,038 0,14 < 0,048	мкг/г 0,07 0,36 < 0,5	0,028 0,11 < 0,24	% 10 13 10	мг/л 37 41 50	мкг/г 101 316 86	мкг/л 38 101 42	% 8,9 9,5 11	мг/л 34 30 53	мкг/г 58 113 79	мкг/л 22	мкг/г 961 1252 1031	мкг/л 363 400 500
CH-WD23 UR-WD23 IK-WD23 EK-WD23	MKΓ/Γ 0,54 0,33	0,20 0,11	нг/г 5,1 21	нг/л 1,9 6,7	мкг/г < 0,1 0,43	< 0,038 0,14	мкг/г 0,07 0,36	0,028 0,11	% 10 13 10 8,5	мг/л 37 41	мкг/г 101 316 86 1357	мкг/л 38 101	% 8,9 9,5 11 7,5	мг/л 34 30	мкг/г 58 113 79 86	мкг/л 22 36	961 1252 1031 758	мкг/л 363 400 500 245
CH-WD23 UR-WD23 IK-WD23 EK-WD23 TO-WD23	мкг/г 0,54 0,33 0,26	0,20 0,11 0,13 0,033 0,085	нг/г 5,1 21 < 0,5	нг/л 1,9 6,7 < 0,24	мкг/г < 0,1 0,43 < 0,1	< 0,038 0,14 < 0,048 0,28 < 0,054	мкг/г 0,07 0,36 < 0,5	0,028 0,11 < 0,24	% 10 13 10 8,5 6,2	мг/л 37 41 50	мкг/г 101 316 86 1357 311	мкг/л 38 101 42 439 169	8,9 9,5 11 7,5 13	мг/л 34 30 53	58 113 79 86 52	мкг/л 22 36 38	мкг/г 961 1252 1031 758 697	мкг/л 363 400 500 245 379
CH-WD23 UR-WD23 IK-WD23 EK-WD23 TO-WD23 AY-WD23	мкг/г 0,54 0,33 0,26 0,10 0,16 < 0,02	0,20 0,11 0,13 0,033 0,085 < 0,012	5,1 21 < 0,5 9,5 < 0,5 < 0,5	нг/л 1,9 6,7 < 0,24 3,1 < 0,27 < 0,30	MKГ/Г < 0,1 0,43 < 0,1 0,88 < 0,1 0,21	< 0,038 0,14 < 0,048 0,28 < 0,054 0,13	мкг/г 0,07 0,36 < 0,5 1,9 < 0,5 0,08	0,028 0,11 < 0,24 0,63 < 0,27 0,050	% 10 13 10 8,5	мг/л 37 41 50 27 34 43	мкг/г 101 316 86 1357 311 309	мкт/л 38 101 42 439 169 185	% 8,9 9,5 11 7,5 13 12	мг/л 34 30 53 24 71 72	мкг/г 58 113 79 86 52 55	мкг/л 22 36 38 28 29 33	мкг/г 961 1252 1031 758 697 744	мкт/л 363 400 500 245 379 444
CH-WD23 UR-WD23 IK-WD23 EK-WD23 TO-WD23 AY-WD23 PR-WD23	мкг/г 0,54 0,33 0,26 0,10 0,16	0,20 0,11 0,13 0,033 0,085 < 0,012 < 0,004	5,1 21 <0,5 9,5 <0,5 <0,5 <0,5	нг/л 1,9 6,7 < 0,24 3,1 < 0,27	MKT/T < 0,1 0,43 < 0,1 0,88 < 0,1 0,21 < 0,1	< 0,038 0,14 < 0,048 0,28 < 0,054 0,13 < 0,028	мкг/г 0,07 0,36 < 0,5 1,9 < 0,5 0,08 < 0,5	0,028 0,11 < 0,24 0,63 < 0,27 0,050 < 0,10	% 10 13 10 8,5 6,2	мг/л 37 41 50 27 34	мкг/г 101 316 86 1357 311 309 135	38 101 42 439 169 185 28	% 8,9 9,5 11 7,5 13 12 6,9	мг/л 34 30 53 24 71	мкг/г 58 113 79 86 52 55 125	мкг/л 22 36 38 28 29 33 26	961 1252 1031 758 697 744 1009	363 400 500 245 379 444 209
CH-WD23 UR-WD23 IK-WD23 EK-WD23 TO-WD23 AY-WD23 PR-WD23 IR-WD23	0,54 0,33 0,26 0,10 0,16 < 0,02 < 0,02 1,6	0,20 0,11 0,13 0,033 0,085 < 0,012 < 0,004 0,31	5,1 21 <0,5 9,5 <0,5 <0,5 <0,5 <0,5	1,9 6,7 < 0,24 3,1 < 0,27 < 0,30 < 0,10 < 0,10	MKГ/Г < 0,1 0,43 < 0,1 0,88 < 0,1 0,21	< 0,038 0,14 < 0,048 0,28 < 0,054 0,13 < 0,028 0,44	мкг/г 0,07 0,36 < 0,5 1,9 < 0,5 0,08 < 0,5 1,7	0,028 0,11 < 0,24 0,63 < 0,27 0,050 < 0,10 0,32	% 10 13 10 8,5 6,2 7,3 14 11	мг/л 37 41 50 27 34 43	мкг/г 101 316 86 1357 311 309 135 2543	мкт/л 38 101 42 439 169 185	% 8,9 9,5 11 7,5 13 12	мг/л 34 30 53 24 71 72	мкг/г 58 113 79 86 52 55 125 190	мкг/л 22 36 38 28 29 33 26 36	мкг/г 961 1252 1031 758 697 744 1009 771	363 400 500 245 379 444 209 148
CH-WD23 UR-WD23 IK-WD23 EK-WD23 TO-WD23 AY-WD23 PR-WD23	0,54 0,33 0,26 0,10 0,16 < 0,02 < 0,02	0,20 0,11 0,13 0,033 0,085 < 0,012 < 0,004	5,1 21 <0,5 9,5 <0,5 <0,5 <0,5	1,9 6,7 < 0,24 3,1 < 0,27 < 0,30 < 0,10	MKT/T < 0,1 0,43 < 0,1 0,88 < 0,1 0,21 < 0,1	< 0,038 0,14 < 0,048 0,28 < 0,054 0,13 < 0,028	мкг/г 0,07 0,36 < 0,5 1,9 < 0,5 0,08 < 0,5	0,028 0,11 < 0,24 0,63 < 0,27 0,050 < 0,10	% 10 13 10 8,5 6,2 7,3 14	мг/л 37 41 50 27 34 43 29	мкг/г 101 316 86 1357 311 309 135	38 101 42 439 169 185 28	% 8,9 9,5 11 7,5 13 12 6,9	мг/л 34 30 53 24 71 72 14	мкг/г 58 113 79 86 52 55 125	мкг/л 22 36 38 28 29 33 26	961 1252 1031 758 697 744 1009	мкг/л 363 400 500 245 379 444 209 148 720
CH-WD23 UR-WD23 IK-WD23 EK-WD23 TO-WD23 AY-WD23 PR-WD23 IR-WD23	0,54 0,33 0,26 0,10 0,16 < 0,02 < 0,02 1,6	0,20 0,11 0,13 0,033 0,085 < 0,012 < 0,004 0,31	5,1 21 <0,5 9,5 <0,5 <0,5 <0,5 <0,5	1,9 6,7 < 0,24 3,1 < 0,27 < 0,30 < 0,10 < 0,10	MKT/T < 0,1 0,43 < 0,1 0,88 < 0,1 0,21 < 0,1 2,30	< 0,038 0,14 < 0,048 0,28 < 0,054 0,13 < 0,028 0,44	мкг/г 0,07 0,36 < 0,5 1,9 < 0,5 0,08 < 0,5 1,7	0,028 0,11 < 0,24 0,63 < 0,27 0,050 < 0,10 0,32	% 10 13 10 8,5 6,2 7,3 14 11	мг/л 37 41 50 27 34 43 29 22	мкг/г 101 316 86 1357 311 309 135 2543	мкг/л 38 101 42 439 169 185 28 488	% 8,9 9,5 11 7,5 13 12 6,9 6,2 11 5,6	MT/Л 34 30 53 24 71 72 14 12	мкг/г 58 113 79 86 52 55 125 190 45 120	мкг/л 22 36 38 28 29 33 26 36	мкг/г 961 1252 1031 758 697 744 1009 771	мкг/л 363 400 500 245 379 444 209 148 720 323
CH-WD23 UR-WD23 IK-WD23 EK-WD23 TO-WD23 AY-WD23 PR-WD23 IR-WD23 EM-WD23 IL-WD23 TK-WD23	0,54 0,33 0,26 0,10 0,16 < 0,02 < 0,02 1,6 1,1 < 0,02 < 0,02 < 0,02	0,20 0,11 0,13 0,033 0,085 < 0,012 < 0,004 0,31 0,74 < 0,008 < 0,007	HIT/F 5,1 21 <0,5 9,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0	Hr/π 1,9 6,7 < 0,24 3,1 < 0,27 < 0,30 < 0,10 < 0,10 < 0,34 < 0,19 < 0,18	MKT/T < 0,1 0,43 < 0,1 0,88 < 0,1 0,21 < 0,1 2,30 < 0,1 0,14 < 0,1	< 0,038 0,14 < 0,048 0,28 < 0,054 0,13 < 0,028 0,44 < 0,067 0,053 < 0,036	MKI/F 0,07 0,36 < 0,5 1,9 < 0,5 0,08 < 0,5 1,7 < 0,5 < 0,5 < 0,5	0,028 0,11 < 0,24 0,63 < 0,27 0,050 < 0,10 0,32 < 0,34 < 0,19 < 0,18	% 10 13 10 8,5 6,2 7,3 14 11 8,6	мг/л 37 41 50 27 34 43 29 22 58 49 57	MKI/F 101 316 86 1357 311 309 135 2543 30 249 136	мкг/л 38 101 42 439 169 185 28 488 20 96 49	% 8,9 9,5 11 7,5 13 12 6,9 6,2 11 5,6 5,1	MT/JI 34 30 53 24 71 72 14 12 74 22 19	мкг/г 58 113 79 86 52 55 125 190 45 120 184	22 36 38 28 29 33 26 36 30 46	961 1252 1031 758 697 744 1009 771 1069 836 1683	363 400 500 245 379 444 209 148 720 323 612
CH-WD23 UR-WD23 IK-WD23 EK-WD23 TO-WD23 AY-WD23 PR-WD23 IR-WD23 IL-WD23 TK-WD23 SH-WD23	0,54 0,33 0,26 0,10 0,16 < 0,02 < 0,02 1,6 1,1 < 0,02 < 0,02 0,02 2,02	0,20 0,11 0,13 0,033 0,085 < 0,012 < 0,004 0,31 0,74 < 0,008 < 0,007 0,14	5,1 21 <0,5 9,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <1,5 <1,5 <1,5 <1,5 <1,5 <1,5 <1,5 <1	1,9 6,7 < 0,24 3,1 < 0,27 < 0,30 < 0,10 < 0,10 < 0,34 < 0,19 < 0,18 6,5	MKT/T < 0,1 0,43 < 0,1 0,88 < 0,1 0,21 < 0,1 2,30 < 0,1 0,14 < 0,1 < 0,1	< 0,038 0,14 < 0,048 0,28 < 0,054 0,13 < 0,028 0,44 < 0,067 0,053 < 0,036 < 0,051	MKI/F 0,07 0,36 < 0,5 1,9 < 0,5 0,08 < 0,5 1,7 < 0,5 < 0,5 < 0,5 < 0,5	0,028 0,11 < 0,24 0,63 < 0,27 0,050 < 0,10 0,32 < 0,34 < 0,19 < 0,18 < 0,25	% 10 13 10 8,5 6,2 7,3 14 11 8,6 13 16 13	мг/л 37 41 50 27 34 43 29 22 58 49 57 65	мкг/г 101 316 86 1357 311 309 135 2543 30 249 136 67	мкг/л 38 101 42 439 169 185 28 488 20 96 49 34	% 8,9 9,5 11 7,5 13 12 6,9 6,2 11 5,6 5,1 7,4	MT/JI 34 30 53 24 71 72 14 12 74 22 19 37	мкг/г 58 113 79 86 52 55 125 190 45 120 184 118	мкг/л 22 36 38 28 29 33 26 36 30 46	мкг/г 961 1252 1031 758 697 744 1009 771 1069 836 1683 1502	мкг/л 363 400 500 245 379 444 209 148 720 323 612 759
CH-WD23 UR-WD23 IK-WD23 EK-WD23 TO-WD23 AY-WD23 PR-WD23 IR-WD23 EM-WD23 IL-WD23 TK-WD23	0,54 0,33 0,26 0,10 0,16 < 0,02 < 0,02 1,6 1,1 < 0,02 < 0,02 0,28 < 0,02	0,20 0,11 0,13 0,033 0,085 < 0,012 < 0,004 0,31 0,74 < 0,008 < 0,007 0,14 < 0,019	5,1 21 <0,5 9,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 13 5,4	Hr/π 1,9 6,7 < 0,24 3,1 < 0,27 < 0,30 < 0,10 < 0,10 < 0,34 < 0,19 < 0,18	MKT/T < 0,1 0,43 < 0,1 0,88 < 0,1 0,21 < 0,1 2,30 < 0,1 0,14 < 0,1	<0,038 0,14 <0,048 0,28 <0,054 0,13 <0,028 0,44 <0,067 0,053 <0,036 <0,051 <0,096	MKI/F 0,07 0,36 < 0,5 1,9 < 0,5 0,08 < 0,5 1,7 < 0,5 < 0,5 < 0,5	0,028 0,11 < 0,24 0,63 < 0,27 0,050 < 0,10 0,32 < 0,34 < 0,19 < 0,18 < 0,25 < 0,48	% 10 13 10 8,5 6,2 7,3 14 11 8,6 13 16	мг/л 37 41 50 27 34 43 29 22 58 49 57	мкг/г 101 316 86 1357 311 309 135 2543 30 249 136 67 69	мкг/л 38 101 42 439 169 185 28 488 20 96 49 34 67	% 8,9 9,5 11 7,5 13 12 6,9 6,2 11 5,6 5,1	MT/JI 34 30 53 24 71 72 14 12 74 22 19	58 113 79 86 52 55 125 190 45 120 184 118 80	22 36 38 28 29 33 26 36 30 46	961 1252 1031 758 697 744 1009 771 1069 836 1683 1502 2008	363 400 500 245 379 444 209 148 720 323 612 759 1935
CH-WD23 UR-WD23 IK-WD23 EK-WD23 TO-WD23 AY-WD23 PR-WD23 IR-WD23 IL-WD23 TK-WD23 SH-WD23	0,54 0,33 0,26 0,10 0,16 < 0,02 < 0,02 1,6 1,1 < 0,02 < 0,02 0,02 2,02	0,20 0,11 0,13 0,033 0,085 < 0,012 < 0,004 0,31 0,74 < 0,008 < 0,007 0,14	5,1 21 <0,5 9,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <1,5 <1,5	1,9 6,7 < 0,24 3,1 < 0,27 < 0,30 < 0,10 < 0,10 < 0,34 < 0,19 < 0,18 6,5	MKT/T < 0,1 0,43 < 0,1 0,88 < 0,1 0,21 < 0,1 2,30 < 0,1 0,14 < 0,1 < 0,1	< 0,038 0,14 < 0,048 0,28 < 0,054 0,13 < 0,028 0,44 < 0,067 0,053 < 0,036 < 0,051	MKI/F 0,07 0,36 < 0,5 1,9 < 0,5 0,08 < 0,5 1,7 < 0,5 < 0,5 < 0,5 < 0,5	0,028 0,11 < 0,24 0,63 < 0,27 0,050 < 0,10 0,32 < 0,34 < 0,19 < 0,18 < 0,25	% 10 13 10 8,5 6,2 7,3 14 11 8,6 13 16 13	мг/л 37 41 50 27 34 43 29 22 58 49 57 65	мкг/г 101 316 86 1357 311 309 135 2543 30 249 136 67	мкг/л 38 101 42 439 169 185 28 488 20 96 49 34	% 8,9 9,5 11 7,5 13 12 6,9 6,2 11 5,6 5,1 7,4	MT/JI 34 30 53 24 71 72 14 12 74 22 19 37	мкг/г 58 113 79 86 52 55 125 190 45 120 184 118	мкг/л 22 36 38 28 29 33 26 36 30 46 67 59	мкг/г 961 1252 1031 758 697 744 1009 771 1069 836 1683 1502	мкг/л 363 400 500 245 379 444 209 148 720 323 612 759

Приложение 17 (продолжение)

																	(HPO2	толмспис
Sample code	Zr, _{ΜΚΓ} /Γ	Zr, мкг/л	Rb, мкг/г	Rb, _{мкг} /л	Sc, _{нг/г}	Sc, нг/л	Сs, _{нг/г}	Сs, _{нг/л}	Мо, мкг/г	Мо, мкг/л	Br, мкг/г	Br, мкг/л	Se, мкг/г	Se, мкг/л	Нf, мкг∕г	Hf, мкг/л	Re, мкг/г	Re, мкг/л
CH-WD23	1,7	0,64	2,6	0,97	17	46	< 1	< 0,38	0,58	0,22	2,6	1,0	< 0,1	< 0,04	< 0,01	< 0,004	< 5	< 1,9
UR-WD23	< 50	< 16	3,2	1,0	61	190	< 1	< 0,32	5,2	1,6	4,1	1,3	0,35	0,11	< 0,01	< 0,003	< 5	< 1,6
IK-WD23	< 50	< 24	3,4	1,7	13	27	20	9,8	2,9	1,4	1,6	0,79	0,12	0,06	< 0,01	< 0,005	< 5	< 2,4
EK-WD23	0,71	0,23	3,0	0,97	140	433	53	17	1,7	0,54	< 0,1	< 0,03	0,18	0,06	0,016	0,0053	< 5	< 1,6
TO-WD23	< 50	< 27	2,0	1,1	9,4	17	< 1	< 0,54	1,3	0,73	2,0	1,1	0,21	0,11	< 0,01	< 0,005	< 5	< 2,7
AY-WD23	0,89	0,53	1,6	0,94	16	26	11	6,6	3,5	2,1	32	18,9	< 0,1	< 0,06	< 0,01	< 0,006	< 5	< 3
PR-WD23	< 50	< 10	1,8	0,38	23	113	< 1	< 0,21	7,0	1,4	< 0,1	< 0,02	0,29	0,06	< 0,01	< 0,002	< 5	< 1
IR-WD23	< 50	< 10	8,8	1,7	669	3488	410	79	6,0	1,2	< 0,1	< 0,02	0,21	0,04	0,11	0,0214	< 5	< 1
EM-WD23	< 50	< 34	0,44	0,30	7,9	12	< 1	< 0,67	6,1	4,1	0,46	0,31	0,80	0,54	0,053	0,0356	< 5	< 3,4
IL-WD23	< 50	< 19	1,8	0,69	52	135	46	18	8,1	3,1	0,50	0,19	0,49	0,19	0,016	0,0063	< 5	< 1,9
TK-WD23	< 50	< 18	0,92	0,33	21	59	11	4,0	5,0	1,8	< 0,1	< 0,4	1,3	0,47	< 0,01	0,004	< 5	< 1,8
SH-WD23	< 50	<25	1,7	0,85	4,7	9,3	< 1	< 0,51	3,6	1,8	3,3	1,7	0,73	0,37	< 0,01	< 0,005	< 5	< 2,5
KB-WD23	< 50	< 48	< 0,1	< 0,10	15	16	< 1	< 0,96	15	14	< 0,1	< 0,10	0,58	0,56	< 0,01	< 0,01	< 5	< 4,8
TA-WD23	< 50	< 20	0,74	0,30	9,5	23	< 1	< 0,41	3,3	1,3	5,4	2,2	0,78	0,32	< 0,01	< 0,004	< 5	< 2,0
SD-WD23	< 50	< 49	0,95	0,92	2,3	2,4	< 1	< 0,97	2,4	2,4	3,2	3,1	0,77	0,74	< 0,01	< 0,01	114	110

Результаты нейтроноактивационного анализа растворимых компонентов (WD) проб воды, отобранных в бассейнах трансграничных рек Казахстана осенью 2018 г. (24-я экспедиция)

			Sb,	Sb,	As,	As,	Ni,	Ni,		Cr,	Co,	Co,		Zn,	U,	U,	Th,	Th,
Sample code	m, g	V, 1	мкг∕г	мкг/л	мкг/г	мкг/л	мкг/г	мкг/л	Cr, мкг/г	мкг/л	мкг/г	мкг/л	Zn, $MK\Gamma/\Gamma$	∠п, мкг/л	мкг/г	мкг/л	нг/г	нг/л
CH-WD24	8,735	10	0,23	0,20	2,2	1,9	< 0,15	< 0,13	0,30	0,26	0,059	0,051	1,6	1,4	0,74	0,65	< 10	< 8,7
UR-WD24	5,443	10	0,44	0,24	< 0,5	< 0,27	1,7	0,91	1,0	0,55	0,081	0,044	2,0	1,1	2,6	1,4	< 10	< 5,4
IK-WD24	13,146	10	0,20	0,26	< 0,5	< 0,66	< 0,15	< 0,20	1,3	1,8	0,068	0,089	0,95	1,2	0,14	0,18	< 10	< 13
EK-WD24	9,217	10	1,9	1,8	< 0,5	< 0,46	< 0,15	< 0,14	8,0	7,4	0,24	0,22	4,9	4,6	1,7	1,6	< 10	< 9,2
TO-WD24	9,423	10	0,22	0,21	3,1	3,0	2,4	2,2	0,50	0,47	0,12	0,11	10	9,8	1,8	1,7	< 10	< 9,4
AY-WD24	9,473	10	0,22	0,21	1,1	1,0	< 0,15	< 0,14	0,47	0,44	0,077	0,073	7,4	7,0	2,1	2,0	< 10	< 9,5
PR-WD24	1,664	10	1,9	0,31	8,0	1,3	2,9	0,48	6,8	1,1	0,23	0,039	22	3,6	6,7	1,1	14	2,3
IR-WD24	0,962	10	1,8	0,18	6,6	0,63	5,3	0,51	8,6	0,82	0,29	0,028	37	3,6	12	1,1	12	1,2
EM-WD24	10,176	10	0,66	0,67	4,2	4,3	< 0,15	< 0,15	1,3	1,3	0,055	0,056	4,1	4,2	15	15	< 10	< 10
IL-WD24	4,595	10	0,86	0,39	4,7	2,2	< 0,15	< 0,069	1,3	0,58	0,16	0,074	7,7	3,5	15	6,8	< 10	< 4,6
TK-WD24	2,127	6,3	0,70	0,24	2,7	0,90	< 0,15	< 0,051	2,4	0,81	0,18	0,059	9,9	3,3	12	4,1	73	25
SH-WD24	5,688	10	0,42	0,24	3,4	1,9	< 0,15	< 0,085	6,1	3,5	0,072	0,041	2,4	1,4	40	23	< 10	< 5,7
KB-WD24	20,102	10	0,35	0,70	2,5	5,0	< 0,15	< 0,30	0,84	1,7	0,060	0,12	1,2	2,4	24	49	< 10	< 20
TA-WD24	3,757	10	0,80	0,30	3,1	1,1	2,1	0,81	5,4	2,0	0,13	0,048	4,4	1,7	18	6,9	< 10	< 3,8
SD-WD24	13,727	10	0,37	0,51	2,1	2,9	1,2	1,6	1,9	2,6	0,063	0,086	2,2	3,0	11	16	< 10	< 14
Sample code	Ag,	Ag,	Au,	Au,	La,	La,	Ce,	Ce,	Ca, %	Ca,	Fe,	Fe,	Na, %	Na,	Ba,	Ba,	Sr,	Sr,
	мкг/г	мкг/л	нг/г	нг/л	мкг/г	мкг/л	мкг/г	мкг/л	Cu, 70	мг/л	$MK\Gamma/\Gamma$	мкг/л	1144, 70	мг/л	$MK\Gamma/\Gamma$	мкг/л	$MK\Gamma/\Gamma$	мкг/л
CIT IIIDA	0,052																	
CH-WD24		0,046	< 0,5	< 0,44	< 0,1	< 0,09	0,011	0,01	7,1	62	12	104	18	157	38	33	885	773
UR-WD24	0,81	0,44	10	5,7	< 0,1	< 0,09 < 0,05	0,011 < 0,5	0,01 < 0,27	5,1		12 46	252	18 21				1010	773 550
UR-WD24 IK-WD24			10 < 0,5							62				157	38	33 28 34		773
UR-WD24 IK-WD24 EK-WD24	0,81 0,066 < 0,02	0,44 0,087 < 0,018	10 < 0,5 < 0,5	5,7 < 0,66 < 0,46	< 0,1 < 0,1 0,14	< 0,05 < 0,13 0,13	< 0,5	< 0,27 < 0,66 0,10	5,1	62 28	46	252 286 1392	21	157 114 316 175	38 52	33 28	1010 733 719	773 550 964 662
UR-WD24 IK-WD24	0,81 0,066	0,44 0,087	10 < 0,5	5,7 < 0,66	< 0,1 < 0,1 0,14 < 0,1	< 0,05 < 0,13	< 0,5 < 0,5	< 0,27 < 0,66	5,1 5,3	62 28 69	46 22	252 286	21 24	157 114 316	38 52 26	33 28 34	1010 733	773 550 964
UR-WD24 IK-WD24 EK-WD24	0,81 0,066 < 0,02	0,44 0,087 < 0,018	10 < 0,5 < 0,5	5,7 < 0,66 < 0,46	< 0,1 < 0,1 0,14	< 0,05 < 0,13 0,13	< 0,5 < 0,5 0,11	< 0,27 < 0,66 0,10	5,1 5,3 6,4	62 28 69 59	46 22 151	252 286 1392	21 24 19	157 114 316 175	38 52 26 47	33 28 34 43	1010 733 719	773 550 964 662
UR-WD24 IK-WD24 EK-WD24 TO-WD24	0,81 0,066 < 0,02 0,038	0,44 0,087 < 0,018 0,036	10 < 0,5 < 0,5 6,1	5,7 < 0,66 < 0,46 5,7	< 0,1 < 0,1 0,14 < 0,1	< 0,05 < 0,13 0,13 < 0,09	< 0,5 < 0,5 0,11 < 0,5	< 0,27 < 0,66 0,10 0,47	5,1 5,3 6,4 6,1	62 28 69 59 57	46 22 151 47	252 286 1392 445	21 24 19 12	157 114 316 175 113	38 52 26 47 34	33 28 34 43 32	1010 733 719 633	773 550 964 662 597
UR-WD24 IK-WD24 EK-WD24 TO-WD24 AY-WD24 PR-WD24 IR-WD24	0,81 0,066 < 0,02 0,038 0,033	0,44 0,087 < 0,018 0,036 0,031	10 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5	5,7 < 0,66 < 0,46 5,7 < 0,47	< 0,1 < 0,1 0,14 < 0,1 < 0,1	< 0,05 < 0,13 0,13 < 0,09 < 0,10	< 0,5 < 0,5 0,11 < 0,5 < 0,5	< 0,27 < 0,66 0,10 0,47 < 0,47	5,1 5,3 6,4 6,1 5,5 14	62 28 69 59 57 52	46 22 151 47 15	252 286 1392 445 140	21 24 19 12 13	157 114 316 175 113 123	38 52 26 47 34 43	33 28 34 43 32 41	1010 733 719 633 672	773 550 964 662 597 637
UR-WD24 IK-WD24 EK-WD24 TO-WD24 AY-WD24 PR-WD24	0,81 0,066 < 0,02 0,038 0,033 0,21	0,44 0,087 < 0,018 0,036 0,031 0,036	10 < 0,5 < 0,5 6,1 < 0,5 < 0,5	5,7 < 0,66 < 0,46 5,7 < 0,47 < 0,08	< 0,1 < 0,1 0,14 < 0,1 < 0,1 < 0,1	< 0,05 < 0,13 0,13 < 0,09 < 0,10 < 0,02	< 0,5 < 0,5 0,11 < 0,5 < 0,5 0,032	< 0,27 < 0,66 0,10 0,47 < 0,47	5,1 5,3 6,4 6,1 5,5	62 28 69 59 57 52 24	46 22 151 47 15 193	252 286 1392 445 140 320	21 24 19 12 13 6,5	157 114 316 175 113 123 11	38 52 26 47 34 43 142	33 28 34 43 32 41 24	1010 733 719 633 672 936	773 550 964 662 597 637 156
UR-WD24 IK-WD24 EK-WD24 TO-WD24 AY-WD24 PR-WD24 IR-WD24	0,81 0,066 < 0,02 0,038 0,033 0,21 0,19	0,44 0,087 < 0,018 0,036 0,031 0,036 0,018	10 < 0,5 < 0,5 6,1 < 0,5 < 0,5 < 0,5	5,7 < 0,66 < 0,46 5,7 < 0,47 < 0,08 < 0,05	$<0,1 \\ <0,1 \\ 0,14 \\ <0,1 \\ <0,1 \\ <0,1 \\ <0,1 \\ <0,1$	< 0,05 < 0,13 0,13 < 0,09 < 0,10 < 0,02 < 0,01	< 0,5 < 0,5 0,11 < 0,5 < 0,5 0,032 < 0,5	< 0,27 < 0,66 0,10 0,47 < 0,47 0,01 < 0,05	5,1 5,3 6,4 6,1 5,5 14	62 28 69 59 57 52 24 12	46 22 151 47 15 193 152	252 286 1392 445 140 320 147	21 24 19 12 13 6,5 6,7	157 114 316 175 113 123 11 6,4	38 52 26 47 34 43 142 94	33 28 34 43 32 41 24 9	1010 733 719 633 672 936 832	773 550 964 662 597 637 156 80
UR-WD24 IK-WD24 EK-WD24 TO-WD24 AY-WD24 PR-WD24 IR-WD24 EM-WD24	0,81 0,066 < 0,02 0,038 0,033 0,21 0,19 < 0,02	0,44 0,087 < 0,018 0,036 0,031 0,036 0,018 < 0,02	10 < 0,5 < 0,5 < 0,5 6,1 < 0,5 < 0,5 < 0,5 < 0,5	5,7 < 0,66 < 0,46 5,7 < 0,47 < 0,08 < 0,05 < 0,51	$<0,1\\<0,1\\0,14\\<0,1\\<0,1\\<0,1\\<0,1\\<0,1\\<0,1$	< 0,05 < 0,13 0,13 < 0,09 < 0,10 < 0,02 < 0,01 < 0,10	< 0,5 < 0,5 0,11 < 0,5 < 0,5 0,032 < 0,5 < 0,5	< 0,27 < 0,66 0,10 0,47 < 0,47 0,01 < 0,05 < 0,51	5,1 5,3 6,4 6,1 5,5 14 13 7,5	62 28 69 59 57 52 24 12	46 22 151 47 15 193 152 44	252 286 1392 445 140 320 147 451	21 24 19 12 13 6,5 6,7	157 114 316 175 113 123 11 6,4 176	38 52 26 47 34 43 142 94 36	33 28 34 43 32 41 24 9	1010 733 719 633 672 936 832 1207	773 550 964 662 597 637 156 80 1228
UR-WD24 IK-WD24 EK-WD24 TO-WD24 AY-WD24 PR-WD24 IR-WD24 EM-WD24	0,81 0,066 < 0,02 0,038 0,033 0,21 0,19 < 0,02 < 0,02	0,44 0,087 < 0,018 0,036 0,031 0,036 0,018 < 0,02 < 0,01	10 < 0,5 < 0,5 6,1 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 5,2	5,7 < 0,66 < 0,46 5,7 < 0,47 < 0,08 < 0,05 < 0,51 2,4	$<0,1\\<0,1\\0,14\\<0,1\\<0,1\\<0,1\\<0,1\\<0,1\\<0,1$	< 0,05 < 0,13 0,13 < 0,09 < 0,10 < 0,02 < 0,01 < 0,10 < 0,05	< 0,5 < 0,5 0,11 < 0,5 < 0,5 0,032 < 0,5 < 0,5 < 0,5	< 0,27 < 0,66 0,10 0,47 < 0,47 0,01 < 0,05 < 0,51 < 0,23	5,1 5,3 6,4 6,1 5,5 14 13 7,5	62 28 69 59 57 52 24 12 77 65	46 22 151 47 15 193 152 44 115	252 286 1392 445 140 320 147 451 526	21 24 19 12 13 6,5 6,7 17 9,2	157 114 316 175 113 123 11 6,4 176 42	38 52 26 47 34 43 142 94 36 139	33 28 34 43 32 41 24 9 36 64	1010 733 719 633 672 936 832 1207 1339	773 550 964 662 597 637 156 80 1228 615
UR-WD24 IK-WD24 EK-WD24 TO-WD24 AY-WD24 PR-WD24 IR-WD24 EM-WD24 IL-WD24 TK-WD24	0,81 0,066 < 0,02 0,038 0,033 0,21 0,19 < 0,02 < 0,02 4,4	0,44 0,087 < 0,018 0,036 0,031 0,036 0,018 < 0,02 < 0,01 1,5	10 < 0,5 < 0,5 < 0,5 6,1 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5	5,7 < 0,66 < 0,46 5,7 < 0,47 < 0,08 < 0,05 < 0,51 2,4 < 0,17	$<0,1\\<0,1\\0,14\\<0,1\\<0,1\\<0,1\\<0,1\\<0,1\\<0,1\\0,059$	<0,05 <0,13 0,13 <0,09 <0,10 <0,02 <0,01 <0,10 <0,05 0,02	< 0,5 < 0,5 0,11 < 0,5 < 0,5 0,032 < 0,5 < 0,5 < 0,5 < 0,5	< 0,27 < 0,66 0,10 0,47 < 0,47 0,01 < 0,05 < 0,51 < 0,23 < 0,17	5,1 5,3 6,4 6,1 5,5 14 13 7,5 14	62 28 69 59 57 52 24 12 77 65	46 22 151 47 15 193 152 44 115 283	252 286 1392 445 140 320 147 451 526 956	21 24 19 12 13 6,5 6,7 17 9,2 3,4	157 114 316 175 113 123 11 6,4 176 42	38 52 26 47 34 43 142 94 36 139 283	33 28 34 43 32 41 24 9 36 64 96	1010 733 719 633 672 936 832 1207 1339 1657	773 550 964 662 597 637 156 80 1228 615 559
UR-WD24 IK-WD24 EK-WD24 TO-WD24 AY-WD24 PR-WD24 IR-WD24 IL-WD24 TK-WD24 SH-WD24	0,81 0,066 < 0,02 0,038 0,033 0,21 0,19 < 0,02 < 0,02 4,4 0,38	0,44 0,087 < 0,018 0,036 0,031 0,036 0,018 < 0,02 < 0,01 1,5 0,22	10 < 0,5 < 0,5 < 0,5 6,1 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5	5,7 < 0,66 < 0,46 5,7 < 0,47 < 0,08 < 0,05 < 0,51 2,4 < 0,17 < 0,28	$<0,1\\<0,1\\0,14\\<0,1\\<0,1\\<0,1\\<0,1\\<0,1\\<0,1\\<0,1,059$	<0,05 <0,13 0,13 <0,09 <0,10 <0,02 <0,01 <0,05 0,02 <0,06	< 0,5 < 0,5 0,11 < 0,5 < 0,5 0,032 < 0,5 < 0,5 < 0,5 < 0,5	< 0,27 < 0,66 0,10 0,47 < 0,47 0,01 < 0,05 < 0,51 < 0,23 < 0,17 < 0,28	5,1 5,3 6,4 6,1 5,5 14 13 7,5 14 18	62 28 69 59 57 52 24 12 77 65 60 68	46 22 151 47 15 193 152 44 115 283 72	252 286 1392 445 140 320 147 451 526 956 409	21 24 19 12 13 6,5 6,7 17 9,2 3,4 9,9	157 114 316 175 113 123 11 6,4 176 42 11 56	38 52 26 47 34 43 142 94 36 139 283 113	33 28 34 43 32 41 24 9 36 64 96 64	1010 733 719 633 672 936 832 1207 1339 1657 1598	773 550 964 662 597 637 156 80 1228 615 559 909

Приложение 18 (продолжение)

Sample code	Zr, мкг/г	Zr, _{мкг/л}	Rb, мкг/г	Rb, мкг/л	Sc, нг/г	Sc, нг/л	Сs, _{нг/г}	Сs, нг/л	Мо, мкг/г	Мо, мкг/л	Вr, _{мкг} /г	Br, _{мкг/л}	Se, _{мкг/г}	Se, мкг/л	Re, нг/г	Re, нг/л
CH-WD24	0,68	0,60	1,2	1,0	1,9	1,7	< 1	< 0,87	< 1	< 0,87	72	63	0,11	0,09	< 5	< 4,4
UR-WD24	< 50	< 27	2,3	1,2	1,2	0,65	7,8	4,3	2,3	1,3	35	19	0,41	0,23	< 5	< 2,7
IK-WD24	< 50	< 66	0,74	0,97	0,45	0,59	< 1	< 1,3	< 1	< 1,3	43	56	0,14	0,18	< 5	< 6,6
EK-WD24	< 50	< 46	1,2	1,1	15	14	26	24	1,9	1,8	< 0,1	< 0,09	0,13	0,12	45	42
TO-WD24	< 50	< 47	1,2	1,1	4,3	4,0	9,1	8,6	1,8	1,7	< 0,1	< 0,09	< 0,1	< 0,09	< 5	< 4,7
AY-WD24	< 50	< 45	0,98	0,92	1,2	1,1	< 1	< 0,95	1,1	1,0	< 0,1	< 0,09	0,09	0,09	< 5	< 4,7
PR-WD24	< 50	< 8,3	2,4	0,41	15	2,4	< 1	< 0,17	8,4	1,4	< 0,1	< 0,02	0,25	0,04	< 5	< 0,83
IR-WD24	< 50	< 4,8	8,2	0,79	11	1,1	29	2,8	10	0,98	< 0,1	< 0,01	< 0,1	< 0,01	< 5	< 0,48
EM-WD24	< 50	< 51	0,65	0,66	1,8	1,8	< 1	< 1	28	29	< 0,1	< 0,10	0,74	0,75	65	66
IL-WD24	< 50	< 23	2,4	1,1	14	6,4	30	14	6,2	2,8	< 0,1	< 0,05	0,66	0,30	< 5	< 2,3
TK-WD24	< 50	< 17	2,3	0,77	71	24	77	26	4,4	1,5	< 0,1	< 0,03	0,15	0,05	< 5	< 1,7
SH-WD24	< 50	< 28	1,2	0,69	3,4	1,9	7,8	4,4	8,1	4,6	< 0,1	< 0,06	0,80	0,46	< 5	< 2,8
KB-WD24	< 50	< 101	0,44	0,89	1,2	2,4	< 1	< 2	16	32	< 0,1	< 0,2	0,41	0,83	< 5	<10
TA-WD24	< 50	< 19	1,1	0,40	4,1	1,5	1,0	< 0,38	5,4	2,0	< 0,1	< 0,04	0,77	0,29	< 5	< 1,9
SD-WD24	< 50	< 69	0,83	1,1	3,3	4,5	7,8	11	5,0	6,8	< 0,1	< 0,14	0,87	1,2	92	126

Результаты нейтроноактивационного анализа нерастворимых компонентов (WS) проб воды, отобранных в бассейнах трансграничных рек Казахстана весной 2018 г. (23-я экспедиция)

Sample code	m, g	Sb, _{ΜΚΓ} /Γ	Sb, mkg/l	As, мкг/г	As, mkg/l	Ni, мкг/г	Ni, mkg/l	Сr, мкг/г	Cr, mkg/l	Со,	Co,	Zn,		U, l мкг/	U, r mkg/l	Th, мкг/г	Th,	Au, нг/г	Au, ng/l
CH-WS23	0,074	12	0,045	9,8	0,036	125	0,46	171	0,63	17	0,064	350	1,3	4,0	0,015	10	0,039	2292	8,5
UR-WS23	1,268	1,9	0,12	10	0,65	105	6,6	215	14	22	1,4	140	8,9	2,0	0,13	8,8	0,56	123	7,8
IK-WS23	0,513	2,3	0,059	10	0,27	106	2,7	159	4,1	22	0,57	159	4,1	2,4	0,062	9,3	0,24	40	1,0
EK-WS23	0,093	1,7	0,008	7,3	0,033	117	0,54	144	0,67	23	0,11	318	1,48	2,6	0,012	7,9	0.037	115	0,53
TO-WS24	0,065	1,5	0,005	20	0,064	77	0,25	107	0,35	19	0,062	264	0,86	3,8	0,012	3,9	0,013	93	0,30
AY-WS23	0,231	1,9	0,021	30	0,35	54	0,62	124	1,4	25	0,29	182	2,1	7,7	0,088	6,6	0,076	103	1,2
PR-WS23	0,294	4,9	0,072	4,6	0,068	< 2	< 0,029	26	0,38	2,4	0,035	64	0,94	13	0,19	1,2	0,018	29	0,42
IR-WS23	2,436	1,2	0,14	12	1,5	65	7,9	124	15	21	2,6	153	19	7,0	0,85	16	1,9	16	2,0
EM-WS23	6,003	1,3	0,38	13	3,8	< 2	< 0,60	56	17	12	3,6	81	24	3,2	0,97	7,8	2,3	5,7	1,7
IL-WS23	5,965	1,6	0,48	13	3,9	61	18	71	21	14	4,1	104	31	3,0	0,89	13	4,0	10	3,1
TK-WS23	0,168	1,0	0,009	4,4	0,037	45	0,37	62	0,52	9,0	0,076	107	0,90	3,6	0,030	11	0,096	12	0,10
SH-WS23	1,317	2,1	0,14	17	1,1	54	3,6	95	6,3	17	1,1	122	8,0	6,4	0,42	13	0,87	7,2	0,48
KB-WS23	2,403	1,8	0,22	12	1,4	< 2	< 0,24	115	14	15	1,7	118	14	5,0	0,60	17	2,1	15	1,8
TA-WS23	0,286	1,3	0,019	4,4	0,063	48	0,69	54	0,77	7,6	0,11	88	1,3	3,7	0,053	6,0	0,086	32	0,46
SD-WS23	2,681	1,5	0,20	9,5	1,3	39	5,3	81	11	11	1,5	97	13	3,5	0,47	10	1,4	9,3	1,2
Sample	Ag,	A	g,	La,	La,	Ce,	Ce,	Ca,	Ca,	Fe,	Fe,	Na,	Na,	Ba,	Ba,	Sr,	Sr,	Zr,	Zr, mkg/l
code	мкг/г	mk	g/l	мкг/г	mkg/l	мкг/г	mkg/l	%	mg/l	%	mg/l	%	mg/l	мкг/г	mkg/l	мкг/г	mkg/l	мкг/г	Z1, 111Kg/1
CH-WS23	43	0,1	16	29	0,11	49	0,18	7,2	0,27	5,0	0,19	2,6	0,10	331	1,2	776	2,9	188	0,70
UR-WS23	< 0,2	< 0,	013	29	1,8	52	3,3	2,3	1,5	4,7	3,0	0,68	0,43	338	21	200	13	158	10
IK-WS23	5,9	0,1	15	29	0,74	55	1,42	6,7	1,7	4,6	1,2	1,6	0,41	410	11	501	13	92	2,4
EK-WS23	4,2	0,0	02	18	0,084	33	0,15	13	0,60	3,0	0,14	4,4	0,20	395	1,84	977	4,5	8,6	0,4
TO-WS24	5,7	0,0	18	15	0,048	29	0,094	18	0,59	4,9	0,16	3,2	0,11	459	1,5	523	1,7	< 39	< 0,13
AY-WS23	1,3	0,0	15	23	0,26	42	0,49	5,9	0,68	5,8	0,67	3,7	0,43	492	5,7	673	7,8	94	1,08
PR-WS23	< 0,33	< 0,	005	3,3	0,05	6,4	0,095	16	2,4),56	0,082	6,7	0,98	151	2,2	1433	21	20	0,30
IR-WS23	2,7	0,3		45	5,5	75	9,1	1,3	1,6	5,4	6,6	0,96	1,2	446	54	95	12	121	15
EM-WS23	3,0	0,9	91	24	7,1	44	13	6,4	19,1	3,3	9,9	1,5	4,4	454	136	530	159	126	38
IL-WS23	< 0,2	< 0,		36	11	65		5,4		3,8	11	1,5	4,5	661	197	242	72	172	51
TK-WS23	1,0	0,0	800	30	0,25	52	0,44	6,9	0,58	2,7	0,23	1,1	0,093	524	4,4	335	2,8	185	1,6
SH-WS23	< 0,2	< 0,		34	2,2	57	3,8	10		4,1	2,7	1,7	1,1	644	42	708	47	87	5,7
KB-WS23	< 0,2	< 0,	024	39	4,7	68	8,2	3,5	4,2	3,8	4,6	1,4	1,7	504	61	326	39	142	17
TA-WS23	0,96	0,0	14	17	0,25	30	0,43	22	3,2	1,8	0,26	0,77	0,11	788	11	701	10	68	0,97
SD-WS23	< 0,2	< 0,	027	31	4,2	53	7,1	8,3	11	2,8	3,8	1,2	1,7	581	78	330	44	141	19

Приложение 19 __ (продолжение)

Sample code	Rb, мкг/г	Rb, mkg/l	Sc, мкг/г	Sc, mkg/l	Cs, мкг/г	Cs, mkg/l	Н f, мкг/г	Hf, mkg/l	Та, мкг/г	Ta, mkg/l	Мо, мкг/г	Mo, mkg/l	Br, _{ΜΚΓ} /Γ	Br, mkg/l	Nd, мкг/г	Nd, mkg/l	Sm, мкг/г	Sm, mkg/l
CH-WS23	102	0,38	17	0,062	6,8	0,025	6,1	0,023	0,85	0,003	9,5	0,035	54	0,20	25	0,092	4,9	0,018
UR-WS23	104	6,6	18	1,1	6,0	0,38	5,2	0,33	0,66	0,042	2,7	0,17	6,1	0,39	15	0,95	4,9	0,31
IK-WS23	113	2,9	16	0,41	6,9	0,18	5,0	0,13	0,88	0,023	< 1	< 0,026	27	0,69	21	0,55	5,2	0,13
EK-WS23	57	0,27	9,7	0,045	3,6	0,017	1,5	0,007	0,48	0,02	3,5	0,016	54	0,25	16	0,074	3,0	0,014
TO-WS23	38	0,12	6,8	0,022	2,9	0,009	1,6	0,005	0,39	0,001	14	0,047	33	0,11	11	0,035	3,1	0,010
AY-WS23	41	0,47	14	0,16	4,0	0,047	3,5	0,040	0,49	0,006	11	0,12	64	0,74	22	0,25	4,3	0,050
PR-WS23	16	0,24	2,1	0,031	0,98	0,014	0,50	0,007	0,09	0,001	6,6	0,097	87	1,3	3,2	0,047	0,63	0,009
IR-WS23	145	18	21	2,5	10	1,2	5,6	0,68	1,1	0,13	4,3	0,52	3,2	0,39	38	4,6	8,4	1,0
EM-WS23	77	23	12	3,7	4,5	1,4	4,8	1,4	0,74	0,22	< 1	< 0,30	9,5	2,8	19	5,7	4,5	1,4
IL-WS23	130	39	15	4,4	8,4	2,5	6,4	1,9	1,3	0,38	< 1	< 0,30	3,1	0,92	27	8,2	6,0	1,8
TK-WS23	99	0,83	10	0,085	6,8	0,057	6,2	0,052	0,83	0,007	1,0	0,008	13	0,11	16	0,13	4,5	0,038
SH-WS23	126	8,3	16	1,0	8,9	0,59	5,5	0,36	0,78	0,052	3,8	0,252	8,3	0,55	26	1,7	5,8	0,38
KB-WS23	123	14,8	14	1,7	7,8	0,94	5,9	0,71	1,2	0,15	< 1	< 0,12	6,4	0,77	28	3,4	6,0	0,72
TA-WS23	51	0,73	6,4	0,091	2,9	0,042	3,5	0,050	0,50	0,007	4,3	0,061	50	0,71	13	0,18	2,9	0,042
SD-WS23	106	14	11	1,4	5,3	0,71	6,7	0,89	1,0	0,14	< 1	< 0,13	2,7	0,36	22	3,0	5,1	0,68

Sample code	Тb, мкг/г	Tb, mkg/l	Υb, _{мкг/г}	Yb, mkg/l	Lu, мкг/г	Lu, mkg/l	Eu, мкг/г	Eu, mkg/l
CH-WS23	0,68	0,003	2,7	0,010	0,43	0,002	1,2	0,004
UR-WS23	0,74	0,047	2,4	0,16	0,41	0,026	1,3	0,084
IK-WS23	0,79	0,020	2,5	0,065	0,46	0,012	1,2	0,032
EK-WS23	0,52	0,002	1,3	0,006	0,22	0,001	9,73	0,003
TO-WS23	0,45	0,001	1,0	0,003	0,24	0,001	0,70	0,002
AY-WS23	0,62	0,007	1,8	0,021	0,30	0,004	1,1	0,013
PR-WS23	0,11	0,002	0,17	0,003	0,05	0,001	0,13	0,002
IR-WS23	1,2	0,15	3,9	0,470	0,58	0,071	1,9	0,23
EM-WS23	0,65	0,20	2,2	0,672	0,38	0,11	1,1	0,32
IL-WS23	0,91	0,27	2,8	0,84	0,51	0,15	1,2	0,36
TK-WS23	0,58	0,005	2,3	0,019	0,36	0,003	0,92	0,008
SH-WS23	0,74	0,048	2,4	0,16	0,40	0,026	1,2	0,077
KB-WS23	0,85	0,10	2,7	0,32	0,41	0,050	1,3	0,16
TA-WS23	0,34	0,005	1,2	0,017	0,20	0,003	0,55	0,008
SD-WS23	0,74	0,099	2,5	0,34	0,40	0,054	1,1	0,15

Результаты нейтроноактивационного анализа нерастворимых компонентов (WS) проб воды, отобранных в бассейнах трансграничных рек Казахстана осенью 2018 г. (24-я экспедиция)

Sample code	m, g	Sb, $MK\Gamma/\Gamma$	Sb, мкг/л	As, $MK\Gamma/\Gamma$	As, _{мкг/л}	Ni, _{мкг/г}	Ni, _{мкг/л}	Сr, _{мкг} ∕г	Сr, _{мкг/л}	Со, мкг/г	Со, мкг/л	Z_n , $MK\Gamma/\Gamma$	Zn, _{мкг/л}	U, мкг/г	U, мкг/л	Th, мкг/г	Th, _{мкг/л}	
CH-WS24	0,012	0,81	0,0010	19	0,011	76	0,046	150	0,090	29	0,017	115	0,07	1,9	0,001	12	0,007	-
UR-WS24	0,454	3,6	0,082	7,1	0,16	71	1,6	158	3,6	14	0,32	94	2,1	1,6	0,036	7,3	0,17	
IK-WS24	0,801	1,4	0,056	8,4	0,34	58	2,3	164	6,6	21	0,84	261	10	2,1	0,084	7,6	0,30	
EK-WS24	0,967	4,5	0,22	7,3	0,35	35	1,7	356	17	10	0,46	64	3,1	1,9	0,091	5,4	0,26	
TO-WS24	0,138	2,2	0,015	3,9	0,027	56	0,39	31	0,22	7,7	0,053	203	1,4	2,7	0,018	1,5	0,010	
AY-WS24	0,124	3,7	0,023	14	0,089	95	0,59	110	0,68	12	0,073	90	0,56	2,3	0,014	1,4	0,008	
PR-WS24	0,096	4,9	0,023	7,7	0,037	18	0,087	30	0,14	2,9	0,014	254	1,2	10	0,049	1,6	0,008	
IR-WS24	0,321	3,4	0,055	6,8	0,11	< 2	< 0,03	124	2,0	22	0,35	124	2,0	24	0,39	15	0,24	
EM-WS24	0,991	1,1	0,054	5,6	0,28	< 2	< 0,10	26	1,3	4,8	0,24	42	2,1	6,5	0,32	3,4	0,17	
IL-WS24	1,875	1,3	0,13	8,2	0,77	< 2	< 0,19	55	5,2	11	0,99	65	6,1	2,5	0,24	9,8	0,92	
TK-WS24	0,275	174	2,4	7,1	0,10	< 2	< 0,03	64	0,88	13	0,18	95	1,3	3,6	0,050	13	0,18	
SH-WS24	0,653	1,5	0,048	13	0,41	< 2	< 0,07	66	2,1	11	0,37	85	2,8	9,7	0,32	13	0,44	
KB-WS24	0,695	5,2	0,18	8,7	0,30	< 2	< 0,07	46	1,6	11	0,39	79	2,7	11	0,38	6,3	0,22	
		1,5	0,035	8,2	0,19	11	0,26	55	1,3	10	0,25	91	2,2	5,1	0,12	6,6	0,15	
TA-WS24	0,473	1,5	0,022															
TA-WS24 SD-WS24	0,473	194	4,9	8,1	0,20	42	1,1	72	1,8	13	0,33	107	2,7	4,3	0,11	8,3	0,21	-
SD-WS24	,	*			0,20 La, мкг/г	42 La, мкг/л	1,1 Се, мкг/г	72 Се, мкг/л	1,8 Ca, %	13 Са, мг/л	0,33 Fe, %	107 Fe, мг/л	2,7 Na, %	4,3 Na, мг/л	0,11 Ва, мкг/г	8,3 Ва, мкг/л	0,21 Sr, мкг/г	
SD-WS24	0,506 Au,	194	4,9 Ag,	8,1 Ag,	La,	La,	Ce,	Ce,		Ca,		Fe,		Na,	Ba,	Ba,	Sr,	M
SD-WS24 Sample code	0,506 Au, _{нг/г}	194	4,9 Аg, мкг/г	8,1 Ag, мкг/л	La, мкг∕г	La, мкг/л	Се, мкг/г	Се, мкг/л	Ca, %	Са, мг/л	Fe, %	Fe, мг/л	Na, %	Na, мг/л	Ва, мкг/г	Ва, мкг/л	Sr, мкг/г	
SD-WS24 Sample code CH-WS24	0,506 Au, нг/г 56	194 Au, нг/л 0,034	4,9 Ад, мкг/г < 1	8,1 Ag, мкг/л < 0,001	La, мкг/г 39	La, мкг/л	Се, мкг/г 61	Се, мкг/л 0,036	Ca, %	Са, мг/л < 0,01	Fe, %	Fe, мг/л 0,034	Na, %	Na, мг/л 0,008	Ва, мкг/г 429	Ва, мкг/л 0,26	Sr, мкг/г < 50	
SD-WS24 Sample code CH-WS24 UR-WS24	0,506 Аи, нг/г 56 12	194 Au, нг/л 0,034 0,27	4,9 Ag, ΜΚΓ/Γ < 1 1,4	8,1 Ад, мкг/л < 0,001 0,032	La, мкг/г 39 24	La, мкг/л 0,023 0,54	Се, мкг/г 61 44	Се, мкг/л 0,036 1,0	Ca, %	Са, мг/л < 0,01 2,5	Fe, % 5,7 2,5	Fe, мг/л 0,034 0,57	Na, % 1,4 1,9	Na, мг/л 0,008 0,43	Ва, мкг/г 429 445	Ва, мкг/л 0,26 10	Sr, мкг/г < 50 468	<u>M</u> <
SD-WS24 Sample code CH-WS24 UR-WS24 IK-WS24	0,506 Аи, нг/г 56 12 14	194 Au, нг/л 0,034 0,27 0,56	4,9 Ag, MKT/Γ <1 1,4 2,6	8,1 Ag, мкг/л < 0,001 0,032 0,10	Lа, мкг/г 39 24 25	La, мкг/л 0,023 0,54 1,0	Се, мкг/г 61 44 41	Се, мкг/л 0,036 1,0 1,6	Ca, % < 1 11 6	Са, мг/л < 0,01 2,5 2,5	Fe, % 5,7 2,5 3,5	Fe, мг/л 0,034 0,57 1,4	Na, % 1,4 1,9 2,2	Na, мг/л 0,008 0,43 0,88	Ва, мкг/г 429 445 298	Ва, мкг/л 0,26 10 12	Sr, MKΓ/Γ < 50 468 457	- M
SD-WS24 Sample code CH-WS24 UR-WS24 IK-WS24 EK-WS24	0,506 Аи, нг/г 56 12 14 194	194 Au, нг/л 0,034 0,27 0,56 9,4	4,9 Ag, MKΓ/Γ < 1 1,4 2,6 < 1	8,1 Ag, мкг/л < 0,001 0,032 0,10 < 0,047	Lа, мкг/г 39 24 25 18	La, мкг/л 0,023 0,54 1,0 0,87	Се, мкг/г 61 44 41 27	Се, мкг/л 0,036 1,0 1,6 1,3	Ca, % < 1 11 6 8,6	Са, мг/л < 0,01 2,5 2,5 4,2	Fe, % 5,7 2,5 3,5 2,5	Fe, мг/л 0,034 0,57 1,4 1,2	Na, % 1,4 1,9 2,2 1,4	Na, мг/л 0,008 0,43 0,88 0,70	Ва, мкг/г 429 445 298 371	Ва, мкг/л 0,26 10 12 18	Sr, MKГ/Г < 50 468 457 377	<u>M</u>
SD-WS24 Sample code CH-WS24 UR-WS24 IK-WS24 EK-WS24 TO-WS24	0,506 Аи, нг/г 56 12 14 194 105	194 Аи, нг/л 0,034 0,27 0,56 9,4 0,72	Ад, МКГ/Г < 1 1,4 2,6 < 1 3,4	8,1 Ag, MKIT/JI < 0,001 0,032 0,10 < 0,047 0,023	La, MKГ/Г 39 24 25 18 5,6	La, мкг/л 0,023 0,54 1,0 0,87 0,038	Се, мкг/г 61 44 41 27 13	Се, мкг/л 0,036 1,0 1,6 1,3 0,088	Ca, % < 1 11 6 8,6 13	Са, мг/л < 0,01 2,5 2,5 4,2 0,93	Fe, % 5,7 2,5 3,5 2,5 1,0	Fe, мг/л 0,034 0,57 1,4 1,2 0,069	Na, % 1,4 1,9 2,2 1,4 8,1	Na, MI/Л 0,008 0,43 0,88 0,70 0,56	Ва, мкг/г 429 445 298 371 186	Ва, мкг/л 0,26 10 12 18 1,3	Sr, MKГ/Г < 50 468 457 377 1299	<u>M</u>
SD-WS24 Sample code CH-WS24 UR-WS24 IK-WS24 EK-WS24 TO-WS24 AY-WS24	0,506 Au, HГ/Г 56 12 14 194 105 82	194 Au, нг/л 0,034 0,27 0,56 9,4 0,72 0,51	Ag, MKΓ/Γ < 1 1,4 2,6 < 1 3,4 4,4	8,1 Ag, MKT/Л < 0,001 0,032 0,10 < 0,047 0,023 0,027	La, MKГ/Г 39 24 25 18 5,6 5,5	La, мкг/л 0,023 0,54 1,0 0,87 0,038 0,034	Се, мкг/г 61 44 41 27 13	Се, мкг/л 0,036 1,0 1,6 1,3 0,088 0,068	Ca, % < 1 11 6 8,6 13 9,3	Са, мг/л < 0,01 2,5 2,5 4,2 0,93 0,58	Fe, % 5,7 2,5 3,5 2,5 1,0 2,5	Fe, MT/Л 0,034 0,57 1,4 1,2 0,069 0,16	Na, % 1,4 1,9 2,2 1,4 8,1 8,3	Na, мг/л 0,008 0,43 0,88 0,70 0,56 0,52	Ва, мкг/г 429 445 298 371 186 252	Ва, мкг/л 0,26 10 12 18 1,3 1,6	Sr, MKF/F < 50 468 457 377 1299 1018	<u>M</u> <
SD-WS24 Sample code CH-WS24 UR-WS24 IK-WS24 EK-WS24 TO-WS24 AY-WS24 PR-WS24	0,506 Au, HГ/Г 56 12 14 194 105 82 10	194 Au, нг/л 0,034 0,27 0,56 9,4 0,72 0,51 0,047	Ag, MKT/F < 1 1,4 2,6 < 1 3,4 4,4 < 1	8,1 Ag, мкг/л < 0,001 0,032 0,10 < 0,047 0,023 0,027 < 0,005	La, MKF/F 39 24 25 18 5,6 5,5 5,2	La, мкг/л 0,023 0,54 1,0 0,87 0,038 0,034 0,025	Се, мкг/г 61 44 41 27 13 11 8	Се, мкг/л 0,036 1,0 1,6 1,3 0,088 0,068 0,037	Ca, % < 1 11 6 8,6 13 9,3 19	Ca, MΓ/π < 0,01 2,5 2,5 4,2 0,93 0,58 0,90	Fe, % 5,7 2,5 3,5 2,5 1,0 2,5 0,61	Fe, MIT/JI 0,034 0,57 1,4 1,2 0,069 0,16 0,029	Na, % 1,4 1,9 2,2 1,4 8,1 8,3 6,7	Na, MF/Л 0,008 0,43 0,88 0,70 0,56 0,52 0,32	Ва, мкг/г 429 445 298 371 186 252 242	Ва, мкг/л 0,26 10 12 18 1,3 1,6 1,2	Sr, MKF/F < 50 468 457 377 1299 1018 1297	
SD-WS24 Sample code CH-WS24 UR-WS24 IK-WS24 EK-WS24 TO-WS24 AY-WS24 PR-WS24 IR-WS24	О,506 Au, HГ/Г 56 12 14 194 105 82 10 23	Аu, нг/л 0,034 0,27 0,56 9,4 0,72 0,51 0,047 0,36	Ag, MKΓ/Γ < 1 1,4 2,6 < 1 3,4 4,4 < 1 < 1	8,1 Ag, MKT/Л < 0,001 0,032 0,10 < 0,047 0,023 0,027 < 0,005 < 0,016	La, MKГ/Г 39 24 25 18 5,6 5,5 5,2 42	La, мкг/л 0,023 0,54 1,0 0,87 0,038 0,034 0,025 0,67	Се, мкг/г 61 44 41 27 13 11 8	Се, мкг/л 0,036 1,0 1,6 1,3 0,088 0,068 0,037 1,1	Ca, % < 1 11 6 8,6 13 9,3 19 2,6	Са, мг/л < 0,01 2,5 2,5 4,2 0,93 0,58 0,90 0,41	Fe, % 5,7 2,5 3,5 2,5 1,0 2,5 0,61 5,0	Fe, мг/л 0,034 0,57 1,4 1,2 0,069 0,16 0,029 0,81	Na, % 1,4 1,9 2,2 1,4 8,1 8,3 6,7 2,0	Na, мг/л 0,008 0,43 0,88 0,70 0,56 0,52 0,32 0,33	Ba, MKF/F 429 445 298 371 186 252 242 504	Ва, мкг/л 0,26 10 12 18 1,3 1,6 1,2 8,1	Sr, MKF/F < 50 468 457 377 1299 1018 1297 337	
SD-WS24 CH-WS24 UR-WS24 IK-WS24 EK-WS24 TO-WS24 AY-WS24 PR-WS24 IR-WS24 EM-WS24	0,506 Au, HГ/Г 56 12 14 194 105 82 10 23 < 1	Аu, нг/л 0,034 0,27 0,56 9,4 0,72 0,51 0,047 0,36 < 0,05	Ag, MKT/T <1 1,4 2,6 <1 3,4 4,4 <1 <1 <1	8,1 Ag, MKT/JI < 0,001 0,032 0,10 < 0,047 0,023 0,027 < 0,005 < 0,016 < 0,005	La, MKГ/Г 39 24 25 18 5,6 5,5 42 11	La, мкг/л 0,023 0,54 1,0 0,87 0,038 0,034 0,025 0,67 0,57	Се, мкг/г 61 44 41 27 13 11 8 69 20	Се, мкг/л 0,036 1,0 1,6 1,3 0,088 0,068 0,037 1,1	Ca, % < 1 11 6 8,6 13 9,3 19 2,6 15	Ca , MT/Π < 0,01 2,5 2,5 4,2 0,93 0,58 0,90 0,41 7,7	Fe, % 5,7 2,5 3,5 2,5 1,0 2,5 0,61 5,0 1,5	Fe, MT/Л 0,034 0,57 1,4 1,2 0,069 0,16 0,029 0,81 0,73	Na, % 1,4 1,9 2,2 1,4 8,1 8,3 6,7 2,0 4,9	Na, MI/II 0,008 0,43 0,88 0,70 0,56 0,52 0,32 0,33 2,4	Ва, мкг/г 429 445 298 371 186 252 242 504 392	Ва, мкг/л 0,26 10 12 18 1,3 1,6 1,2 8,1	Sr, MKF/F < 50 468 457 377 1299 1018 1297 337 1162	<u>M</u> <
SD-WS24 CH-WS24 UR-WS24 IK-WS24 EK-WS24 TO-WS24 AY-WS24 PR-WS24 IR-WS24 IR-WS24 IL-WS24	0,506 Au, HF/F 56 12 14 194 105 82 10 23 < 1 9,2	194 Au, нг/л 0,034 0,27 0,56 9,4 0,72 0,51 0,047 0,36 < 0,05 0,86	Ag, MKT/F < 1 1,4 2,6 < 1 3,4 4,4 < 1 < 1 < 1 < 1	8,1 Ag, MKT/JI < 0,001 0,032 0,10 < 0,047 0,023 0,027 < 0,005 < 0,016 < 0,005 < 0,094	La, MKГ/Г 39 24 25 18 5,6 5,5 42 11 31	La, MKГ/Л 0,023 0,54 1,0 0,87 0,038 0,034 0,025 0,67 0,57 2,9	Се, мкг/г 61 44 41 27 13 11 8 69 20 52	Се, мкг/л 0,036 1,0 1,6 1,3 0,088 0,068 0,037 1,1 1,0 4,9	Ca, % < 1 11 6 8,6 13 9,3 19 2,6 15 8,6	Ca, MT/Л < 0,01 2,5 2,5 4,2 0,93 0,58 0,90 0,41 7,7 8,1	Fe, % 5,7 2,5 3,5 2,5 1,0 2,5 0,61 5,0 1,5 3,0	Fe, MIT/JI 0,034 0,57 1,4 1,2 0,069 0,16 0,029 0,81 0,73 2,8	Na, % 1,4 1,9 2,2 1,4 8,1 8,3 6,7 2,0 4,9 1,6	Na, MI/Л 0,008 0,43 0,88 0,70 0,56 0,52 0,32 0,33 2,4 1,5	Ва, мкг/г 429 445 298 371 186 252 242 504 392 469	Ва, мкг/л 0,26 10 12 18 1,3 1,6 1,2 8,1 19	Sr, MKF/F < 50 468 457 377 1299 1018 1297 337 1162 274	<u>M</u> <
SD-WS24 CH-WS24 UR-WS24 IK-WS24 EK-WS24 TO-WS24 AY-WS24 PR-WS24 IR-WS24 IL-WS24 TK-WS24	0,506 Au, HF/F 56 12 14 194 105 82 10 23 < 1 9,2 < 1	194 Au, нг/л 0,034 0,27 0,56 9,4 0,72 0,51 0,047 0,36 < 0,05 0,86 < 0,014	Ag, MKT/F <1 1,4 2,6 <1 3,4 4,4 <1 <1 <1 <1 <1 <1	8,1 Ag, MKIT/JI < 0,001 0,032 0,10 < 0,047 0,023 0,027 < 0,005 < 0,016 < 0,005 < 0,094 0,029	La, MKF/F 39 24 25 18 5,6 5,5 5,2 42 11 31 32	La, мкг/л 0,023 0,54 1,0 0,87 0,038 0,034 0,025 0,67 0,57 2,9 0,44	Се, мкг/г 61 44 41 27 13 11 8 69 20 52 55	Се, мкг/л 0,036 1,0 1,6 1,3 0,088 0,068 0,037 1,1 1,0 4,9 0,76	Ca, % < 1 11 6 8,6 13 9,3 19 2,6 15 8,6 8,8	Ca, MIT/II < 0,01 2,5 2,5 4,2 0,93 0,58 0,90 0,41 7,7 8,1 1,2	Fe, % 5,7 2,5 3,5 2,5 1,0 2,5 0,61 5,0 1,5 3,0 3,3	Fe, MIT/JI 0,034 0,57 1,4 1,2 0,069 0,16 0,029 0,81 0,73 2,8 0,46	Na, % 1,4 1,9 2,2 1,4 8,1 8,3 6,7 2,0 4,9 1,6 1,2	Na, MI/Л 0,008 0,43 0,88 0,70 0,56 0,52 0,32 0,33 2,4 1,5 0,17	Ba, MKF/F 429 445 298 371 186 252 242 504 392 469 710	Ва, мкг/л 0,26 10 12 18 1,3 1,6 1,2 8,1 19 44 9,8	Sr, MKF/F < 50 468 457 377 1299 1018 1297 337 1162 274 461	<u>M</u> <
SD-WS24 CH-WS24 UR-WS24 IK-WS24 EK-WS24 TO-WS24 AY-WS24 IR-WS24 IR-WS24 IL-WS24 TK-WS24 SH-WS24	0,506 Au, HГ/Г 56 12 14 194 105 82 10 23 <1 9,2 <1 20	194 Au, нг/л 0,034 0,27 0,56 9,4 0,72 0,51 0,047 0,36 < 0,05 0,86 < 0,014 0,67	Ag, MKT/T <1 1,4 2,6 <1 3,4 4,4 <1 <1 <1 <1 <1 <1 <1 <1 <1	8,1 Ag, мкг/л < 0,001 0,032 0,10 < 0,047 0,023 0,027 < 0,005 < 0,016 < 0,005 < 0,094 0,029 < 0,033	La, MKГ/Г 39 24 25 18 5,6 5,5 42 11 31 32 30	La, MKI/Л 0,023 0,54 1,0 0,87 0,038 0,034 0,025 0,67 0,57 2,9 0,44 0,97	Ce, MKF/F 61 44 41 27 13 11 8 69 20 52 55 47	Се, мкг/л 0,036 1,0 1,6 1,3 0,088 0,037 1,1 1,0 4,9 0,76 1,5	Ca, % < 1 11 6 8,6 13 9,3 19 2,6 15 8,6 8,8 16	Ca, MIT/II < 0,01 2,5 2,5 4,2 0,93 0,58 0,90 0,41 7,7 8,1 1,2 5,3	Fe, % 5,7 2,5 3,5 2,5 1,0 2,5 0,61 5,0 1,5 3,0 3,3 2,8	Fe, MT/Л 0,034 0,57 1,4 1,2 0,069 0,16 0,029 0,81 0,73 2,8 0,46 0,93	Na, % 1,4 1,9 2,2 1,4 8,1 8,3 6,7 2,0 4,9 1,6 1,2 1,3	Na, MF/II 0,008 0,43 0,88 0,70 0,56 0,52 0,32 0,33 2,4 1,5 0,17 0,43	Ba, MKF/F 429 445 298 371 186 252 242 504 392 469 710 834	Ва, мкг/л 0,26 10 12 18 1,3 1,6 1,2 8,1 19 44 9,8 27	Sr, MKF/F < 50 468 457 377 1299 1018 1297 337 1162 274 461 689	<u>M</u> <

Приложение 20 (продолжение)

Sample code	Zr, _{ΜΚΓ} /Γ	Zr, мкг/л	Rb, _{мкг} /г	Rb, _{мкг} /л	Sc, мкг/г	Sc, мкг/л	Сs, мкг/г	Сs, мкг/л	Нf, мкг∕г	Нf, _{мкг} /л	Та, мкг/г	Та, _{мкг/л}	Мо, _{мкг/г}	Мо, мкг/л	Br, _{ΜΚΓ} /Γ	Br, мкг/л	Nd, мкг/г	Nd, мкг/л
CH-WS24	< 30	< 0,02	108	0,065	19	0,011	7,0	0,0042	4,9	0,0029	0,72	0,0004	< 1	< 0,001	2,4	0,0014	< 1	< 0,001
UR-WS24	168	3,8	72	1,6	9,1	0,21	3,4	0,077	5,1	0,12	0,690	0,016	< 1	< 0,023	21	0,48	24	0,54
IK-WS24	178	7,1	79	3,2	10,0	0,40	3,6	0,14	5,8	0,23	0,710	0,028	< 1	< 0,04	26	1,0	23	0,92
EK-WS24	169	8,2	66	3,2	11	0,51	4,3	0,21	3,6	0,18	0,53	0,026	0,54	0,026	26	1,3	10	0,50
TO-WS24	33	0,22	16	0,11	2,6	0,018	0,85	0,0059	0,67	0,0047	0,10	0,0007	< 1	< 0,007	23	0,16	7,4	0,051
AY-WS24	33	0,21	13	0,081	4,1	0,026	0,58	0,0036	0,91	0,0056	0,12	0,0008	6,9	0,043	31	0,19	5,9	0,037
PR-WS24	17	0,083	15	0,071	2,1	0,010	1,0	0,0049	0,43	0,0020	0,11	0,0005	< 1	< 0,005	92	0,44	7,7	0,037
IR-WS24	127	2,0	130	2,1	18	0,29	10	0,17	4,8	0,077	1,1	0,018	2,3	0,036	7,4	0,12	39	0,63
EM-WS24	122	6,0	43	2,1	5,7	0,28	1,5	0,076	4,8	0,24	0,44	0,022	4,9	0,24	38	1,9	16	0,77
IL-WS24	218	20	90	8,5	11	1,0	5,3	0,50	6,9	0,65	1,0	0,097	0,31	0,029	5,1	0,47	26	2,4
TK-WS24	164	2,2	113	1,6	12	0,16	8,9	0,12	4,0	0,055	0,89	0,012	0,31	0,0042	16	0,22	27	0,37
SH-WS24	99	3,2	89	2,9	9,8	0,32	5,7	0,19	3,6	0,12	0,71	0,023	< 1	< 0,03	15	0,48	23	0,74
KB-WS24	84	2,9	55	1,9	6,9	0,24	4,0	0,14	2,4	0,084	0,49	0,017	< 1	< 0,03	29	1,0	14	0,50
TA-WS24	30	0,71	57	1,4	7,6	0,18	3,9	0,093	2,4	0,056	0,53	0,013	2,9	0,067	36	0,85	15	0,35
SD-WS24	99	2,5	82	2,1	9,8	0,25	5,1	0,13	2,6	0,065	0,72	0,018	< 1	< 0,025	20	0,52	19	0,48

Sample code	Sm, _{ΜΚΓ} /Γ	Sm, _{мкг} /л	ТЬ, мкг∕г	Тb, _{мкг/л}	Υb, мкг/г	Yb, мкг∕л	Lu, мкг/г	Lu, мкг/л	Eu, мкг/г	Eu, мкг/л
CH-WS24	7,9	0,0047	0,80	0,0005	2,8	0,0017	0,48	0,0003	1,5	0,0009
UR-WS24	3,8	0,086	0,59	0,013	2,2	0,050	0,34	0,0077	0,87	0,0197
IK-WS24	3,8	0,15	0,64	0,026	2,0	0,080	0,29	0,012	0,79	0,0316
EK-WS24	3,2	0,16	0,29	0,014	1,7	0,082	0,25	0,012	0,59	0,029
TO-WS24	1,3	0,0092	0,11	0,00076	0,31	0,0021	0,07	0,0005	0,23	0,0016
AY-WS24	1,4	0,0088	0,14	0,00087	0,46	0,0028	0,09	0,0006	0,31	0,0019
PR-WS24	0,97	0,0047	0,10	0,00049	0,39	0,0019	0,07	0,0003	0,15	0,0007
IR-WS24	8,7	0,14	1,0	0,016	3,7	0,059	0,53	0,0085	1,6	0,026
EM-WS24	2,7	0,13	0,29	0,015	1,5	0,076	0,25	0,012	0,54	0,027
IL-WS24	5,6	0,52	0,68	0,063	2,9	0,27	0,39	0,037	1,2	0,11
TK-WS24	5,6	0,077	0,56	0,0077	2,3	0,032	0,36	0,0049	1,0	0,014
SH-WS24	4,7	0,15	0,56	0,018	2,4	0,079	0,31	0,010	0,88	0,029
KB-WS24	2,3	0,079	0,28	0,010	1,3	0,046	0,21	0,0073	0,54	0,019
TA-WS24	3,3	0,077	0,33	0,0079	1,6	0,037	0,21	0,0050	0,56	0,013
SD-WS24	4,4	0,11	0,43	0,011	1,7	0,042	0,22	0,0056	0,78	0,020

Результаты радиохимического анализа растворимых компонентов (WD) проб воды, отобранных в бассейнах трансграничных рек Казахстана весной 2018г. (23-я экспедиция)

Sample code	U238,mbq/l	U234, mbq/l	Ra226, mbq/l
CH-WD-23	8,72	10,505	1,19
UR-WD-23	15,45	24,310	1,53
IK-WD-23	16,32	18,080	3,03
EK-WD-23	12,40	16,690	0,61
TO-WD-23	17,43	30,930	2,32
AY-WD-23	90,06	160,857	2,44
PR-WD-23	32,45	49,910	1,36
IR-WD-23	61,27	107,00	1,04
EM-WD-23	133,80	219,00	2,25
IL-WD-23	60,80	96,70	3,43
TK-WD-23	58,20	102,10	3,68
SH-WD-23	188,60	228,30	4,05
KB-WD-23	293,90	415,50	1,97
TA-WD-23	75,60	149,80	2,74
SD-WD-23	165,20	218,60	4,37

Результаты радиохимического анализа растворимых компонентов (WD) проб воды, отобранных в бассейнах трансграничных рек Казахстана осенью 2018г. (24-я экспедиция)

Sample code	U-238,	U-234,	Ra-226,
Sample code	mbq/l	mbq/l	mbq/l
CH-WD-24	12,7	15,3	1,17
UR-WD-24	24,5	35,2	1,83
IK-WD-24	14,4	18,4	2,56
EK-WD-24	16,6	19,9	6,87
TO-WD-24	23,2	34,3	2,43
AY-WD-24	25,3	36,4	2,54
PR-WD-24	14,7	19,5	1,22
IR-WD-24	14,5	21,1	2,82
EM-WD-24	164,0	253	3,06
IL-WD-224	58,7	77,5	7,07
TK-WD-24	45,2	59,6	6,91
SH-WD-24	292,0	362,0	4,12
KB-WD-24	544,0	684,0	6,64
TA-WD-24	83,8	116,5	3,73
SD-WD-24	159,4	224,8	5,40

Результаты определения методом МС-ИСП элементного состава проб отфильтрованной воды (WD), отобранных в трансграничных реках Казахстана весной 2018 г (23-я экспедиция)

Код пробы	Ag, мкг/л	As, мкг /л	Ве, мкг/л	Се, мкг/л	Cd, мкг/л	Со, мкг/л	Си, мкг/л	Сr, мкг /л	Hg, мкг/л	La, мкг/л	Мо, мкг/л	Nd, мкг/л	Ni, мкг/л	Р, мкг/л	Рb, мкг/л	Se, мкг/л	Sb, мкг/л	Th, мкг/л	U, мкг/л	V, мкг/л	Ү, мкг/л	Zn, _{мкг/л}
CH-23	0,91	1,93	<0,03	<0,04	<0,08	0,23	6,98	2,91	<0,1	<0,04	0,74	<0,1	5,09	56,3	0,13	<3	11,6	<0,1	0,53	2,13	0,05	5,41
UR-23	<0,2	2,42	< 0,03	0,16	<0,08	0,21	5,70	1,26	< 0,1	0,10	1,57	< 0,1	5,56	57,1	0,19	<3	<0,3	< 0,1	1,07	2,95	0,09	11,6
IK-23	<0,2	2,97	< 0,03	< 0,04	< 0,08	0,30	5,76	3,18	< 0,1	< 0,04	1,26	< 0,1	5,46	131	0,13	<3	0,76	< 0,1	1,10	3,11	0,03	5,01
EK-23	<0,2	1,47	< 0,03	0,75	< 0,08	0,91	2,43	3,65	< 0,1	0,34	0,80	0,39	4,85	76,3	0,86	<3	<0,3	< 0,1	0,72	2,05	0,22	4,55
TO-23	<0,2	1,36	< 0,03	< 0,04	<0,08	0,49	0,97	4,36	< 0,1	< 0,04	1,86	< 0,1	5,97	<5	0,13	<3	<0,3	< 0,1	1,17	1,68	< 0,01	<2
AY-23	<0,2	1,47	< 0,03	0,11	<0,08	0,24	1,89	3,68	< 0,1	0,09	2,30	< 0,1	4,70	<5	0,12	<3	<0,3	< 0,1	6,42	1,44	0,05	<2
PR-23	<0,2	1,29	< 0,03	< 0,04	<0,08	<0,08	2,24	1,76	< 0,1	< 0,04	1,45	< 0,1	2,14	11,2	< 0,05	<3	<0,3	< 0,1	2,50	1,08	< 0,01	<2
IR-23	<0,2	0,96	< 0,03	0,23	<0,08	0,15	6,70	1,21	< 0,1	0,12	2,78	< 0,1	1,87	15,5	15,7	<3	0,77	< 0,1	4,87	1,29	0,11	12,7
EM-23	<0,2	2,75	< 0,03	< 0,04	<0,08	0,18	2,07	2,04	< 0,1	< 0,04	9,63	< 0,1	3,74	<5	0,09	<3	1,38	< 0,1	9,44	2,62	0,02	<2
IL-23	<0,2	1,81	< 0,03	0,12	<0,08	0,14	1,63	4,16	< 0,1	< 0,04	2,87	< 0,1	3,12	<5	0,12	<3	<0,3	< 0,1	6,33	2,27	0,05	<2
TK-23	<0,2	0,93	< 0,03	0,11	<0,08	0,14	<0,5	1,41	< 0,1	< 0,04	1,74	< 0,1	2,93	<5	0,13	<3	<0,3	< 0,1	5,05	0,92	0,05	<2
SH-23	<0,2	1,95	< 0,03	< 0,04	<0,08	0,20	1,81	3,56	< 0,1	< 0,04	4,84	< 0,1	3,78	<5	0,21	<3	0,85	< 0,1	16,9	1,94	0,06	4,16
KB-23	<0,2	3,41	< 0,03	< 0,04	<0,08	0,22	1,90	1,25	< 0,1	< 0,04	18,3	< 0,1	4,56	<5	0,09	<3	<0,3	< 0,1	26,2	2,08	0,05	<2
TA-23	0,45	0,75	< 0,03	< 0,04	<0,08	0,12	<0,5	2,88	< 0,1	< 0,04	2,91	< 0,1	3,22	12,5	< 0,05	<3	<0,3	< 0,1	6,25	0,90	< 0,01	4,39
SD-23	<0,2	2,05	< 0,03	< 0,04	<0,08	0,19	1,83	6,40	< 0,1	< 0,04	8,31	< 0,1	5,61	<5	< 0,05	<3	<0,3	< 0,1	14,0	2,62	< 0,01	<2

Код пробы	Zr, мкг/л	Al, мкг /л	В, мкг/л	Ва, мкг/л	Fe, мкг/л	Li, мкг/л	Мп, мкг/л	Sr, мкг /л	Са, мг/л	К, мг/л	Mg, мг/л
CH-23	<0,1	11,7	78,6	23,0	29,0	12,3	5,13	495	53,5	6,31	14,4
UR-23	< 0,1	23,9	178	29,2	41,5	7,22	5,84	403	43,6	4,12	11,9
IK-23	< 0,1	<3	141	35,1	19,2	13,7	3,86	541	58,3	6,53	14,0
EK-23	< 0,1	143	95,3	31,1	422	7,38	162	295	43,7	4,81	11,6
TO-23	< 0,1	23,2	78,6	33,1	141	26,0	389	524	58,2	5,18	26,9
AY-23	< 0,1	19,6	48,3	39,9	226	9,90	57,9	507	51,2	5,53	25,8
PR-23	< 0,1	7,25	14,2	26,8	13,7	3,54	2,31	231	34,2	1,85	7,40
IR-23	< 0,1	108	25,4	57,6	140	2,80	6,21	169	26,0	2,26	5,25
EM-23	< 0,1	<3	205	35,4	4,16	7,53	1,40	781	76,6	3,05	26,0
IL-23	< 0,1	55,3	51,2	51,0	57,3	4,95	3,80	379	57,1	2,27	15,7
TK-23	< 0,1	27,0	31,4	68,2	52,8	6,56	5,71	651	65,5	1,55	16,4
SH-23	< 0,1	15,9	104	80,4	9,55	9,97	2,09	800	74,6	3,02	22,7
KB-23	<0,1	59,5	153	66,9	60,3	24,9	4,78	224 3	94,7	6,46	61,4
TA-23	< 0,1	15,1	51,5	94,6	4,95	5,50	<0,5	632	62,7	2,11	24,1
SD-23	<0,1	<3	181	55,4	<0,4	23,2	<0,5	245 4	131	4,70	59,2

Результаты определения методом МС-ИСП элементного состава проб отфильтрованной воды (WD), отобранных в трансграничных реках Казахстана осенью 2018 г (24-я экспедиция)

Код пробы	Ag, мкг/л	Al, мкг/л	As, мкг/л	В, мкг/л	Ва, мкг/л	Ве, мкг/л	Се, мкг/л	Cd, мкг/л	Со, мкг/л	Си, мкг/л	Сr, мкг/л	Hg, мкг/л	La, мкг/л	Li, мкг/л	Mn, мкг/л	Мо, мкг/л	Nd, мкг/л	Ni, мкг/л
CH-WD-24	<0,2	7,86	4,97	229	50,0	<0,03	<0,04	<0,08	0,27	4,57	2,46	<0,1	<0,04	34,6	7,04	1,01	<0,1	8,01
UR-WD-24	<0,2	6,76	1,77	128	58,2	< 0,03	< 0,04	<0,08	0,21	3,88	1,93	< 0,1	< 0,04	13,3	5,93	2,67	< 0,1	6,59
IK-WD-24	< 0,2	<3	0,62	221	42,3	< 0,03	< 0,04	<0,08	0,16	2,09	9,04	< 0,1	< 0,04	28,9	< 0,5	1,81	< 0,1	3,38
EK-WD-24	<0,2	48,5	1,93	234	40,0	< 0,03	< 0,04	<0,08	0,29	0,84	7,61	< 0,1	< 0,04	19,6	72,0	1,73	< 0,1	3,70
TO-WD-24	<0,2	35,8	4,60	176	35,0	< 0,03	< 0,04	<0,08	0,18	1,16	5,52	< 0,1	< 0,04	28,1	17,8	2,27	< 0,1	6,22
AY-WD-24	<0,2	<3	2,18	165	43,4	< 0,03	< 0,04	< 0,08	0,15	0,68	9,61	< 0,1	< 0,04	22,6	< 0,5	1,08	< 0,1	4,04
PR-WD-24	<0,2	<3	1,70	28,7	23,0	< 0,03	< 0,04	<0,08	<0,05	1,69	0,88	< 0,1	< 0,04	2,96	< 0,5	1,31	< 0,1	1,73
IR-WD-24	<0,2	6,52	<0,5	23,0	8,1	< 0,03	< 0,04	<0,08	<0,05	0,65	1,05	< 0,1	< 0,04	1,78	< 0,5	2,13	< 0,1	0,79
EM-WD-24	<0,2	6,51	4,25	392	39,9	< 0,03	< 0,04	< 0,08	0,17	1,38	2,67	< 0,1	< 0,04	22,8	2,11	25,7	< 0,1	2,55
IL-WD-24	<0,2	7,97	2,77	83,9	62,2	< 0,03	< 0,04	< 0,08	0,14	1,35	1,05	< 0,1	< 0,04	8,01	1,27	2,66	< 0,1	2,85
TK-WD-24	<0,2	30,6	0,86	27,5	82,4	< 0,03	< 0,04	< 0,08	0,13	0,88	0,69	< 0,1	< 0,04	6,42	4,65	1,61	< 0,1	2,53
SH-WD-24	<0,2	<3	1,85	151	68,4	< 0,03	< 0,04	< 0,08	0,14	1,00	4,51	< 0,1	< 0,04	11,1	<0,5	4,96	< 0,1	3,30
KB-WD-24	<0,2	20,7	4,87	367	57,8	< 0,03	< 0,04	< 0,08	0,23	2,32	2,57	< 0,1	< 0,04	63,8	<0,5	29,8	< 0,1	5,25
TA-WD-24	<0,2	22,8	1,17	57,0	85,2	< 0,03	< 0,04	< 0,08	0,12	1,14	3,64	< 0,1	< 0,04	7,43	<0,5	3,08	< 0,1	2,70
SD-WD-24	<0,2	22,5	2,69	353	48,3	< 0,03	< 0,04	0,12	0,23	2,51	3,58	< 0,1	< 0,04	34,7	5,73	5,48	< 0,1	5,84
V 0 7 770 0 6	P,	DI		~	G1		* *	* 7	* *	_			~					
KOJI IIDOOMI	г,	Pb,	Se,	Sr,	Sb,	Th,	U,	V,	Y,	Zn,	Fe,	Zr,	Ca,	K,	Mg,			
Код пробы 	г, мкг/л	мкг/л	мкг/л	Sr, мкг/л	мкг/л	Th, мкг/л	U, мкг/л	V, мкг/л	Ү, мкг/л	Zn, мкг/л	Fe, мкг∕л	Zr, мкг/л	Са, мг/л	К, мг/л	мг/л			
Код прооы ———————————————————————————————————															-			
	мкг/л	мкг/л	мкг/л	мкг/л	мкг/л	мкг/л	мкг/л	мкг/л	мкг/л	мкг/л	мкг/л	мкг/л	мг/л	мг/л	мг/л			
CH-WD-24	мкг/л 178	мкг/л 0,24	мкг/л <3	мкг/л 943	мкг/л <0,3	мкг/л <0,1	мкг/л 0,93	мкг/л 2,83	мкг/л <0,01	мкг/л 8,00	мкг/л 20,8	мкг/л <0,1	мг/л	мг/л 4,89	мг/л 33,6			
CH-WD-24 UR-WD-24	мкг/л 178 <5	мкг/л 0,24 0,22	мкг/л <3 <3	мкг/л 943 744	мкг/л <0,3 <0,3	мкг/л <0,1 <0,1	мкг/л 0,93 2,24	мкг/л 2,83 3,31	мкг/л <0,01 <0,01	мкг/л 8,00 6,85	мкг/л 20,8 13,1	мкг/л <0,1 <0,1	мг/л 108 68,0	мг/л 4,89 4,00	мг/л 33,6 26,0			
CH-WD-24 UR-WD-24 IK-WD-24	мкг/л 178 <5 <5	мкг/л 0,24 0,22 <0,05	мкг/л <3 <3 <3 <3	мкг/л 943 744 1014	мкг/л <0,3 <0,3 <0,3	мкг/л <0,1 <0,1 <0,1	мкг/л 0,93 2,24 1,20	мкг/л 2,83 3,31 3,46	мкг/л <0,01 <0,01 <0,01	мкг/л 8,00 6,85 <2	мкг/л 20,8 13,1 0,69	мкг/л <0,1 <0,1 <0,1	мг/л 108 68,0 74,4	мг/л 4,89 4,00 5,08	мг/л 33,6 26,0 26,4			
CH-WD-24 UR-WD-24 IK-WD-24 EK-WD-24	мкг/л 178 <5 <5 65,9	мкг/л 0,24 0,22 <0,05 0,17	мкг/л <3 <3 <3 <3 <3	943 744 1014 603	мкг/л <0,3 <0,3 <0,3 1,51	мкг/л <0,1 <0,1 <0,1 <0,1 <0,1	мкг/л 0,93 2,24 1,20 1,39	мкг/л 2,83 3,31 3,46 2,11	мкг/л <0,01 <0,01 <0,01 0,06	мкг/л 8,00 6,85 <2 4,54	мкг/л 20,8 13,1 0,69 102	мкг/л <0,1 <0,1 <0,1 <0,1 <0,1	мг/л 108 68,0 74,4 60,7	мг/л 4,89 4,00 5,08 4,54	мг/л 33,6 26,0 26,4 20,1			
CH-WD-24 UR-WD-24 IK-WD-24 EK-WD-24 TO-WD-24	мкг/л 178 <5 <5 65,9 205	мкг/л 0,24 0,22 <0,05 0,17 <0,05	МКГ/Л <3 <3 <3 <3 <3 <3 <3	мкг/л 943 744 1014 603 706	мкг/л <0,3 <0,3 <0,3 <0,3 1,51 <0,3	мкг/л <0,1 <0,1 <0,1 <0,1 <0,1 <0,1	мкг/л 0,93 2,24 1,20 1,39 2,03	2,83 3,31 3,46 2,11 3,17	мкг/л <0,01 <0,01 <0,01 0,06 <0,01	мкг/л 8,00 6,85 <2 4,54 2,98	мкг/л 20,8 13,1 0,69 102 36,3	мкг/л <0,1 <0,1 <0,1 <0,1 <0,1 <0,1	мг/л 108 68,0 74,4 60,7 68,0	мг/л 4,89 4,00 5,08 4,54 6,12	мг/л 33,6 26,0 26,4 20,1 36,1			
CH-WD-24 UR-WD-24 IK-WD-24 EK-WD-24 TO-WD-24 AY-WD-24	мкг/л 178 <5 <5 65,9 205 17,5	мкг/л 0,24 0,22 <0,05 0,17 <0,05 <0,05 <0,05 <0,05	мкг/л <3 <3 <3 <3 <3 <3 <3 <3 <3	943 744 1014 603 706 725	мкг/л <0,3 <0,3 <0,3 1,51 <0,3 <0,3	мкг/л <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1	мкг/л 0,93 2,24 1,20 1,39 2,03 2,21	2,83 3,31 3,46 2,11 3,17 2,48	мкг/л <0,01 <0,01 <0,01 0,06 <0,01 <0,01	8,00 6,85 <2 4,54 2,98 3,39	мкг/л 20,8 13,1 0,69 102 36,3 8,77	МКГ/Л <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1	мг/л 108 68,0 74,4 60,7 68,0 63,5	мг/л 4,89 4,00 5,08 4,54 6,12 4,82	мг/л 33,6 26,0 26,4 20,1 36,1 40,4 4,99 2,23			
CH-WD-24 UR-WD-24 IK-WD-24 EK-WD-24 TO-WD-24 AY-WD-24 PR-WD-24	мкг/л 178 <5 <5 65,9 205 17,5 <5	мкг/л 0,24 0,22 <0,05 0,17 <0,05 <0,05 <0,05	мкг/л <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3	943 744 1014 603 706 725 163	мкг/л <0,3 <0,3 <0,3 1,51 <0,3 <0,3 <0,3	МКТ/Л <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1	мкг/л 0,93 2,24 1,20 1,39 2,03 2,21 1,25	2,83 3,31 3,46 2,11 3,17 2,48 1,68	мкг/л <0,01 <0,01 <0,01 0,06 <0,01 <0,01	мкг/л 8,00 6,85 <2 4,54 2,98 3,39 3,60	мкг/л 20,8 13,1 0,69 102 36,3 8,77 7,39	МКГ/Л <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1	мг/л 108 68,0 74,4 60,7 68,0 63,5 24,8	мг/л 4,89 4,00 5,08 4,54 6,12 4,82 1,32	мг/л 33,6 26,0 26,4 20,1 36,1 40,4 4,99			
CH-WD-24 UR-WD-24 IK-WD-24 EK-WD-24 TO-WD-24 AY-WD-24 PR-WD-24 IR-WD-24	МКГ/Л 178 <5 <5 65,9 205 17,5 <5 <5	мкг/л 0,24 0,22 <0,05 0,17 <0,05 <0,05 <0,05 <0,05	МКГ/Л <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3	943 744 1014 603 706 725 163 81,8	мкт/л <0,3 <0,3 <0,3 1,51 <0,3 <0,3 <0,3 <0,3 <0,3 <0,3 <0,3 <0,3	МКТ/Л <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1	мкг/л 0,93 2,24 1,20 1,39 2,03 2,21 1,25 1,16	2,83 3,31 3,46 2,11 3,17 2,48 1,68 0,81	МКГ/Л <0,01 <0,01 <0,01 0,06 <0,01 <0,01 <0,01 <0,01 <0,01	8,00 6,85 <2 4,54 2,98 3,39 3,60 <2	мкг/л 20,8 13,1 0,69 102 36,3 8,77 7,39 5,02	МКГ/Л <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1	мг/л 108 68,0 74,4 60,7 68,0 63,5 24,8 13,4	мг/л 4,89 4,00 5,08 4,54 6,12 4,82 1,32 1,13	мг/л 33,6 26,0 26,4 20,1 36,1 40,4 4,99 2,23			
CH-WD-24 UR-WD-24 IK-WD-24 EK-WD-24 TO-WD-24 AY-WD-24 PR-WD-24 IR-WD-24 EM-WD-24	мкг/л 178 <5 <5 65,9 205 17,5 <5 <5 <5	мкг/л 0,24 0,22 <0,05 0,17 <0,05 <0,05 <0,05 <0,05	МКТ/Л <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3	943 744 1014 603 706 725 163 81,8 1129	мкт/л <0,3 <0,3 <0,3 1,51 <0,3 <0,3 <0,3 <0,3 <0,3 <0,3 <0,1 <0,3 <0,3 <0,1 <0,3 <0,1 <0,3 <0,1 <0,3 <0,1 <0,3 <0,1 <0,3 <0,1 <0,3 <0,1 <0,3 <0,1 <0,3 <0,1 <0,3 <0,1 <0,3 <0,1 <0,3 <0,1 <0,3 <0,1 <0,3 <0,1 <0,3 <0,1 <0,3 <0,1 <0,3 <0,1 <0,3 <0,1 <0,3 <0,3 <0,3 <0,3 <0,3 <0,3 <0,3 <0,3	МКТ/Л <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1	мкг/л 0,93 2,24 1,20 1,39 2,03 2,21 1,25 1,16 13,6	2,83 3,31 3,46 2,11 3,17 2,48 1,68 0,81 3,39	мкг/л <0,01 <0,01 <0,01 0,06 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01	мкг/л 8,00 6,85 <2 4,54 2,98 3,39 3,60 <2 2,85	мкг/л 20,8 13,1 0,69 102 36,3 8,77 7,39 5,02 80,1	мкг/л <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1	мг/л 108 68,0 74,4 60,7 68,0 63,5 24,8 13,4 59,5	мг/л 4,89 4,00 5,08 4,54 6,12 4,82 1,32 1,13 3,35	мг/л 33,6 26,0 26,4 20,1 36,1 40,4 4,99 2,23 40,5			
CH-WD-24 UR-WD-24 IK-WD-24 EK-WD-24 TO-WD-24 AY-WD-24 PR-WD-24 IR-WD-24 IL-WD-24	мкг/л 178 <5 <5 65,9 205 17,5 <5 <5 22,7	мкг/л 0,24 0,22 <0,05 0,17 <0,05 <0,05 <0,05 <0,05 0,05 0,12 0,10	мкт/л <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3	943 744 1014 603 706 725 163 81,8 1129 553	мкт/л <0,3 <0,3 <0,3 1,51 <0,3 <0,3 <0,3 <0,3 <0,3 <0,3 <0,3 <0,3	мкт/л <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1	мкг/л 0,93 2,24 1,20 1,39 2,03 2,21 1,25 1,16 13,6 4,87	2,83 3,31 3,46 2,11 3,17 2,48 1,68 0,81 3,39 1,79	мкг/л <0,01 <0,01 <0,01 0,06 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01	мкг/л 8,00 6,85 <2 4,54 2,98 3,39 3,60 <2 2,85 4,61	мкг/л 20,8 13,1 0,69 102 36,3 8,77 7,39 5,02 80,1 13,1	мкг/л <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1	мг/л 108 68,0 74,4 60,7 68,0 63,5 24,8 13,4 59,5 63,7	мг/л 4,89 4,00 5,08 4,54 6,12 4,82 1,32 1,13 3,35 3,20	мг/л 33,6 26,0 26,4 20,1 36,1 40,4 4,99 2,23 40,5 20,5			
CH-WD-24 UR-WD-24 IK-WD-24 EK-WD-24 TO-WD-24 AY-WD-24 IR-WD-24 IL-WD-24 TK-WD-24	МКГ/Л 178 <5 <5 65,9 205 17,5 <5 <5 <5 <5 22,7 <5	мкг/л 0,24 0,22 <0,05 0,17 <0,05 <0,05 <0,05 0,05 0,12 0,10 <0,05	мкт/л <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3	943 744 1014 603 706 725 163 81,8 1129 553 527	мкт/л <0,3 <0,3 <0,3 1,51 <0,3 <0,3 <0,3 <0,3 <0,3 <0,3 <0,3 <0,3	МКТ/Л <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1	мкг/л 0,93 2,24 1,20 1,39 2,03 2,21 1,25 1,16 13,6 4,87 3,75	2,83 3,31 3,46 2,11 3,17 2,48 1,68 0,81 3,39 1,79 0,71	мкг/л <0,01 <0,01 <0,01 0,06 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 0,03	мкг/л 8,00 6,85 <2 4,54 2,98 3,39 3,60 <2 2,85 4,61 5,86	мкг/л 20,8 13,1 0,69 102 36,3 8,77 7,39 5,02 80,1 13,1 47,9	мкг/л <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1	мг/л 108 68,0 74,4 60,7 68,0 63,5 24,8 13,4 59,5 63,7 57,2	мг/л 4,89 4,00 5,08 4,54 6,12 4,82 1,32 1,13 3,35 3,20 1,62	мг/л 33,6 26,0 26,4 20,1 36,1 40,4 4,99 2,23 40,5 20,5 13,4			
CH-WD-24 UR-WD-24 IK-WD-24 EK-WD-24 TO-WD-24 AY-WD-24 IR-WD-24 IR-WD-24 IL-WD-24 TK-WD-24 SH-WD-24	мкг/л 178 <5 <5 65,9 205 17,5 <5 <5 <5 <5 22,7 <5 <5	МКГ/Л 0,24 0,22 <0,05 0,17 <0,05 <0,05 <0,05 0,12 0,10 <0,05 <0,05	МКГ/Л <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3	943 744 1014 603 706 725 163 81,8 1129 553 527 943	мкт/л <0,3 <0,3 <0,3 1,51 <0,3 <0,3 <0,3 <0,3 <0,3 <0,3 <0,3 <0,3	МКТ/Л <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1	мкг/л 0,93 2,24 1,20 1,39 2,03 2,21 1,25 1,16 13,6 4,87 3,75 23,0	2,83 3,31 3,46 2,11 3,17 2,48 1,68 0,81 3,39 1,79 0,71 2,14	мкг/л <0,01 <0,01 <0,01 0,06 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 0,03 <0,01	мкг/л 8,00 6,85 <2 4,54 2,98 3,39 3,60 <2 2,85 4,61 5,86 3,78	мкг/л 20,8 13,1 0,69 102 36,3 8,77 7,39 5,02 80,1 13,1 47,9 15,2	мкг/л <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1	мг/л 108 68,0 74,4 60,7 68,0 63,5 24,8 13,4 59,5 63,7 57,2 72,7	мг/л 4,89 4,00 5,08 4,54 6,12 4,82 1,32 1,13 3,35 3,20 1,62 2,92	мг/л 33,6 26,0 26,4 20,1 36,1 40,4 4,99 2,23 40,5 20,5 13,4 26,0			

Результаты определения методом РФА элементного состава послойных проб почвы, отобранных в бассейне трансграничной реки Урал весной 2018 г. (23-ая экспедиция)

Образец	K %	Ca %	Ti %	V, μκγ/γ	Сr, мкг/г	Mn %	Fe %	Со, мкг/г	Ni, мкг/г
UR01A-S23	1,71±0,05	1,07±0,24	0,366±0,005	120±23	590±14	0,048±0,009	2,62±0,06	< 4	64±28
UR02A-S23	$1,8\pm0,05$	$0,84\pm0,23$	$0,361\pm0,005$	60±23	510±13	$0,041\pm0,009$	2,61±0,06	< 4	62±27
UR03A-S23	$1,76\pm0,05$	$0,86\pm0,23$	$0,391\pm0,005$	90±23	460±13	$0,046\pm0,009$	2,63±0,06	< 4	66 ± 28
UR04A-S23	$1,77\pm0,05$	$0,87\pm0,23$	$0,391\pm0,005$	120±23	500±13	$0,049\pm0,009$	2,73±0,06	< 4	62±27
UR05A-S23	$1,79\pm0,05$	0,85±0,23	$0,41\pm0,005$	80±23	520±14	$0,042\pm0,009$	2,73±0,07	< 4	62±27
UR06A-S23	$1,84\pm0,05$	$0,84\pm0,23$	$0,42\pm0,005$	90±23	460±13	$0,039\pm0,009$	2,83±0,07	< 4	58±28
UR07A-S23	$1,83\pm0,05$	$0,76\pm0,22$	$0,429\pm0,005$	120±23	520±14	$0,037\pm0,009$	2,79±0,07	< 4	54±27
UR08A-S23	$1,82\pm0,05$	$0,68\pm0,22$	$0,43\pm0,005$	80±23	560±14	$0,09\pm0,01$	2,49±0,06	< 4	65±28
UR09A-S23	$1,78\pm0,05$	$0,69\pm0,22$	$0,43\pm0,008$	100±23	530±14	$0,058\pm0,009$	2,44±0,06	< 4	61±27
UR10A-S23	$1,79\pm0,05$	$0,67\pm0,22$	$0,41\pm0,005$	90±23	600±14	$0,056\pm0,009$	2,51±0,06	< 4	63±28
UR11A-S23	$1,74\pm0,05$	$0,66\pm0,22$	$0,4\pm0,005$	80 ± 23	510±14	$0,058\pm0,009$	2,5±0,06	< 4	60 ± 27
UR01B-S23	$1,91\pm0,05$	$0,83\pm0,22$	$0,409\pm0,005$	110 ± 22	560±14	$0,056\pm0,009$	3,04±0,07	< 4	81 ± 28
UR02B-S23	$1,81\pm0,05$	$0,84\pm0,23$	$0,404\pm0,005$	90±23	$480{\pm}13$	$0,062\pm0,009$	2,94±0,07	< 4	75 ± 28
UR03B-S23	$1,7\pm0,05$	2,46±0,28	$0,4\pm0,005$	70 ± 23	$480{\pm}14$	$0,072\pm0,01$	2,89±0,06	< 4	83±29
UR04B-S23	$1,43\pm0,04$	$6,15\pm0,36$	$0,368\pm0,008$	110±24	390±14	$0,06\pm0,01$	2,61±0,05	< 4	73 ± 29
UR05B-S23	$1,41\pm0,04$	7,19±0,39	$0,357\pm0,008$	90±24	370±14	$0,059\pm0,01$	2,62±0,05	< 4	80±30
UR06B-S23	$1,38\pm0,04$	$6,48\pm0,31$	$0,38\pm0,005$	60 ± 22	320±13	$0,058\pm0,009$	2,55±0,05	< 4	72±27
UR07B-S23	$1,35\pm0,04$	$6,54\pm0,38$	$0,386\pm0,005$	120±25	430±14	$0,064\pm0,01$	2,71±0,06	< 4	80±30
UR08B-S23	$1,19\pm0,05$	3,99±0,31	$0,326\pm0,005$	70 ± 23	840 ± 15	$0,055\pm0,009$	2,18±0,05	< 4	68 ± 28
UR09B-S23	$1,07\pm0,05$	$2,13\pm0,26$	$0,218\pm0,004$	50±21	1000 ± 15	$0,06\pm0,009$	1,79±0,04	15±9	63 ± 26
UR10B-S23	$1,1\pm0,05$	$2,42\pm0,27$	$0,225\pm0,004$	50±21	$740{\pm}14$	$0,06\pm0,009$	1,89±0,04	< 4	$61\pm\!26$
UR11B-S23	$1,07\pm0,05$	$1,83\pm0,26$	$0,209\pm0,004$	60 ± 21	650 ± 14	$0,047\pm0,009$	1,86±0,04	10±9	66 ± 27
UR01C-S23	$1,46\pm0,05$	$4,36\pm0,33$	$0,37\pm0,005$	80 ± 24	550±14	$0,066\pm0,01$	2,55±0,06	< 4	79±29
UR02C-S23	$1,45\pm0,04$	$6,42\pm0,37$	$0,372\pm0,005$	70 ± 24	350 ± 14	$0,067\pm0,01$	$2,65\pm0,06$	< 4	80 ± 30
UR03C-S23	$1,38\pm0,05$	$5,68\pm0,36$	$0,375\pm0,005$	80±24	440 ± 14	$0,062\pm0,01$	2,51±0,05	< 4	73 ± 29
UR04C-S23	$1,38\pm0,04$	$6,05\pm0,36$	$0,364\pm0,005$	60±24	490±14	$0,067\pm0,01$	2,57±0,05	< 4	74±29
UR05C-S23	$1,44 \pm 0,05$	$5,8\pm0,36$	$0,36\pm0,005$	100 ± 24	420±14	$0,061\pm0,01$	2,52±0,05	< 4	68 ± 29
UR06C-S23	$1,49\pm0,05$	$4,78\pm0,34$	$0,391\pm0,005$	100 ± 24	430±14	$0,057\pm0,009$	2,55±0,06	< 4	70 ± 29
UR07C-S23	$1,46\pm0,05$	$4,57\pm0,33$	$0,35\pm0,005$	120±23	$470{\pm}14$	$0,057\pm0,009$	$2,47\pm0,05$	< 4	67 ± 28
UR08C-S23	$1,57\pm0,05$	$3,23\pm0,3$	$0,368\pm0,005$	100 ± 23	$480{\pm}14$	$0,055\pm0,009$	$2,7\pm0,06$	< 4	64 ± 28
UR09C-S23	$1,52\pm0,05$	$3,66\pm0,31$	$0,349\pm0,005$	90±23	350 ± 13	$0,059\pm0,009$	$2,75\pm0,06$	< 4	73 ± 28
UR10C-S23	$1,51\pm0,05$	$3,37\pm0,3$	$0,354\pm0,005$	100 ± 23	450±13	$0,056\pm0,009$	$2,74\pm0,06$	< 4	68 ± 28
UR11C-S23	$1,51\pm0,05$	$2,88\pm0,29$	$0,354\pm0,005$	90±23	330±13	$0,058\pm0,009$	$2,89\pm0,06$	< 4	75 ± 28
UR01D-S23	$1,66\pm0,05$	$3,9\pm0,32$	$0,332\pm0,005$	100 ± 23	500±14	$0,051\pm0,009$	$2,47\pm0,05$	< 4	69±29
UR02D-S23	$1,63\pm0,05$	$3,95\pm0,32$	$0,34\pm0,005$	90±23	450±14	$0,049\pm0,009$	$2,46\pm0,05$	< 4	61 ± 28
UR03D-S23	$1,61\pm0,05$	$4,08\pm0,32$	$0,341\pm0,005$	70 ± 23	430±14	$0,049\pm0,009$	$2,44\pm0,05$	< 4	60 ± 28
UR04D-S23	$1,58\pm0,05$	$4,53\pm0,33$	$0,344\pm0,005$	130±24	450±14	$0,049\pm0,009$	$2,52\pm0,06$	< 4	63 ± 28
UR05D-S23	$1,44 \pm 0,05$	$5,93\pm0,36$	$0,337\pm0,005$	60±24	510±14	$0,049\pm0,009$	$2,43\pm0,05$	< 4	63±29
UR06D-S23	$1,49\pm0,05$	$5,75\pm0,36$	$0,34\pm0,005$	120±24	460±14	$0,05\pm0,009$	$2,42\pm0,05$	< 4	64±29
UR07D-S23	$1,43\pm0,05$	$5,38\pm0,35$	$0,34\pm0,005$	80±24	450±14	$0,05\pm0,009$	2,36±0,05	< 4	64±29
UR08D-S23	$1,46\pm0,05$	$5,42\pm0,35$	$0,341\pm0,005$	110 ± 24	420±14	$0,053\pm0,009$	$2,44\pm0,05$	< 4	66±29
UR09D-S23	$1,48\pm0,05$	$5,15\pm0,34$	$0,36\pm0,005$	100 ± 24	550±14	$0,052\pm0,009$	$2,44\pm0,05$	< 4	65±29
UR10D-S23	$1,48\pm0,05$	$5,49\pm0,35$	$0,333\pm0,005$	110 ± 24	400 ± 14	$0,051\pm0,009$	$2,43\pm0,05$	< 4	62±29
UR11D-S23	$1,44\pm0,05$	5,08±0,34	$0,33\pm0,005$	70±23	490±14	$0,053\pm0,009$	$2,47\pm0,05$	< 4	74±29

Образец	Си, мкг/г	Zn, мкг/г	Ga, мкг/г	As, мкг/г	Вr, _{мкг} /г	Rb, мкг/г	Sr, мкг/г	Ү, мкг/г	Zr, мкг/г
UR01A-S23	28±1,6	62±12	9,9±0,7	12,1±0,8	7,3±0,3	66,1±0,4	151±5	21,8±2,9	289±7
UR02A-S23	$29 \pm 1,6$	62±12	$11\pm0,7$	$9,7\pm0,8$	$6,8\pm0,3$	$67,8 \pm 0,4$	150±5	22±3	306±8
UR03A-S23	30±1,6	65±12	$10,9\pm0,8$	$11,2\pm0,8$	$7,1\pm0,3$	$68,4\pm0,4$	149±5	22±3	297±7
UR04A-S23	32±1,6	66±12	$10,8\pm0,7$	$10,9\pm0,8$	$6,9\pm0,3$	$69,4\pm0,4$	151±5	21±3	285±7
UR05A-S23	34±1,6	63±12	$10,7\pm0,8$	8 ± 0.8	$6,5\pm0,3$	$70,2\pm0,4$	151±5	24±3	293±7
UR06A-S23	31±1,6	60±12	$10,5\pm0,8$	11 ± 0.8	$6,4\pm0,3$	$70,1\pm0,4$	149±5	22±3	298±7
UR07A-S23	29±1,6	52±11	$10,4\pm0,7$	$9,6\pm0,8$	$6,7\pm0,3$	$68,3\pm0,4$	149±5	22,5±3,1	316±8
UR08A-S23	27±1,6	44±11	$9,3\pm0,7$	11,4±0,8	$6,7\pm0,3$	$63,9\pm0,4$	147±5	23±3	338±8
UR09A-S23	26±1,6	44±11	$9,4\pm0,7$	11,3±0,8	$6,3\pm0,3$	$63,6\pm0,4$	146±5	22±3	348±8
UR10A-S23	23±1,6	42±11	$9,6\pm0,7$	$9,2\pm0,8$	5,9±0,3	63±0,4	144±5	22±3	345±8
UR11A-S23	27±1,6	46±11	$10,5\pm0,7$	$8,8\pm0,8$	$6,6\pm0,3$	$64 \pm 0,4$	145±5	22±3	338±8
UR01B-S23	30±1,6	68±12	$11\pm0,7$	$13,1\pm0,8$	9,1±0,3	71,4±0,4	141±5	22±3	301±7
UR02B-S23	29±1,6	60±12	10,5±0,8	15 ± 0.8	9,6±0,4	$70,9\pm0,4$	142±5	$22,8\pm3,1$	317±8
UR03B-S23	23±1,7	47±11	$9,9\pm0,8$	15,9±0,8	11,7±0,4	67,2±0,4	176±6	23,3±3,1	299±7
UR04B-S23	22±1,7	40±11	$9,3\pm0,8$	12,9±0,9	11,2±0,4	53,6±0,4	284±8	20±3	285±8
UR05B-S23	20±1,7	43±12	9,5±0,8	13,9±0,9	11,4±0,4	52,8±0,4	317±8	21±3	265±7
UR06B-S23	20±1,6	40±10	$8,9\pm0,7$	16,1±0,8	9,5±0,3	51,2±0,4	295±7	21±2,8	272±7
UR07B-S23	22±1,7	47±12	10,5±0,8	14±0,9	11±0,4	50,4±0,4	297±8	21,8±3,1	296±8
UR08B-S23	14±1,6	40±10	$6,4\pm0,7$	13,2±0,8	$6,2\pm0,3$	36,1±0,3	173±6	15±2,6	224±6
UR09B-S23	13±1,5	22±9,1	$4,6\pm0,7$	10,3±0,7	5±0,3	29,1±0,3	106±4	$9,6\pm2,2$	136±5
UR10B-S23	14±1,5	23±9,2	4,2±0,7	12,9±0,7	5±0,3	30±0,3	114±5	$11,8\pm2,2$	123±5
UR11B-S23	13±1,5	23±9,3	$4,4\pm0,7$	12,3±0,7	5±0,3	30±0,3	109±4	11,1±2,3	115±4
UR01C-S23	23±1,7	44±11	$9,9\pm0,8$	13,8±0,8	7,1±0,4	52±0,4	241±7	20±3	290±8
UR02C-S23	23±1,7	42±11	9,2±0,8	13,6±0,9	8,4±0,4	51,6±0,4	314±8	22±3	282±8
UR03C-S23	21±1,7	39±11	$8,7\pm0,8$	17±0,8	9,3±0,4	51±0,4	305±8	20±3	295±8
UR04C-S23	19±1,7	42±11	$8,7\pm0,8$	16,2±0,8	8,4±0,4	51,5±0,4	320±8	20±3	277±8
UR05C-S23	19±1,7	40±11	9,5±0,8	$14\pm0,8$	8,3±0,4	52±0,4	304±8	20±3	272±7
UR06C-S23	22±1,6	45±11	9,3±0,8	13,6±0,8	10,2±0,4	54±0,4	266±7	21±3	283±7
UR07C-S23	20±1,6	45±11	9±0,8	13±0,8	9,5±0,4	54±0,4	267±7	19±3	295±8
UR08C-S23	24±1,6	59±12	10,1±0,8	$9,9\pm0,8$	10±0,4	61,2±0,4	223±7	19±3	273±7
UR09C-S23	28±1,7	67±12	$9,4\pm0,8$	13,6±0,8	10,3±0,4	$60,4\pm0,4$	236±7	21±3	269±7
UR10C-S23	28±1,7	67±12	$8,8\pm0,8$	9,5±0,8	10,4±0,4	59,8±0,4	226±7	$18,9\pm2,9$	256±7
UR11C-S23	35±1,7	84±13	11,2±0,8	12±0,8	$10,7\pm0,4$	62,5±0,4	211±6	$20,2\pm2,9$	248±7
UR01D-S23	23±1,7	58±12	$8,7\pm0,8$	$13,3\pm0,8$	$7,6\pm0,3$	59±0,4	307±8	$18,4\pm2,9$	268±7
UR02D-S23	22±1,6	57±12	$8,9\pm0,8$	15±0,8	$7,6\pm0,3$	$58,7\pm0,4$	298±8	$19,4\pm2,9$	283±7
UR03D-S23	22±1,7	55±12	$8,1\pm0,8$	$13,9\pm0,8$	$7,6\pm0,4$	57,5±0,4	306±8	18±3	274±7
UR04D-S23	23±1,7	52±12	9±0,8	13,6±0,8	8,2±0,4	59,6±0,4	341±9	19±3	269±8
UR05D-S23	20±1,7	44±11	$10,1\pm0,8$	17,5±0,8	7,5±0,4	52,8±0,4	440±10	17,1±2,9	260±8
UR06D-S23	22±1,7	43±11	$8,9\pm0,8$	13,7±0,8	$6,6\pm0,4$	54,4±0,4	433±10	19±3	264±8
UR07D-S23	20±1,7	44±11	$7,6\pm0,8$	14,6±0,8	$6,3\pm0,3$	52,5±0,4	412±10	18,6±2,9	270±8
UR08D-S23	19±1,7	44±11	$9,6\pm0,8$	15,4±0,8	5,3±0,3	53,1±0,4	405±9	18,5±2,9	262±8
UR09D-S23	22±1,7	45±11	8,5±0,8	12,9±0,8	$6,4\pm0,3$	54±0,4	396±9	18±3	267±8
UR10D-S23	20±1,7	43±11	8,1±0,8	13,4±0,8	5,5±0,3	53,4±0,4	410±9	17,7±2,9	261±8
UR11D-S23	19±1,7	46±12	$7,9\pm0,8$	14,3±0,8	5,8±0,3	54,3±0,4	407±10	19±3	274±8

Образец	Nb, мкг/г	Мо, мкг/г	Pd мкг/г	Cd мкг/г	Ва, мкг/г	Pb, мкг/г	Th мкг/г	U мкг/г
UR01A-S23	8±1,7	2±0,3	0,6±0,2	3,7±0,4	176±18	12±1,1	4,3±0,8	2,6±0,4
UR02A-S23	$8,6\pm1,7$	1,4±0,31	$0,6\pm0,2$	$3,6\pm0,4$	176±18	10±1,1	$4,9\pm0,8$	$2,6\pm0,4$
UR03A-S23	$8,3\pm 1,7$	$1,8\pm0,31$	$0,7\pm0,2$	$3,8\pm0,4$	176±18	9±1,1	$4,8\pm0,8$	$2,2\pm0,5$
UR04A-S23	$8,6\pm1,7$	$2\pm0,3$	$0,5\pm0,2$	3,5±0,4	235±18	11±1,1	5,1±0,8	$2,5\pm0,4$
UR05A-S23	$9,1\pm1,8$	1,5±0,31	$0,8\pm0,2$	4,3±0,4	118 ± 18	9±1,1	$4,9\pm0,8$	3±0,5
UR06A-S23	$9,2\pm1,8$	$1,8\pm0,31$	$0,6\pm0,2$	3,5±0,4	176±18	$10\pm1,1$	5,3±0,8	$2,4\pm0,5$
UR07A-S23	$9,2\pm1,8$	$1,4\pm0,32$	$0,3\pm0,2$	3,3±0,4	$147{\pm}18$	$10\pm1,1$	5,1±0,9	$2,2\pm0,5$
UR08A-S23	$9,3\pm1,8$	$2,5\pm0,32$	$0,4\pm0,2$	$3,3\pm0,4$	235±18	9±1,1	5,2±0,9	$2\pm0,5$
UR09A-S23	$9,3\pm1,8$	$1,8\pm0,32$	$0,4\pm0,2$	$3,4\pm0,4$	235±18	10±1	$4,9\pm0,9$	$2,6\pm0,5$
UR10A-S23	$9,2\pm1,8$	$2,1\pm0,32$	< 0,1	$2,4\pm0,4$	$253{\pm}18$	10±1	$4,6\pm0,9$	$2,1\pm0,5$
UR11A-S23	$9,1\pm1,8$	$1,9\pm0,32$	$0,7\pm0,2$	3,6±0,4	$241{\pm}18$	$10\pm1,1$	$4,8\pm0,9$	$2\pm0,5$
UR01B-S23	$8,8 \pm 1,7$	$1,8\pm0,31$	$0,7\pm0,2$	3,6±0,4	235±18	12±1,1	5,3±0,8	$2,3\pm0,5$
UR02B-S23	9±1,8	$1,6\pm0,32$	$0,3\pm0,2$	2,5±0,4	129±18	11±1,1	$4,9\pm0,9$	$2,4\pm0,5$
UR03B-S23	$8,9 \pm 1,8$	1,5±0,31	$1\pm0,2$	$4,2\pm0,4$	212±19	8±1,1	$4,5\pm0,9$	$2,3\pm0,5$
UR04B-S23	$8,1\pm1,8$	$1,5\pm0,32$	$0,7\pm0,2$	3,3±0,4	188±19	7±1,1	4±0,9	$2,7\pm0,5$
UR05B-S23	$8,6\pm1,8$	$1,8\pm0,31$	$0,5\pm0,2$	$2,8\pm0,4$	171±19	7±1,1	$3,8\pm0,9$	$2,1\pm0,5$
UR06B-S23	$8,6\pm1,7$	$1,7\pm0,29$	$0,8\pm0,2$	$3,2\pm0,4$	176±18	10±1	$4,7\pm0,9$	$1,5\pm0,4$
UR07B-S23	$8,7\pm1,9$	$1,8\pm0,33$	$0,5\pm0,2$	$2,9\pm0,5$	147±19	9±1,2	4,3±1	$2,3\pm0,5$
UR08B-S23	5,9±1,6	$1,8\pm0,28$	$0,4\pm0,2$	3±0,4	118±18	< 1	$2,4\pm0,8$	$1,2\pm0,4$
UR09B-S23	3,9±1,4	$1,6\pm0,22$	$0,4\pm0,2$	$3,9\pm0,4$	176±18	< 1	$1,9\pm0,6$	$0,9\pm0,4$
UR10B-S23	$4,1\pm1,4$	$1,7\pm0,21$	$0,4\pm0,2$	$3,8\pm0,4$	123±17	< 1	$2,6\pm0,6$	1,2±0,4
UR11B-S23	4±1,4	$2,1\pm0,21$	$0,3\pm0,2$	$2,9\pm0,4$	118±18	< 1!	2±0,6	$0,9\pm0,4$
UR01C-S23	7,6±1,8	1,8±0,31	$0,8\pm0,2$	3,2±0,4	165±18	8±1,1	$3,2\pm0,9$	2±0,5
UR02C-S23	$8,1\pm1,8$	1,5±0,32	$0,3\pm0,2$	$3,2\pm0,5$	135±19	5±1,1	$3,9\pm0,9$	$2,5\pm0,5$
UR03C-S23	8,2±1,8	$1,4\pm0,32$	$0,6\pm0,2$	3,1±0,4	135±19	6±1,1	$3,3\pm0,9$	$2,1\pm0,5$
UR04C-S23	$7,8\pm1,8$	1,5±0,31	$0,2\pm0,2$	3,4±0,4	212±19	6±1,1	$4,6\pm0,9$	$2,3\pm0,5$
UR05C-S23	$7,9\pm1,8$	1,2±0,31	$0,7\pm0,2$	$3,7\pm0,4$	159±18	6±1,1	$3,8\pm0,9$	$3\pm0,5$
UR06C-S23	$7,3\pm1,8$	1,2±0,31	$0,5\pm0,2$	2,1±0,4	159±18	6±1,1	$3,8\pm0,9$	$1,7\pm0,5$
UR07C-S23	7,9±1,7	1,6±0,31	$0,5\pm0,2$	$3,6\pm0,4$	247±18	4±1,1	$3,8\pm0,9$	$2,3\pm0,5$
UR08C-S23	7,9±1,7	< 1	$1,2\pm0,2$	$4,4\pm0,4$	135±18	10±1,1	$4,2\pm0,9$	3±0,4
UR09C-S23	7,9±1,7	1±0,3	$0,4\pm0,2$	$3,4\pm0,4$	147±18	9±1,1	$4,7\pm0,9$	$3,1\pm0,4$
UR10C-S23	7,9±1,7	$1,1\pm0,29$	< 0,1	$2,8\pm0,4$	176±18	8±1,1	$3,8\pm0,8$	$2,3\pm0,4$
UR11C-S23	$7,7\pm1,7$	1,3±0,29	$0,3\pm0,2$	4,3±0,4	118±18	10±1,1	$3,9\pm0,8$	3,4±0,4
UR01D-S23	$7,6\pm1,7$	1±0,3	$0,3\pm0,2$	$3,3\pm0,4$	147±18	7±1,1	3±0,9	2,3±0,4
UR02D-S23	7,3±1,7	1,2±0,31	$0,7\pm0,2$	$3,8\pm0,4$	165±18	6±1,1	$3,2\pm0,9$	$2,7\pm0,4$
UR03D-S23	$7,1\pm1,7$	1±0,3	< 0,1	$3,3\pm0,4$	194±18	6±1,1	$3,3\pm0,9$	1,9±0,4
UR04D-S23	7,3±1,7	< 1	1,1±0,2	$3,8\pm0,5$	129±18	7±1,1	4,1±0,9	3,4±0,4
UR05D-S23	$7 \pm 1,7$	1±0,3	$0,6\pm0,2$	3,5±0,4	118±18	4±1,1	3,4±1	$3,3\pm0,5$
UR06D-S23	$7,3\pm1,7$	1±0,3	$0,4\pm0,2$	3,4±0,4	123±19	3±1,1	3,2±1	3,5±0,4
UR07D-S23	$7,1\pm1,7$	1,6±0,31	$0,5\pm0,2$	3,4±0,4	153±18	5±1,1	2,9±1	2,5±0,5
UR08D-S23	7,1±1,7	1±0,3	$0,7\pm0,2$	3,5±0,5	194±18	4±1,1	3,2±1	2,8±0,5
UR09D-S23	7,4±1,7	1±0,3	< 0,1	2,4±0,4	218±18	4±1,1	3,4±1	3,2±0,5
UR10D-S23	7,2±1,7	2±0,3	0,7±0,2	4±0,5	188±18	5±1,1	3,6±1	2,2±0,5
UR11D-S23	7,2±1,7	1,9±0,31	0,5±0,2	3,1±0,4	176±18	6±1,1	3,4±1	2,6±0,5

Образец	K	Ca	Ti	V,	Cr,	Mn	Fe	Co,	Ni,
Ооразец	%	%	%	$MK\Gamma/\Gamma$	$MK\Gamma/\Gamma$	%	%	$MK\Gamma/\Gamma$	$MK\Gamma/\Gamma$
URA01-S24	1,96±0,05	$0,9\pm0,2$	0,385±0,005	90±23	470±13	0,05±0,01	2,98±0,07	< 4	74±3
URA02-S24	$1,94\pm0,05$	$0,8\pm0,2$	$0,393\pm0,005$	100 ± 23	460 ± 13	$0,05\pm0,01$	$2,98\pm0,07$	< 4	68±3
URA03-S24	$1,91\pm0,05$	$0,8\pm0,2$	$0,399\pm0,005$	100 ± 23	440 ± 13	$0,06\pm0,01$	$2,97\pm0,07$	< 4	70 ± 3
URA04-S24	$1,91\pm0,05$	$0,8\pm0,2$	$0,392\pm0,005$	110 ± 23	500 ± 13	$0,05\pm0,01$	$3\pm0,07$	< 4	68 ± 3
URA05-S24	$1,89\pm0,05$	$0,7\pm0,2$	$0,408\pm0,005$	100 ± 23	470 ± 13	$0,06\pm0,01$	$2,84\pm0,07$	< 4	69±3
URA06-S24	$1,83\pm0,05$	$0,7\pm0,2$	$0,395\pm0,005$	120 ± 23	600 ± 14	$0,06\pm0,01$	$2,8\pm0,07$	< 4	69±3
URA07-S24	$1,75\pm0,05$	$0,7\pm0,2$	$0,4\pm0,005$	60 ± 23	550±14	$0,05\pm0,01$	$2,78\pm0,06$	< 4	83±3
URA08-S24	$1,44 \pm 0,05$	$6,7\pm0,4$	$0,334\pm0,008$	50±24	510±14	$0,05\pm0,01$	$2,33\pm0,05$	< 4	72 ± 3
URA09-S24	$1,39\pm0,04$	$7,5\pm0,4$	$0,334\pm0,008$	70 ± 24	520±14	$0,06\pm0,01$	$2,25\pm0,05$	< 4	76 ± 3
URA10-S24	$1,47\pm0,05$	$6,6\pm0,4$	$0,353\pm0,005$	80 ± 24	$470{\pm}14$	$0,06\pm0,01$	$2,39\pm0,05$	< 4	70 ± 3
URA11-S24	$1,58\pm0,04$	$6,6\pm0,4$	$0,399\pm0,005$	90±24	430 ± 14	$0,06\pm0,01$	$2,87\pm0,06$	< 4	80±3
URB01-S18	$1,82\pm0,05$	$0,9\pm0,2$	$0,386\pm0,005$	120 ± 23	520±13	$0,06\pm0,01$	$2,95\pm0,07$	< 4	73 ± 3
URB02-S18	$1,8\pm0,05$	$1\pm0,2$	$0,405\pm0,005$	110 ± 23	450±13	$0,06\pm0,01$	$2,82\pm0,07$	< 4	69±3
URB03-S18	$1,58\pm0,05$	$4,6\pm0,3$	$0,376\pm0,008$	80±24	$480{\pm}14$	$0,07\pm0,01$	$2,78\pm0,06$	< 4	74 ± 3
URB04-S18	$1,46\pm0,04$	$6,5\pm0,4$	$0,365\pm0,008$	60±24	390±14	$0,06\pm0,01$	$2,59\pm0,05$	< 4	70±3
URB05-S18	$1,47\pm0,04$	$5,9\pm0,4$	$0,374\pm0,008$	60±24	350 ± 14	$0,06\pm0,01$	$2,63\pm0,05$	< 4	75 ± 3
URB06-S18	$1,43\pm0,05$	$5,7\pm0,4$	$0,411\pm0,008$	50±24	380 ± 14	$0,05\pm0,01$	$2,49\pm0,05$	< 4	71±3
URB07-S18	$1,29\pm0,05$	$4,8\pm0,3$	$0,397\pm0,008$	120±24	830 ± 15	$0,06\pm0,01$	$2,31\pm0,05$	< 4	64 ± 3
URB08-S18	$1,06\pm0,05$	$2,5\pm0,3$	$0,256\pm0,007$	60 ± 22	820 ± 15	$0,07\pm0,01$	$1,79\pm0,04$	< 4	66 ± 3
URB09-S18	$1,09\pm0,05$	$1,8\pm0,3$	$0,206\pm0,006$	40±21	750 ± 14	$0,05\pm0,01$	$1,75\pm0,04$	< 4	66±3
URB10-S24	$1,18\pm0,05$	$2,7\pm0,3$	$0,256\pm0,005$	70 ± 22	600 ± 14	$0,05\pm0,01$	$2,05\pm0,05$	< 4	71±3
URB11-S24	$1,32\pm0,05$	$3,4\pm0,3$	$0,284\pm0,005$	80±23	540±14	$0,06\pm0,01$	$2,43\pm0,05$	< 4	75±3
URC01-S24	$1,7\pm0,05$	$1,5\pm0,2$	$0,362\pm0,005$	100±23	460±13	$0,06\pm0,01$	$2,51\pm0,06$	< 4	61±3
URC02-S24	$1,67\pm0,05$	$1,5\pm0,2$	$0,362\pm0,005$	80±23	510±13	$0,06\pm0,01$	$2,57\pm0,06$	< 4	63±3
URC03-S24	$1,68\pm0,05$	$2,5\pm0,3$	$0,4\pm0,005$	100±24	550±14	$0,06\pm0,01$	$2,68\pm0,06$	< 4	67±3
URC04-S24	$1,72\pm0,05$	$1,6\pm0,3$	$0,4\pm0,005$	110±23	600 ± 14	$0,05\pm0,01$	$2,76\pm0,06$	< 4	63±3
URC05-S24	$1,47\pm0,05$	$5\pm0,3$	$0,357\pm0,008$	100±24	460±14	$0,05\pm0,01$	$2,38\pm0,05$	< 4	69±3
URC06-S24	$1,41\pm0,05$	$5,8\pm0,4$	$0,379\pm0,008$	80±24	460±14	$0,05\pm0,01$	$2,28\pm0,05$	< 4	66±3
URC07-S24	$1,28\pm0,04$	$7,5\pm0,4$	$0,333\pm0,008$	70±24	520±14	$0,05\pm0,01$	$2,25\pm0,05$	< 4	65±3
URC08-S24	$1,3\pm0,04$	$7,1\pm0,4$	$0,36\pm0,008$	80±24	480 ± 14	$0,06\pm0,01$	$2,31\pm0,05$	< 4	65±3
URC09-S24	$1,3\pm0,04$	$6,8\pm0,4$	$0,368\pm0,008$	80±24	450±14	$0,06\pm0,01$	$2,31\pm0,05$	< 4	63±3
URC10-S24	$1,36\pm0,04$	$7,1\pm0,4$	$0,367\pm0,005$	110±25	370 ± 14	$0,08\pm0,01$	$2,7\pm0,06$	< 4	70 ± 3
URC11-S24	$1,33\pm0,04$	$9,5\pm0,4$	$0,346\pm0,005$	90±25	220±14	$0,08\pm0,01$	$2,98\pm0,06$	< 4	88±3
URD01-S24	$1,71\pm0,05$	$2,8\pm0,3$	$0,354\pm0,005$	80±23	520±14	$0,05\pm0,01$	$2,44\pm0,05$	< 4	57±3
URD02-S24	$1,61\pm0,05$	$3,1\pm0,3$	$0,329\pm0,005$	90±23	600±14	$0,05\pm0,01$	$2,47\pm0,05$	< 4	62±3
URD03-S24	$1,61\pm0,05$	$3,4\pm0,3$	$0,337\pm0,005$	80±23	470±13	$0,05\pm0,01$	2,45±0,05	< 4	60±3
URD04-S24	$1,63\pm0,05$	$3,4\pm0,3$	$0,324\pm0,005$	80±23	590±14	$0,05\pm0,01$	$2,46\pm0,05$	< 4	59±3
URD05-S24	1,42±0,04	$6,9\pm0,4$	$0,31\pm0,007$	130±24	400 ± 14	$0,05\pm0,01$	2,51±0,05	< 4	66±3
URD06-S24	1,45±0,04	6,6±0,4	0,331±0,007	100±24	440±14	$0,05\pm0,01$	2,43±0,05	< 4	63±3
URD07-S24	1,45±0,04	$5,6\pm0,3$	$0,335\pm0,007$	120±23	430±14	$0,06\pm0,01$	$2,48\pm0,05$	< 4	68±3
URD08-S24	1,43±0,05	4,7±0,3	0,361±0,007	110±23	480±14	$0,06\pm0,01$	$2,52\pm0,06$	< 4	68±3
URD09-S24	1,37±0,05	4,7±0,3	$0,35\pm0,007$	60±23	470±14	$0,06\pm0,01$	$2,43\pm0,05$	< 4	66±3
URD10-S24	1,35±0,05	5±0,3	$0,36\pm0,005$	80±23	430±14	$0,06\pm0,01$	$2,52\pm0,05$	< 4	74±3
URD11-S24	$1,43\pm0,04$	5,7±0,4	0,389±0,005	110±25	410±14	$0,07\pm0,01$	2,91±0,06	< 4	80±3

	Cu,	Zn,	Ga,	As,	Br,	Rb,	Sr,	Y,	Zr,
Образец	$MK\Gamma/\Gamma$								
URA01-S24	32±2	69±12	11,7±0,7	10±0,8	7,6±0,3	70±4	138±5	22±3	272±7
URA02-S24	29±2	66±12	$10,6\pm0,8$	$8,4\pm0,8$	$7,9\pm0,3$	70±4	140±5	23±3	300±7
URA03-S24	26±2	64±12	$10,6\pm0,8$	$10,3\pm0,8$	$7,1\pm0,3$	69±4	142 ± 5	22±3	294±7
URA04-S24	30±2	66±12	$10,8\pm0,8$	14 ± 0.8	$7,9\pm0,3$	70±4	140 ± 5	21±3	281±7
URA05-S24	26±2	53±11	$10,2\pm0,7$	$14,9\pm0,8$	$7\pm0,3$	66±4	142 ± 5	22±3	313±8
URA06-S24	22±2	49±11	$9,8\pm0,8$	$12,8\pm0,8$	$6,9\pm0,3$	66±4	142 ± 5	23±3	328 ± 8
URA07-S24	21±2	45±11	$9,8\pm0,8$	11 ± 0.8	$7,5\pm0,3$	63±4	142 ± 5	21±3	361 ± 8
URA08-S24	18±2	37 ± 11	$8,6\pm0,8$	$12,6\pm0,8$	$11,2\pm0,4$	50±4	251±7	19±3	303±8
URA09-S24	16±2	35±11	$8\pm0,8$	$14,5\pm0,8$	$10,5\pm0,4$	48±4	284 ± 8	20±3	295±8
URA10-S24	18±2	39±11	$8,4\pm0,8$	$13,3\pm0,9$	$11,2\pm0,4$	54±4	265 ± 7	19±3	281±8
URA11-S24	24 ± 2	50±12	$10,8\pm0,8$	$18,9\pm0,9$	$11,4\pm0,4$	60±4	253±7	21±3	309 ± 8
URB01-S18	28±2	66±12	$10,8\pm0,8$	11 ± 0.8	$9,6\pm0,3$	69±4	140 ± 5	22±3	299±7
URB02-S18	29±2	54±11	$10,6\pm0,7$	$10,1\pm0,8$	$10,1\pm0,3$	68±4	141±5	22±3	310±8
URB03-S18	22±2	45±12	$8,7\pm0,8$	$14,2\pm0,8$	$12\pm0,4$	61±4	228±7	21±3	279±7
URB04-S18	20±2	43 ± 11	9 ± 0.8	$18,4\pm0,8$	$11,2\pm0,4$	53±4	296 ± 8	21±3	264 ± 7
URB05-S18	22±2	41 ± 11	$10,6\pm0,8$	17 ± 0.8	$10,4\pm0,4$	54±4	272±7	22±3	284 ± 8
URB06-S18	17±2	40 ± 11	$9,7\pm0,8$	$15,7\pm0,8$	$8,9\pm0,4$	51±4	270±7	24±3	353±8
URB07-S18	15±2	34±11	$7,6\pm0,7$	12 ± 0.8	$7,9\pm0,3$	42±4	210±6	19±3	298±7
URB08-S18	14±2	24±9	$6,1\pm0,7$	$12,5\pm0,7$	$4\pm0,3$	31±3	129±5	12±2	156±5
URB09-S18	15±2	22±9	$4,7\pm0,7$	$10,3\pm0,7$	$4\pm0,3$	31±3	105±4	11 ± 2	110±4
URB10-S24	17±2	29±10	$7,1\pm0,7$	$12,1\pm0,8$	$4,8\pm0,3$	38±3	146 ± 5	14 ± 2	119±5
URB11-S24	21±2	40 ± 10	$8,3\pm0,7$	$15,2\pm0,8$	$5,3\pm0,3$	44±4	166 ± 6	16 ± 3	155±5
URC01-S24	24±2	55±11	$8\pm0,7$	$10,5\pm0,8$	$8,5\pm0,3$	59±4	147±5	18 ± 3	280±7
URC02-S24	22±2	52±11	$8,3\pm0,7$	$10,4\pm0,8$	$7,9\pm0,3$	60±4	146 ± 5	19±3	299±7
URC03-S24	23±2	46±11	$10,5\pm0,8$	$12,3\pm0,8$	$9,8\pm0,4$	63±4	168 ± 6	22±3	325±8
URC04-S24	25±2	45±11	$9,7\pm0,8$	16 ± 0.8	$9,6\pm0,4$	67±4	159 ± 6	22±3	330 ± 8
URC05-S24	18±2	38±11	$8,2\pm0,8$	$9,5\pm0,8$	$12,5\pm0,4$	54±4	215±7	19±3	312 ± 8
URC06-S24	17±2	35±11	$8,3\pm0,8$	12 ± 0.8	$11,7\pm0,4$	50±4	233±7	19±3	317±8
URC07-S24	15±2	32±11	$7,8\pm0,8$	$17,1\pm0,8$	$13,2\pm0,4$	45±4	298 ± 8	18 ± 3	301±8
URC08-S24	14±2	36±11	$7,8\pm0,8$	$14,3\pm0,8$	$10,6\pm0,4$	47±4	320 ± 8	20±3	322±8
URC09-S24	18±2	38±11	$7,5\pm0,8$	13 ± 0.8	$11\pm0,4$	46±4	335 ± 8	20±3	326 ± 8
URC10-S24	22±2	45±12	$10,4\pm0,8$	$15,8\pm0,9$	$12,6\pm0,4$	52±4	373 ± 9	20±3	278 ± 8
URC11-S24	24±2	49±12	$12,1\pm0,8$	$19\pm0,9$	$13\pm0,4$	53±4	460±10	22±3	201±7
URD01-S24	22±2	54±12	9 ± 0.8	$11,9\pm0,8$	$7\pm0,3$	60±4	231±7	18±3	284±7
URD02-S24	24±2	58±12	$9,3\pm0,8$	10 ± 0.8	$7,4\pm0,3$	59±4	247±7	18±3	273±7
URD03-S24	23±2	58±12	$8,8\pm0,8$	$10,3\pm0,8$	$8,1\pm0,3$	59±4	263 ± 7	17±3	272±7
URD04-S24	23±2	53±12	$7,9\pm0,8$	10 ± 0.8	$7,4\pm0,3$	59±4	270±7	17±3	280±7
URD05-S24	21±2	45±12	$9,5\pm0,8$	$18,1\pm0,8$	$7,8\pm0,4$	56±4	510±11	19±3	250±8
URD06-S24	21±2	44±11	9±0,8	$14,9\pm0,8$	7±0,4	55±4	470±10	18±3	243±7
URD07-S24	20±2	43±11	$7,8\pm0,8$	$9,2\pm0,9$	5,5±0,3	54±4	439±10	20±3	267±8
URD08-S24	18±2	42±11	$9,6\pm0,8$	17,2±0,8	5,4±0,3	54±4	364 ± 9	19±3	281±8
URD09-S24	18±2	38±11	$8,2\pm0,8$	$9,6\pm0,8$	4,4±0,3	50±4	402±9	21±3	286±8
URD10-S24	19±2	41±11	$9,7\pm0,8$	11,9±0,8	$4,7\pm0,3$	52±4	412±10	20±3	273±8
URD11-S24	23±2	43±12	10±0,8	16,9±0,9	4,5±0,4	55±4	326 ± 8	22±3	295±8

Образец	Nb,	Mo,	Pd	Cd	Ba,	Pb,	Th	U
	$MK\Gamma/\Gamma$							
URA01-S24	8,3±1,7	2±0,3	0,5±0,2	3,4±0,4	176±18	13±1	5,3±0,8	2,2±0,4
URA02-S24	$8,5\pm1,8$	$1,2\pm0,3$	$0,4\pm0,2$	$3,3\pm0,4$	188 ± 18	11±1	$4,5\pm0,8$	$2,3\pm0,4$
URA03-S24	$8,7\pm1,8$	$1\pm0,3$	$0,7\pm0,2$	$3,2\pm0,4$	206 ± 18	13±1	$4,2\pm0,8$	$2,1\pm0,4$
URA04-S24	$8,8\pm1,7$	$1\pm0,3$	< 0,2	$3,3\pm0,4$	206 ± 18	12±1	$5,5\pm0,8$	$2,1\pm0,4$
URA05-S24	$8,5\pm1,7$	$1,3\pm0,3$	$1,1\pm0,2$	$4,1\pm0,4$	206 ± 18	10±1	$4,9\pm0,8$	$2,5\pm0,5$
URA06-S24	$8,7\pm1,8$	$1,5\pm0,3$	$0,4\pm0,2$	$3,6\pm0,4$	259 ± 18	9±1	$5,2\pm0,8$	$1,7\pm0,5$
URA07-S24	$8,7\pm1,8$	$1,4\pm0,3$	$0,6\pm0,2$	$3,9\pm0,4$	200 ± 18	8±1	$4,1\pm0,9$	$2\pm0,5$
URA08-S24	$7,2\pm1,8$	$1,4\pm0,3$	$0,4\pm0,2$	$3,6\pm0,4$	182 ± 19	7±1	$3,1\pm0,9$	$2,1\pm0,5$
URA09-S24	$7,1\pm1,8$	$1,4\pm0,3$	$0,6\pm0,2$	$3,2\pm0,4$	118±19	6±1	$3,2\pm0,9$	$2,3\pm0,5$
URA10-S24	$7,9\pm1,8$	$1,4\pm0,3$	< 0,2	$3,1\pm0,4$	129±19	8±1	$3,6\pm0,9$	$1,8\pm0,5$
URA11-S24	$9\pm1,9$	$1,7\pm0,3$	$0,7\pm0,2$	$3,8\pm0,5$	141±19	11±1	$5,7\pm0,9$	$2,1\pm0,5$
URB01-S18	$8,8\pm1,7$	$1\pm0,3$	$0,9\pm0,2$	$3,7\pm0,4$	176 ± 18	10±1	$4,8\pm0,8$	$2\pm0,4$
URB02-S18	$8,7\pm1,7$	$1,4\pm0,3$	$0,5\pm0,2$	$3,7\pm0,4$	235 ± 18	11±1	$4,7\pm0,8$	$2,7\pm0,4$
URB03-S18	$8,4\pm1,8$	$1,4\pm0,3$	$0,8\pm0,2$	$3\pm0,4$	206 ± 18	8±1	$4,3\pm0,9$	$1,9\pm0,5$
URB04-S18	$7,9\pm1,8$	$1\pm0,3$	$0,7\pm0,2$	$3\pm0,4$	129±19	9±1	$4,1\pm0,9$	$2,8\pm0,5$
URB05-S18	$8,3\pm1,8$	$1,4\pm0,3$	< 0,2	$2,7\pm0,4$	159 ± 18	8±1	$4,5\pm0,9$	$2,3\pm0,5$
URB06-S18	$9,3\pm1,9$	$1,4\pm0,3$	< 0,2	$2,4\pm0,4$	171±19	8±1	$4,5\pm1$	$3\pm0,5$
URB07-S18	$7,7\pm1,7$	$1,6\pm0,3$	$0,5\pm0,2$	$3\pm0,4$	129 ± 18	4 ± 1	$4,7\pm0,9$	$1,5\pm0,5$
URB08-S18	$4,7\pm1,4$	$1,6\pm0,2$	$0,6\pm0,2$	$3,2\pm0,4$	176 ± 18	< 1	$1,7\pm0,7$	$1,4\pm0,4$
URB09-S18	$4\pm1,4$	$2\pm0,2$	$0,3\pm0,2$	$2,7\pm0,4$	141 ± 17	< 1	$1,9\pm0,6$	$1,1\pm0,4$
URB10-S24	$4,8\pm1,5$	$1,7\pm0,2$	< 0,2	$2,2\pm0,4$	106 ± 18	3 ± 1	$3,6\pm0,7$	$1,7\pm0,4$
URB11-S24	$5,8\pm1,6$	$1,5\pm0,2$	$0,3\pm0,2$	$3,3\pm0,4$	76 ± 18	< 1	$3,1\pm0,7$	$1,5\pm0,4$
URC01-S24	$7,6\pm1,7$	$1,3\pm0,3$	$0,6\pm0,2$	$3,9\pm0,4$	118 ± 18	10 ± 1	$4\pm0,8$	$1,4\pm0,4$
URC02-S24	$7,6\pm1,7$	$1\pm0,3$	$0,3\pm0,2$	$3,9\pm0,4$	176 ± 18	10 ± 1	$4\pm0,8$	$2,2\pm0,4$
URC03-S24	$8,4\pm1,8$	$1,4\pm0,3$	$0,4\pm0,2$	$3,6\pm0,4$	171 ± 18	10 ± 1	$4,6\pm0,9$	$2,3\pm0,5$
URC04-S24	$9\pm1,8$	$1,5\pm0,3$	$0,9\pm0,2$	$3,6\pm0,4$	$147{\pm}18$	7 ± 1	$5,8\pm0,9$	$2,5\pm0,5$
URC05-S24	$7,9\pm1,7$	$1,3\pm0,3$	$0,5\pm0,2$	$3,6\pm0,4$	165 ± 18	7 ± 1	$3,7\pm0,9$	$1,8\pm0,5$
URC06-S24	$7,8\pm1,8$	$1,6\pm0,3$	$0,4\pm0,2$	$3\pm0,4$	165 ± 18	6 ± 1	$3,4\pm0,9$	$2\pm0,5$
URC07-S24	$7,1\pm1,7$	$1,3\pm0,3$	$0,4\pm0,2$	$3,6\pm0,4$	206 ± 18	7 ± 1	$3,4\pm0,9$	$2,9\pm0,5$
URC08-S24	$7,7\pm1,8$	$1,8\pm0,3$	< 0,2	$2,1\pm0,4$	200 ± 19	7 ± 1	$4,5\pm1$	$2,4\pm0,5$
URC09-S24	$8\pm1,8$	$1,5\pm0,3$	$0,5\pm0,2$	$3,5\pm0,4$	$194{\pm}19$	5±1	$3,3\pm1$	$2,2\pm0,5$
URC10-S24	$8,1\pm1,8$	$1,2\pm0,3$	$0,6\pm0,2$	$3,2\pm0,5$	182 ± 19	7 ± 1	$4,4\pm1$	$2,5\pm0,5$
URC11-S24	$8,1\pm1,9$	$1,1\pm0,3$	$1\pm0,2$	$3,2\pm0,5$	123 ± 19	8±1	$4,2\pm1$	$3,3\pm0,5$
URD01-S24	$7,2\pm1,7$	$1\pm0,3$	$0,3\pm0,2$	$2,9\pm0,4$	147 ± 18	8±1	$3,3\pm0,9$	$2,5\pm0,4$
URD02-S24	$7,5\pm1,7$	$1\pm0,3$	$0,4\pm0,2$	$3,8\pm0,4$	165±18	7±1	$2,5\pm0,9$	$1,8\pm0,4$
URD03-S24	$7,1\pm1,7$	$1\pm0,3$	$0,8\pm0,2$	$4\pm0,4$	153 ± 18	8±1	$3,5\pm0,9$	$2,5\pm0,4$
URD04-S24	$7,1\pm1,7$	< 1	$0,7\pm0,2$	$3,6\pm0,4$	129 ± 18	6±1	$3,8\pm0,9$	$2,1\pm0,4$
URD05-S24	$7,3\pm1,7$	$1\pm0,3$	$0,6\pm0,2$	$2,2\pm0,4$	212±19	4 ± 1	$2,8\pm1$	$4,1\pm0,4$
URD06-S24	$7 \pm 1,7$	$1,4\pm0,3$	$0,7\pm0,2$	$3,4\pm0,4$	141±19	4±1	$2,8\pm1$	$3\pm0,4$
URD07-S24	$7,2\pm1,7$	$2\pm0,3$	$0,3\pm0,2$	$4,5\pm0,4$	171±19	3 ± 1	$4,5\pm1$	$4,3\pm0,5$
URD08-S24	$7,7\pm1,7$	$2,3\pm0,3$	< 0,2	$2,6\pm0,4$	176 ± 18	5±1	$2,9\pm1$	$3,5\pm0,5$
URD09-S24	$7,6\pm1,7$	$2,8\pm0,3$	< 0,2	$2,9\pm0,4$	188 ± 18	4±1	$3,2\pm1$	$4\pm0,5$
URD10-S24	$7,9\pm1,8$	$3,3\pm0,3$	$0,4\pm0,2$	$3,6\pm0,4$	176±19	3 ± 1	$4,3\pm1$	$4,9\pm0,5$
URD11-S24	8,5±1,9	$3,8\pm0,3$	$0,5\pm0,2$	$2,8\pm0,4$	159±19	7±1	$5,1\pm1$	$5,6\pm0,5$