Филиал РГП «Казгидромет» по Жамбылской области Министерства экологии и природных ресурсов Республики Казахстан

ИНФОРМАЦИОННЫЙ БЮЛЛЕТЕНЬ О СОСТОЯНИИ ОКРУЖАЮЩЕЙ СРЕДЫ ЖАМБЫЛСКОЙ ОБЛАСТИ

Ноябрь 2024г.

Тараз 2024 г.

	СОДЕРЖАНИЕ	Стр.
	Предисловие	3
1	Основные источники загрязнения атмосферного воздуха	4
2	Мониторинг качества атмосферного воздуха г. Тараз	4
2.1	Мониторинг качества атмосферного воздуха г. Жанатас	6
2.2	Мониторинг качества атмосферного воздуха г. Каратау	7
2.3	Мониторинг качества атмосферного воздуха г. Шу	8
2.4	Мониторинг качества атмосферного воздуха с. Кордай	10
3	Состояние качества атмосферных осадков	11
4	Состояние качества поверхностных вод	11
5	Радиационная обстановка Жамбылской области	12
	Приложение 1	13
	Приложение 2	15

Предисловие

Информационный бюллетень подготовлен по результатам работ, выполняемых специализированными подразделениями РГП «Казгидромет» по ведению мониторинга за состоянием окружающей среды на наблюдательной сети национальной гидрометеорологической службы.

Бюллетень предназначен для информирования государственных органов, общественности и населения о состоянии окружающей среды на территории Жамбылской области и необходим для дальнейшей оценки эффективности мероприятий в области охраны окружающей среды РК с учетом тенденции происходящих изменений уровня загрязнения.

Оценка качества атмосферного воздуха Жамбылской области

1. Основные источники загрязнения атмосферного воздуха

Согласно данным департамента статистики Жамбылской области фактические суммарные выбросы загрязняющих веществ от стационарных источников в Жамбылской области составляют 52,9 тысяч тонн. В г.Тараз фактические суммарные выбросы загрязняющих веществ от стационарных источников составляют 28,5 тысяч тонн.

В Жамбылской области наличие зарегистрированных автотранспортных средств составляет 271 483 ед., в том числе легковые автомобили 242 295 ед., грузовые автомобили 23 700 ед., автобусы 5 488 ед.

Согласно данным департамента статистики в Жамбылской области в городе Тараз насчитывается 36 474 индивидуальных домов; в городе Жанатас 1439 индивидуальных домов; городе Каратау 3 185 индивидуальных домов; городе Шу 6 650 индивидуальных домов. В городских населенных пунктах удельный вес общей площади оборудованной газом 99,8%, водоснабжением 100%, в сельских населенных пунктах газом 99,7%, водоснабжением 99,6%.

2. Мониторинг качества атмосферного воздуха в г. Тараз

Наблюдения за состоянием атмосферного воздуха на территории г. Тараз проводятся на 5 постах наблюдения, в том числе на 4 постах ручного отбора проб и на 1 автоматической станции (Приложение 1).

В целом по городу определяется до 13 показателей: 1) взвешенные частицы (пыль), 2) диоксид серы; 3) оксид углерода; 4) диоксид азота; 5) оксид азота; 6) фтористый водород; 7) формальдегид; 8) сероводород; 9) бенз(а)пирен; 10) марганец; 11) свинец; 12) кобальт; 13) кадмий.

В таблице 1 представлена информация о местах расположения постов наблюдений и перечне определяемых показателей на каждом посту.

Таблица 1 Место расположения постов наблюдений и определяемые примеси

No	Отбор проб	Адрес поста	Определяемые примеси
1		ул. Чимкентская, 22	Papavious is westwing (with) who was in
2	ручной отбор проб	ул. Рысбек батыра, 15, угол ул. Ниеткалиева	взвешенные частицы (пыль), диоксид серы, оксид углерода, диоксид азота, оксид азота,
3	ручной отоор проо	угол ул. Абая и Толе би	оксид азота, фтористый водород, формальдегид, бенз(а)пирен, свинец,
4		Пересечение ул. Байзак батыра и проспекта Абая	марганец, кадмий, кобальт.
6	в непрерывном режиме – каждые 20	ул. Сатпаева и проспект Жамбыла	диоксид серы, оксид углерода, сероводород
	минут		

Результаты мониторинга качества атмосферного воздуха г. Тараз за ноябрь 2024 года.

основной вклад вносит оксид углерода (количество превышений ПДК за ноябрь: 31 случай).

Максимальные разовые концентрации оксида углерода составили 2,1 ПДК_{м.р.,} фтористого водорода 1,5 ПДК_{м.р.,} концентрации других загрязняющих веществ и тяжелых металлов в атмосферном воздухе не превышали ПДК. Превышения по среднесуточным нормативам наблюдались по диоксиду азота 1,7 ПДКсс.

Случаи экстремально высокого и высокого загрязнения (ВЗ и ЭВЗ): ВЗ (более 10 ПДК) и ЭВЗ (более 50 ПДК) не были отмечены.

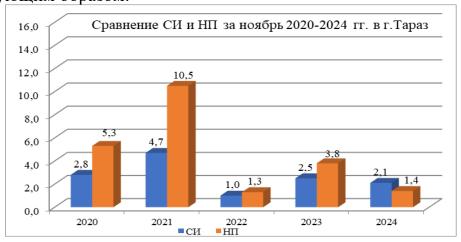

Фактические значения, а также кратность превышений нормативов качества и количество случаев превышения указаны в Таблице 2.

Таблица 2

Характеристика загрязнения атмосферного воздуха Средняя ΗП Число случаев Максимальная концентрация превышения разовая ПДКм.р. концентрация Примесь % $M\Gamma/M^3$ Крат- $M\Gamma/M^3$ Кратность > >5 >10 ПДК ПДК ность ПДКм.р. ПДК ПДКс.с. В том числе г. Тараз Взвешенные 0.129 0,86 0,30 0,60 0.00 0 0 0 частицы (пыль) 0,010 0.19 0,086 0.17 0,00 0 0 0 Диоксид серы Оксид углерода 1,19 0,40 10,7 2,13 1,25 31 0 0 Диоксид азота 0.07 1,75 0.16 0,80 0,00 0 0 0 0.25 0 0 Оксид азота 0.03 0,50 0.10 0,00 0 1,50 Фтористый водород 0,002 0,46 0.030 0,32 0 0 1 0,007 0,68 0.033 0.00 0 0 Формальдегид 0,66 0 0.0004 Сероводород 0,001 0.05 0.00 0 Бенз(а)пирен 0,0003 0,33 0,0006 Свинец 0,000035 0,116 0,000050 0.000092 0.000129 Марганец 0.092 Кадмий 0 0 0 Кобальт 0 0 0

Выводы:

Последние пять лет уровень загрязнения атмосферного воздуха в ноябре менялся следующим образом:

Из графика видно, что уровень загрязнения атмосферного воздуха оценивается как повышенный.

Количество превышений максимально-разовых ПДК было отмечено по по оксиду углерода (31 случай), фтористому водороду (1 случай). Превышения нормативов среднесуточных концентраций наблюдались по диоксиду азота.

Увеличение среднесуточных показателей диоксида азота свидетельствует о значительном вкладе в загрязнение воздуха автотранспорта на загруженных перекрестках города и о постоянном накоплении этого загрязняющиего вещества в атмосфере города. Основными источниками загрязнения оксидом углерода является автотранспорт и сжигание твердого топлива.

Метеорологические условия

В ноябре месяце наблюдалась неустойчивая погода, из-за частой смены циклонов и антициклонов. Выпадение осадков (дождь, снег), было связано с влиянием циклонов и связанных с ними атмосферных разделов. В течении месяца туман наблюдался часто, гроза в 1-ой декаде. При прохождении фронтальных разделов наблюдалось усиление ветра до 15-20 м/с. Ураганный ветер наблюдался в 1-ой декаде на МС Тараз юго-западный 27 порывы 31 м/с и в 3-ей декаде на МС Шокпар юго-восточный 31 порывы 36 м/с. Ноябрь месяц был относительно теплым, понижение температуры воздуха до 5-10 градусов мороза наблюдалось в отдельные дни во 2-ой и в 3-ей декадах в горных и предгорных районах. Осадков за месяц на всей территории области выпало меньше нормы и составило всего 91 %.

В ноябре НМУ не наблюдалось: (неблагоприятные метеоусловия).

2.1 Мониторинг качества атмосферного воздуха в г.Жанатас

Наблюдения за состоянием атмосферного воздуха на территории г. Жанатас проводятся на 1 автоматической станции (Приложение 1).

В целом по городу определяется до 5 показателей:1) диоксид серы; 2) оксид углерода; 3) диоксид азота; 4) оксид азота, 5) аммиак.

В таблице 3 представлена информация о месте расположения поста наблюдений и перечне определяемых показателей на посту.

Таблица 3 Место расположения постов наблюдений и определяемые примеси

No	Отбор проб	Адрес поста	Определяемые примеси
1	в непрерывном режиме –	учетный квартал	диоксид серы, оксид углерода, диоксид
	каждые 20 минут	001, №18	азота, оксид азота, аммиак

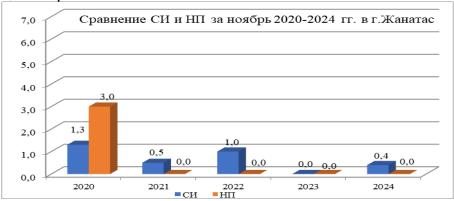
Результаты мониторинга качества атмосферного воздуха в г. Жанатас за ноябрь 2024 года.

По данным сети наблюдений, уровень загрязнения атмосферного воздуха города Жанатас оценивался как *низкий*, он определялся значением СИ равным 0,4 (низкий) по диоксиду азоту и $H\Pi = 0\%$ (низкий).

Средние концентрации диоксида азота составили 1,1 ПДК $_{\rm c.c.}$, концентрации других загрязняющих веществ не превышали ПДК. Максимальные разовые концентрации загрязняющих веществ не превышали ПДК.

Случаи экстремально высокого и высокого загрязнения (ВЗ и ЭВЗ): ВЗ (более 10 ПДК) и ЭВЗ (более 50 ПДК) не были отмечены.

Фактические значения, а также крастность превышений нормативов качества и количество случаев превышения указаны в Таблице 4.


Таблица 4

Характеристика загрязнения атмосферного воздуха

	_	Средняя концентрация		Максимальная разовая концентрация		Число случаев превышения ПДК _{м.р.}		ия
Примесь	мг/м ³	Крат- ность ПДКс.с.	мг/м ³	Крат- ность ПДК _{м.р.}	%	> ПДК	>5 ПДК	>10 ПДК
		, ,	 Санатас	11/ДКМ.р.			БТОМ	числе
Диоксид серы	0,018	0,36	0,021	0,04	0,0	0	0	0
Оксид углерода	0,301	0,10	1,187	0,24	0,0	0	0	0
Диоксид азота	0,042	1,06	0,080	0,40	0,0	0	0	0
Оксид азота	0,013	0,22	0,027	0,07	0,0	0	0	0
Аммиак	0,011	0,27	0,030	0,15	0,0	0	0	0

Выводы:

Последние пять лет уровень загрязнения атмосферного воздуха в ноябре менялся следующим образом:

Из графика видно, что уровень загрязнения оценивался как низкий, в 2020 г. как повышенный.

2.2 Мониторинг качества атмосферного воздуха в г. Каратау

Наблюдения за состоянием атмосферного воздуха на территории г. Каратау проводятся на 1 автоматической станции (Приложение 1).

В целом по городу определяется 3 показателя: 1) диоксид серы; 2) оксид углерода, 3) сероводород.

В таблице 5 представлена информация о месте расположения поста наблюдений и перечне определяемых показателей на посту.

Таблица 5 Место расположения постов наблюдений и определяемые примеси

No	Отбор проб	Адрес поста	Определяемые примеси
1	в непрерывном режиме	ул. Тамды аулие, №130	диоксид серы, оксид углерода,
	каждые 20 минут		сероводород

Результаты мониторинга качества атмосферного воздуха в г. Каратау в ноябре 2024 года.

В ноябре 2024 г. атмосферный воздух города **Каратау** оценивался по **наибольшей повторяемости** как **«повышеный»** уровень загрязнения (НП=6%); по

стандартному индексу как «низкий» (СИ=1,4). В загрязнение атмосферного воздуха основной вклад внес сероводород (количество превышений ПДК за ноябрь: 129 случаев).

Максимальные разовые концентрации сероводорода составили 1,4 ПДК $_{\text{м.р.,}}$ концентрации других загрязняющих веществ в атмосферном воздухе не превышали ПДК. Средние концентрации загрязняющих веществ не превышали ПДК.

Случаи экстремально высокого и высокого загрязнения (ВЗ и ЭВЗ): ВЗ (более 10 ПДК) и ЭВЗ (более 50 ПДК) не были отмечены.

Фактические значения, а также крастность превышений нормативов качества и количество случаев превышения указаны в Таблице 6.

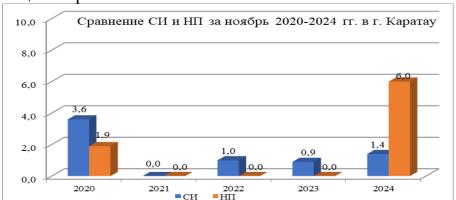

Характеристика загрязнения атмосферного воздуха

Таблица 6

-	ларакт	еристика з	агрязнен	ия атмосферн	ioro Bo	оздуха	ļ	
	_	едняя нтрация	Максимальная разовая концентрация		НП	Число случаев превышения ПДК _{м.р.}		ния
Примесь	мг/м ³	Кратность ПДКс.с.	мг/м ³	Кратность ПДК _{м.р.}	%	> ПДК	>5 ПДК	>10 ПДК
		11/4110.0.		11/- Дахи.р.		1741	В том числе	
			г. Карат	ay				
Диоксид серы	0,045	0,90	0,061	0,12	0,00	0	0	0
Оксид углерода	0,007	0,002	0,384	0,08	0,00	0	0	0
Сероводород	0,003		0,011	1,38	5,97	129	0	0

Выводы:

Последние пять лет уровень загрязнения атмосферного воздуха в ноябре менялся следующим образом:

Из графика видно, что уровень загрязнения атмосферного воздуха оценивался как низкий в 2021, 2022, 2023 гг. как повышенный в 2020, 2024 гг.

Сероводород образуется при бактериальном разложении отходов жизнедеятельности человека и животных, присутствует в выбросах очистных сооружений и свалок, образуется при разложении белков и входит в состав газовой смеси, присутствующей в коллекторах и канализациях, может скапливаться в подвалах.

2.3 Мониторинг качества атмосферного воздуха в г. Шу

Наблюдения за состоянием атмосферного воздуха на территории г. Шу проводятся на 1 автоматической станции (Приложение 1).

В целом по городу определяется 6 показателей: 1) взвешенные частицы РМ 2,5; 2) взвешенные частицы РМ 10; 3) диоксид серы; 4) оксид углерода; 5) озон (приземный), 6) сероводород.

В таблице 7 представлена информация о месте рааласысположения поста наблюдений и перечне определяемых показателей на посту.

Таблица 7 Место расположения постов наблюдений и определяемые примеси

No	Отбор проб	Адрес поста	Определяемые примеси		
	в непрерывном	возле Шуйской	взвешенные частицы РМ 2,5, взвешенные		
1	режиме каждые 20	городской	частицы РМ 10, диоксид серы, оксид углерода,		
	минут	больницы	озон (приземный), сероводород		

Результаты мониторинга качества атмосферного воздуха в г. Шу за ноябрь 2024 года.

В ноябре 2024 г. атмосферный воздух города **Шу** оценивался по **наибольшей повторяемости** как **«повышеный»** уровень загрязнения (НП=3%); по стандартному индексу как «низкий» (СИ=1,7). В загрязнение атмосферного воздуха основной вклад внес сероводород (количество превышений ПДК за ноябрь: 71 случай).

Средние концентрации загрязняющих веществ не превышали ПДК. Максимальные разовые концентрации сероводорода составили 1,7 ПДК_{м.р.,} оксида углерода 1,4 ПДК_{м.р.,} концентрации других загрязняющих веществ не превышали ПДК.

Случаи экстремально высокого и высокого загрязнения (ВЗ и ЭВЗ): ВЗ (более 10 ПДК) и ЭВЗ (более 50 ПДК) не были отмечены.

Фактические значения, а также крастность превышений нормативов качества и количество случаев превышения указаны в Таблице 8.

Характеристика загрязнения атмосферного воздуха

Максимальная

1,43

0.19

1.66

ΗП

0,79

3,29

0,0

Таблица 8

Число случаев

0

0

0

0

0

0

17

0

71

Средняя превышения разовая концентрация ПДКм.р. концентрация Примесь >5 Крат-Крат->10 > % ПДК $M\Gamma/M^3$ ность $M\Gamma/M^3$ ПДК ность ПДК ПДКс.с. ПДК_{м.р.} В том числе г. Шу 0,002 0,04 0,002 0,010 Взвешенные частицы РМ 2,5 0,0 0 0 Взвешенные частицы РМ 10 0,001 0,02 0.001 0,004 0,0 0 0 0 0,017 0,34 0,054 0.11 0,0 0 0 0 Диоксид серы

0,15

0,94

0,452

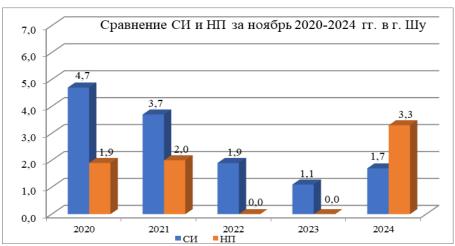
0,028

0,003

Выводы:

Оксид углерода

Сероводород


Озон (приземный)

Последние пять лет уровень загрязнения атмосферного воздуха в ноябре менялся следующим образом:

7,148

0,030

0,013

Из графика видно, что уровень загрязнения атмосферного воздуха характеризовался как повышенный, как низкий в 2022, 2023 г.

Сероводород образуется при бактериальном разложении отходов жизнедеятельности человека и животных, присутствует в выбросах очистных сооружений и свалок, образуется при разложении белков и входит в состав газовой смеси, присутствующей в коллекторах и канализациях, может скапливаться в подвалах. Основными источниками загрязнения оксидом углерода является автотранспорт и сжигание твердого топлива.

2.4 Мониторинг качества атмосферного воздуха в с. Кордай

Наблюдения за состоянием атмосферного воздуха на территории села Кордай проводятся на 1 автоматической станции (Приложение 1).

В целом в селе определяется 4 показателя: 1) оксид углерода; 2) диоксид серы; 3) озон (приземный); 4) сероводород.

В таблице 9 представлена информация о месте расположения поста наблюдений и перечне определяемых показателей на посту.

Таблица 9 Место расположения поста наблюдений и определяемые примеси

 №
 Отбор проб
 Адрес поста
 Определяемые примеси

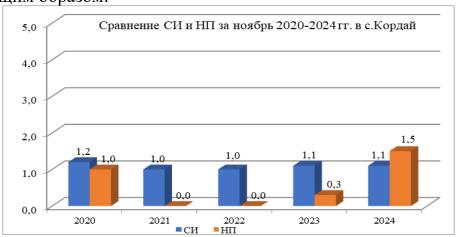
 1
 в непрерывном режиме каждые 20 минут
 ул. Жибек жолы, № 496«А»
 оксид углерода, диоксид серы, озон (приземный), сероводород

Результаты мониторинга качества атмосферного воздуха в с.Кордай за ноябрь 2024 года.

В ноябре 2024 г. атмосферный воздух **с.Кордай** оценивался по **наибольшей повторяемости** как **«повышеный»** уровень загрязнения (НП=1%); по стандартному индексу как «низкий» (СИ=1,1). В загрязнение атмосферного воздуха основной вклад внес сероводород (количество превышений ПДК за ноябрь: 32 случая).

Максимальные разовые концентрации сероводорода составили 1,1 Π ДК_{м.р.,} концентрации других загрязняющих веществ не превышали Π ДК. Средние концентрации загрязняющих веществ не превышали Π ДК.

Случаи экстремально высокого и высокого загрязнения (ВЗ и ЭВЗ): ВЗ (более 10 ПДК) и ЭВЗ (более 50 ПДК) не были отмечены.


Фактические значения, а также крастность превышений нормативов качества и количество случаев превышения указаны в Таблице 10.

Характеристика загрязнения атмосферного воздуха

	Средняя концентрация		Максимальная разовая концентрация		НП	Число случаев превышения ПДК _{м.р.}		ния
Примесь	мг/м ³	Крат- ность ПДКс.с.	мг/м ³	Крат- ность ПДК _{м.р.}	0/0	> ПДК	>5 ПДК В том	>10 ПДК числе
		с. Ко	рдай					
Диоксид серы	0,014	0,29	0,018	0,04	0,00	0	0	0
Оксид углерода	0,51	0,17	2,698	0,54	0,00	0	0	0
Озон (приземный)	0,021	0,70	0,117	0,73	0,00	0	0	0
Сероводород	0,005		0,009	1,13	1,48	32	0	0

Выводы:

Последние пять лет уровень загрязнения атмосферного воздуха в ноябре менялся следующим образом:

Из графика видно, что уровень загрязнения характеризуется как низкий в 2021, 2022, 2023 гг., как повышенный в 2020, 2024 гг.

3. Состояние качества атмосферных осадков

Наблюдения за химическим составом атмосферных осадков заключались в отборе проб дождевой воды на 3 метеостанциях (Каратау, Тараз, Толе би).

В пробах осадков преобладало содержание гидрокарбонатов 37,27%, сульфатов 20,42%, ионов кальция 13,78%, хлоридов 9,02%.

Наибольшая общая минерализация отмечена на MC Каратау 50,02 мг/л, наименьшая на MC Толе би 24,87 мг/л.

Удельная электропроводимость атмосферных осадков находилась в пределах от 43,9 мкСм/см (МС Толе би) 72,5 мкСм/см (МС Каратау).

Кислотность выпавших осадков имеет характер слабокислой среды и находится в пределах от 6,0 (МС Толе би) до 6,5 (МС Каратау).

Концентрации всех определяемых загрязняющих веществ в осадках не превышали предельно допустимые концентрации (ПДК).

4. Состояние качества поверхностных вод на территории Жамбылской области Наблюдения за качеством поверхностных вод по Жамбылской области проводились на 11 створах в 6 водных объектах (реки Шу, Талас, Асса, Аксу, Карабалта, Токташ).

При изучении поверхностных вод в отбираемых пробах воды определяются 31 физико-химических показателей качества: визуальные наблюдения, уровень и расход воды, температура воды, водородный показатель, прозрачность, растворенный кислород, взвешенные вещества, БПК₅, ХПК, главные ионы солевого состава, биогенные элементы, органические вещества (нефтепродукты, фенолы), тяжелые металлы.

Результаты мониторинга качества поверхностных вод на территории Жамбылской области

Основным нормативным документом для оценки качества воды водных объектов Республики Казахстан является «Единая система классификации качества воды в водных объектах» (далее – Единая Классификация).

По Единой классификации качество воды оценивается следующим образом:

Таблица 11

Наименование	Класс кач	ества воды			Концен	
паименование водного объекта	Ноябрь 2023 год	Ноябрь 2024 год	Параметры	ед. изм.	трация	
река Талас	*не нормируется (>5 класс)	3 класс	Магний	$M\Gamma/дM^3$	26,97	
река Асса	4 класс	5 класс	Взвешенные вещества	мг/дм ³	65,5	
река Шу	4 класс	*не нормируется (>5 класс)	Взвешенные вещества	мг/дм ³	146,0	
река Аксу	4 класс	4 класс	Магний	мг/дм ³	46,7	
река Карабалта	5 класс	4 класс	Магний	мг/дм ³	65,2	
река Токташ	4 класс	4 класс	Магний Сульфаты	$M\Gamma/дM^3$ $M\Gamma/дM^3$	65,2 354,0	

^{* -} вещества для данного класса не нормируется

Из таблицы видно, что в сравнении с ноябрем 2023 года качество вод в реках Талас с выше 5 класса перешло в 3 класс, Карабалта с 5 класса перешел к 4 классу – улучшилось;

Качество вод в реках Асса с 4 класса перешел в 5 класс, Шу с 4 класса перешло к выше 5 классу – ухудшилось;

В реках Аксу и Токташ качество поверхностных вод существенно не изменилось.

Основными загрязняющими веществами в водных объектах на територии Жамбылской области являются: магний, сульфаты и взвешенные вещества.

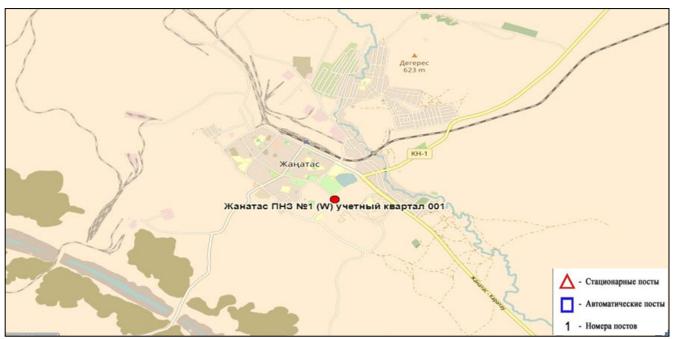
Случаи высокого загрязнения (ВЗ) и экстремально высокого загрязнения (ЭВЗ) не обнаружены.

Информация по качеству водных объектов в разрезе створов указана в Приложении 2.

5. Радиационная обстановка

Наблюдения за уровнем гамма излучения на местности осуществлялись ежедневно на 3-х метеорологических станциях (Тараз, Толе би, Чиганак).

Значения радиационного гамма-фона приземного слоя атмосферы по населенным пунктам области находились в пределах 0,08-0,23 мкЗв/ч. В среднем по области радиационный гамма-фон составил 0,17 мкЗв/ч.


Наблюдение за радиоактивным загрязнением приземного слоя атмосферы на территории Жамбылской области осуществлялся на 3-х метеорологических станциях (Тараз, Толе би, Чиганак) путем отбора проб воздуха горизонтальными планшетами. На всех станциях проводился пятисуточный отбор проб.

Плотность радиоактивных выпадений в приземном слое атмосферы на территории области колебалась в пределах 1,1-2,4 Бк/м². Средняя величина плотности выпадений по области составила 1,7 Бк/м².

Приложение1

Рис. 1 — карта мест расположения постов наблюдения и метеостанции г. Тараз



Рис.3 - карта мест расположения поста наблюдений и метеостанции г. Каратау

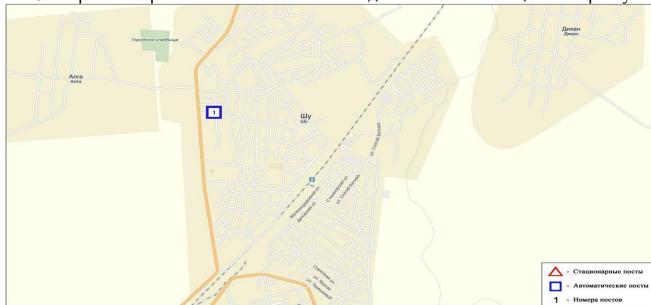


Рис.4 - карта мест расположения поста наблюдений г. Шу

Рис.5 - карта мест расположения поста наблюдений с.Кордай

Приложение 2

Информация о качества поверхностных вод Жамбылской области по створам

Водный объект и створ	Водный объект и створ Характеристика физико-химических параметров						
река Талас	Температура воды находилась в пределах от 6,2 до 17.8° С, водородный показатель $7.95-8.05$, концентрации растворенного в воде кислорода в пределах $8.88-10.2$ мг/дм ³ , БПК ₅ $1.91-2.32$ мгО/дм ³ , прозрачность $7-12$ см во всех створах.						
с. Жасоркен, 0,7 км выше с. Жасоркен, в створе водпоста	3 класс	Магний — 27,2 мг/дм ³ . Фактическая концентрация магния превышает фоновый класс.					
п. Солнечный, 0,5 км ниже гидропоста	4 класс	ХПК — 32,6 мг/дм ³ . Фактическая концентрация химического потребления кислорода превышает фоновый класс.					
г. Тараз, 7,5 км выше г.Тараз, 0,7 км выше сброса сточных вод ГРЭС, 3,0 км выше водпоста	3 класс	Магний — 24,8 мг/дм ³ . Фактическая концентрация магния превышает фоновый класс.					
г. Тараз, 10 км ниже г. Тараз, 0,7 км ниже выхода коллекторнодренажных вод с полей фильтрации сахарного и спирт. комбинатов.	3 класс	Магний — 28,7 мг/дм ³ . Фактическая концентрация магния превышает фоновый класс.					
река Асса	Температура воды находилась в пределах от 11,6 до 13,0°С, водородный показатель равен $8,0-8,10$, концентрации растворенного в воде кислорода $8,79-9,97$ мг/дм³, БПК ₅ $2,02-2,20$ мгО/дм³, прозрачность 6 см во всех створах.						
Окраина микрорайона Чолдала (Шөлдала), Кумшагалский с.о.(у моста)	4 класс	Магний — 31,1 $$ мг/дм 3 .					
р. Асса, 500м ниже с. Асса	5 класс	Взвешенные вещества — 67,0 мг/дм ³ . Фактическая концентрация взвешенных веществ превышает фоновый класс.					
река Шу	водородный по растворенного в в	ы находилась в пределах от $8,2$ до 14° С, казатель $8,05-8,25$ концентрации оде кислорода $8,51-9,71$, БПК ₅ $2,04-3,08$ ность воды $1-4$ см во всех створах.					
с. Кайнар (с.Благовещенское), 0,5 км ниже с. Кайнар: 65 м. ниже водпоста	не нормируется (>5 класс)	Взвешенные вещества — 209,0 мг/дм ³ . Фактическая концентрация взвешенных веществ превышает фоновый класс.					
с. Д. Конаева, 0,5 км ниже с. Д. Конаева	4 класс	Взвешенные вещества — 83,0 мг/дм ³ . Фактическая концентрация взвешенных веществ превышает фоновый класс.					
река Аксу	концентрация рас	1 - 11,2°C, водородный показатель равен 8,25, створенного в воде кислорода $11,2$ мг/дм ³ , $11,2$ мг/дм ³ , прозрачность 3 см.					
а. Аксу, 0,5 км выше а. Аксу, 10 км от устья р. Аксу	4 класс	Магний — 46,7 мг/дм ³ . Фактическая концентрация магния превышает фоновый класс.					

река Карабалта	Температура воды $-11,4$ °C, водородный показатель равен 8,3, концентрация растворенного в воде кислорода $-10,8$ мг/дм ³ , БПК ₅ $-2,74$ мгО/дм ³ , прозрачность 1 см.				
на границе с Кыргызстаном, с.	Магний $-$ 65,2 мг/дм 3 . Фактическа				
Баласагун 29 км от устья реки	4 класс концентрация магния превышает фонов				
	класс.				
река Токташ	Температура воды $-11,6^{\circ}$ С, водородный показатель равен 8,25, концентрация растворенного в воде кислорода $-11,1$ мг/дм ³ , БПК ₅ $-2,42$ мгО/дм ³ , прозрачность 4 см.				
на границе с Кыргызстаном с. Жаугаш Батыр, 78 км от устья реки окраины с. Жаугаш Батыра	Магний — 65,2 мг/дм ³ , Сульфаты — 35-4 мг/дм ³ . Фактическая концентрация магн превышает фоновый класс, концентрац сульфатов не превышает фоновый класс.				

Справочный раздел Предельно-допустимые концентрации (ПДК) загрязняющих веществ ввоздухе населенных мест

Наименование	Значения	Класс	
примесей	максимально разовая	средне- суточная	опасности
Азота диоксид	0,2	0,04	2
Азота оксид	0,4	0,06	3
Аммиак	0,2	0,04	4
Бенз/а/пирен	-	$0,1 \text{ мкг}/100 \text{ m}^3$	1
Бензол	0,3	0,1	2
Бериллий	0,09	0,00001	1
Взвешенные вещества (частицы)	0,5	0,15	3
Взвешенные частицы РМ 10	0,3	0,06	
Взвешенные частицы РМ 2,5	0,16	0,035	
Хлористый водород	0,2	0,1	2
Кадмий	-	0,0003	1
Кобальт	-	0,001	2
Марганец	0,01	0,001	2
Медь	-	0,002	2
Мышьяк	-	0,0003	2
Озон	0,16	0,03	1
Свинец	0,001	0,0003	1
Диоксид серы	0,5	0,05	3
Серная кислота	0,3	0,1	2
Сероводород	0,008	-	2
Оксид углерода	5,0	3	4
Фенол	0,01	0,003	2
Формальдегид	0,05	0,01	2
Фтористый водород	0,02	0,005	2
Хлор	0,1	0,03	2
Хром (VI)	-	0,0015	1
Цинк	-	0,05	3

«Гигиенический норматив к атмосферному воздуху в городских и сельских населенных пунктах» (\mathbb{N} ҚР ДСМ-70 от 02 августа 2022 года)

Оценка степени индекса загрязнения атмосферы

Градации	Загрязнение атмосферного воздуха	Показатели	Оценка за месяц	
I	Низкое	СИ НП, %	0-1 0	
II	Повышенное	СИ НП, %	2-4 1-19	
III	Высокое	СИ НП, %	5-10 20-49	
IV	Очень высокое	СИ НП, %	>10 >50	

РД 52.04.667–2005, Документы состояния загрязнения атмосферы в городах для информирования государственных органов, общественности и населения. Общие требования к разработке, постороению, изложению и содержанию

Дифференциация классов водопользования по категориям (видам) водопользования

Категория (вид)	Назначение/тип		Классы	водополь	зования	
водопользования	очистки	1	2	3	4	5
		класс	класс	класс	класс	класс
Рыбохозяйственное	Лососевые	+	+	-	-	-
водопользование	Карповые	+	+	-	_	-
Хозяйственно-питьевое водопользование	Простая водоподготовка	+	+	-	-	-
	Обычная водоподготовка	+	+	+	-	-
	Интенсивная водоподготовка	+	+	+	+	-
Рекреационное водопользование (культурно-бытовое)		+	+	+	-	-
Орошение	Без подготовки	+	+	+	+	-
	Отстаивание в картах	+	+	+	+	+
Промышленность:						
технологические цели, процессы охлаждения		+	+	+	+	-
гидроэнергетика		+	+	+	+	+
добыча полезных ископаемых		+	+	+	+	+
транспорт		+	+	+	+	+

Единая система классификации качества воды в водных объектах (Приказ КВР MCX №151 от 09.11.2016)

Норматив радиационной безопасности

Нормируемые величины	Пределы доз			
Эффективная доза	Население			
	1 м ³ в в год в среднем за любые			
	последовательные 5 лет, но не более 5 м ³ в в год			

*«Санитарно-эпидемиологические требования к обеспечению радиационной безопасности»

Предельно-допустимые концентрации (далее - ПДК) химических веществ в почве

Наименование вещества	Предельно-допустимая концентрация (далее-ПДК) мг/кг в почве
Свинец (валовая форма)	32,0
Хром (подвижная форма)	6,0

^{*} Гигиенические нормативы к безопасности среды обитания Утверждены приказом Министра здравоохранения Республики Казахстан от 21 апреля 2021 года № КР ДСМ -32

ФИЛИАЛ РГП «КАЗГИДРОМЕТ» ПО ЖАМБЫЛСКОЙ ОБЛАСТИ

АДРЕС: ГОРОД ТАРАЗ УЛ. ЧИМКЕНТСКАЯ 22 ТЕЛ. 8-(7262)-31-60-81 8-(7262)-56-80-51

E MAIL: info_zmb@meteo.kz